/usr/share/gap/lib/ghomperm.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 | #############################################################################
##
#W ghomperm.gi GAP library Ákos Seress, Heiko Theißen
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
#############################################################################
##
#M PreImagesSet( <map>, <elms> ) . for s.p. gen. mapping resp. mult. & inv.
##
InstallMethod( PreImagesSet,
"method for permgroup homs",
CollFamRangeEqFamElms,
[ IsPermGroupHomomorphism, IsGroup ],
function( map, elms )
local genpreimages, pre,kg,sz;
genpreimages:=GeneratorsOfMagmaWithInverses( elms );
if Length(genpreimages)>0 and CanEasilyCompareElements(genpreimages[1]) then
# remove identities
genpreimages:=Filtered(genpreimages,i->i<>One(i));
fi;
genpreimages:= List(genpreimages,
gen -> PreImagesRepresentative( map, gen ) );
if fail in genpreimages then
TryNextMethod();
fi;
if HasSize( elms ) then
sz:=Size( KernelOfMultiplicativeGeneralMapping( map ) ) * Size( elms );
kg:=GeneratorsOfGroup(KernelOfMultiplicativeGeneralMapping( map ) );
if Length(kg)>2 then Add(genpreimages,Random(kg));fi;
pre:=SubgroupNC(Source(map),genpreimages);
StabChainOptions(pre).limit:=sz;
while Size(pre)<sz do
pre:=ClosureSubgroupNC(pre,First(kg,i->not i in pre));
od;
else
pre := SubgroupNC( Source( map ), Concatenation(
GeneratorsOfMagmaWithInverses(
KernelOfMultiplicativeGeneralMapping( map ) ),
genpreimages ) );
if HasSize( KernelOfMultiplicativeGeneralMapping( map ) )
and HasSize( elms ) then
SetSize( pre, Size( KernelOfMultiplicativeGeneralMapping( map ) )
* Size( elms ) );
fi;
fi;
return pre;
end );
#############################################################################
##
#F AddGeneratorsGenimagesExtendSchreierTree( <S>, <newlabs>, <newlims> ) . .
##
InstallGlobalFunction( AddGeneratorsGenimagesExtendSchreierTree,
function( S, newlabs, newlims )
local old, # genlabels before extension
len, # initial length of the orbit of <S>
img, # image during orbit algorithm
pos, # label positions
ind, # index of new labels
i, j; # loop variables
# check duplicates
# Put in the new labels and labelimages.
old := ShallowCopy( S.genlabels );
UniteSet( S.genlabels, Length( S.labels ) + [ 1 .. Length( newlabs ) ] );
Append( S.labels, newlabs ); Append( S.generators, newlabs );
Append( S.labelimages, newlims ); Append( S.genimages, newlims );
# Extend the orbit and the transversal with the new labels.
len := Length( S.orbit );
i := 1;
while i <= Length( S.orbit ) do
for j in S.genlabels do
# Use new labels for old points, all labels for new points.
if i > len or not j in old then
img := S.orbit[ i ] / S.labels[ j ];
if not IsBound( S.translabels[ img ] ) then
S.translabels[ img ] := j;
Add( S.orbit, img );
if not IsBound(S.transversal[img]) then
S.transversal[ img ] := S.labels[ j ];
S.transimages[ img ] := S.labelimages[ j ];
fi;
fi;
fi;
od;
i := i + 1;
od;
end );
#############################################################################
##
#F ImageSiftedBaseImage( <S>, <bimg>, <h> ) sift base image and find image
##
InstallGlobalFunction( ImageSiftedBaseImage, function( S, bimg, img, opr )
local base;
base := BaseStabChain( S );
while bimg <> base do
while bimg[ 1 ] <> base[ 1 ] do
img := opr ( img, S.transimages[ bimg[ 1 ] ] );
bimg := OnTuples( bimg, S.transversal[ bimg[ 1 ] ] );
od;
S := S.stabilizer;
base := base{ [ 2 .. Length( base ) ] };
bimg := bimg{ [ 2 .. Length( bimg ) ] };
od;
return img;
end );
#############################################################################
##
#F CoKernelGensIterator( <hom> ) . . . . . . . . . . . . . make this animal
##
BindGlobal( "IsDoneIterator_CoKernelGens",
iter -> IsEmpty( iter!.level.genlabels ) and IsEmpty(iter!.trivlist));
BindGlobal( "NextIterator_CoKernelGens", function( iter )
local gen, stb, bimg, rep, pnt, img, j, k;
# do we have to take care of a trivlist?
if not IsEmpty(iter!.trivlist) then
j:=Length(iter!.trivlist);
gen:=iter!.trivlist[j];
Unbind(iter!.trivlist[j]);
return gen;
fi;
# Make the current cokernel generator.
stb := iter!.level;
k := stb.genlabels[ iter!.genlabelNo ];
gen := ImageSiftedBaseImage( stb,
OnTuples( iter!.bimg, stb.labels[ k ] ),
iter!.img * stb.labelimages[ k ], OnRight );
# Move on the iterator: Next generator.
iter!.genlabelNo := iter!.genlabelNo + 1;
if iter!.genlabelNo > Length( stb.genlabels ) then
iter!.genlabelNo := 1;
# Next basic orbit point.
iter!.pointNo := iter!.pointNo + 1;
if iter!.pointNo > Length( stb.orbit ) then
iter!.pointNo := 1;
# Next level of the stabilizer chain.
iter!.levelNo := iter!.levelNo + 1;
iter!.level := stb.stabilizer;
stb := iter!.level;
# Return prematurely if the iterator is done.
if IsEmpty( stb.genlabels ) then
return gen;
fi;
fi;
pnt := stb.orbit[ iter!.pointNo ];
rep := [ ];
img := stb.idimage;
while pnt <> stb.orbit[ 1 ] do
Add( rep, stb.transversal[ pnt ] );
img := LeftQuotient( stb.transimages[ pnt ], img );
pnt := pnt ^ stb.transversal[ pnt ];
od;
bimg := iter!.base{ [ iter!.levelNo .. Length( iter!.base ) ] };
for k in Reversed( [ 1 .. Length( rep ) ] ) do
for j in [ 1 .. Length( bimg ) ] do
bimg[ j ] := bimg[ j ] / rep[ k ];
od;
od;
iter!.img := img;
iter!.bimg := bimg;
fi;
return gen;
end );
BindGlobal( "ShallowCopy_CoKernelGens", function( iter )
iter:= rec( level := StructuralCopy( iter!.level ),
pointNo := iter!.pointNo,
genlabelNo := iter!.genlabelNo,
levelNo := iter!.levelNo,
base := ShallowCopy( iter!.base ),
img := iter!.img );
iter.bimg:= iter.base;
#T what is this good for??
return iter;
end );
InstallGlobalFunction( CoKernelGensIterator, function( hom )
local S, iter,mgi;
S := StabChainMutable( hom );
iter := rec(
IsDoneIterator := IsDoneIterator_CoKernelGens,
NextIterator := NextIterator_CoKernelGens,
ShallowCopy := ShallowCopy_CoKernelGens,
level := S,
pointNo := 1,
genlabelNo := 1,
levelNo := 1,
base := BaseStabChain( S ) );
iter.img := S.idimage;
iter.bimg := iter.base;
mgi:=MappingGeneratorsImages(hom);
iter.trivlist:=mgi[2]{Filtered([1..Length(mgi[1])],i->IsOne(mgi[1][i]))};
return IteratorByFunctions( iter );
end );
#############################################################################
##
#F CoKernelGensPermHom( <hom> ) . . . . . . . . generators for the cokernel
##
InstallGlobalFunction( CoKernelGensPermHom, function( hom )
local C, sch;
C := [ ];
for sch in CoKernelGensIterator( hom ) do
if not (sch=One(sch) or sch in C) then
AddSet( C, sch );
fi;
od;
return C;
end );
#############################################################################
##
#F RelatorsPermGroupHom( <hom, gens> ) . . relators for a permutation group
##
## `RelatorsPermGroupHom' is an internal function which is called by the
## operation `IsomorphismFpGroupByGeneratorsNC' in case of a permutation
## group. It implements John Cannon's multi-stage relations-finding
## algorithm as described in
##
## Joachim Neubueser: An elementary introduction to coset table methods
## in computational group theory, pp. 1-45 in "Groups-St.Andrews 1981,
## Proceedings of a conference, St.Andrews 1981", edited by Colin M.
## Campbell and Edmund F. Robertson, London Math. Soc. Lecture Note Series
## 71, Cambridge University Press, 1982.
##
## Warning: The arguments are not checked for being consistent.
##
## If option `chunk' is given, relators are treated in chunks once their
## number gets bigger
##
InstallGlobalFunction( RelatorsPermGroupHom, function ( hom, gensG )
local actcos, actgen, app, c, col, cosets, cont, defs1, defs2, F, fgensH,
G, g, g1, gen0, geners, gens, gensF, gensF2, gensS, H, i, idword,
index, inv0, iso, j, map, ndefs, next, ngens, ngens2, ni, orbit,
order, P, perm, perms, range, regular, rel, rel2, rels, relsG,
relsGen, relsH, relsP, S, sizeS, stabG, stabS, table, tail, tail1,
tail2, tietze, tzword, undefined,
wordsH,allnums,fam,NewRelators,newrels,chunk, one;
chunk:=ValueOption("chunk");
# get the involved groups
G := PreImage( hom );
F := Range( hom );
gensF := GeneratorsOfGroup( F );
ngens := Length( gensG );
one:= One( G );
fam:=FamilyObj(One(F));
# are all generators as we would expect them?
allnums:=List(gensF,i->GeneratorSyllable(i,1));
allnums:=(allnums=[1..Length(allnums)])
and ForAll(gensF,i->Length(i)=1 and ExponentSyllable(i,1)=1);
# special case: G is the identity group
if Size( G ) = 1 then
return gensF;
fi;
# apply the two-stage relations finding algorithm to recursively
# construct a presentation for each stabilizer in a stabilizer chain of
# G (if G is not regular), and finally for G itself
regular := IsRegular( G );
if regular then
orbit := Orbits( G,MovedPoints(G) )[1];
sizeS := 1;
else
# get a stabilizer chain for hom
stabG := StabChainMutable( hom );
orbit := stabG.orbit;
# get the first stabilizer S
stabS := stabG.stabilizer;
S := Subgroup( G, stabS.labels{ stabS.genlabels } );
sizeS := Size( S );
fi;
# initialize some local variables
index := Length( orbit );
ngens2 := ngens * 2;
table := [];
range := [ 1 .. index ];
idword := One( gensF[1] );
gensF2 := [];
undefined := 0;
ndefs := 0;
defs1 := ListWithIdenticalEntries( ngens * index, 0 );
defs2 := ListWithIdenticalEntries( ngens * index, 0 );
# initialize a presentation for G
P := PresentationFpGroup( F / [ ], 0 );
tietze := P!.tietze;
TzOptions( P ).protected := ngens;
if sizeS > 1 then
# construct recursively a presentation for S and lift the relators
# of S to relators of G
gensS := GeneratorsOfGroup( S );
iso := IsomorphismFpGroupByGeneratorsNC( S, gensS, "x" :
infolevel := 2 );
H := Image( iso );
fgensH := FreeGeneratorsOfFpGroup( H );
relsH := RelatorsOfFpGroup( H );
wordsH := stabS.genimages;
for rel in relsH do
AddRelator( P, MappedWord( rel, fgensH, wordsH ) );
od;
fi;
# make the permutations act on the points 1 to index
map := MappingPermListList( orbit, range );
perms := List( gensG, gen -> PermList( OnTuples( orbit, gen * map ) ) );
# get a coset table from the permutations and introduce appropriate
# order relators for the involutory generators
for i in [ 1 .. ngens ] do
Add( gensF2, gensF[i] );
Add( gensF2, gensF[i]^-1 );
perm := perms[i];
col := -OnTuples( range, perm );
undefined := undefined + index;
Add( table, col );
order := Order( gensG[i] );
if order <= 2 then
rel := gensF[i]^order;
if sizeS > 1 then
# lift the tail of the relator from S to G
tail := MappedWord( rel, gensF, gensG );
if tail <> one then
tail1 := UnderlyingElement( tail^iso );
tail2 := UnderlyingElement( (tail^-1)^iso );
rel2 := rel * MappedWord( tail2, fgensH, wordsH );
rel := rel * MappedWord( tail1, fgensH, wordsH )^-1;
if Length( rel ) > Length( rel2 ) then
rel := rel2;
fi;
fi;
fi;
AddRelator( P, rel );
else
col := -OnTuples( range, perm^-1 );
undefined := undefined + index;
fi;
Add( table, col );
od;
tietze[TZ_MODIFIED] := true;
while tietze[TZ_MODIFIED] and tietze[TZ_TOTAL] > 0 do
TzSearch( P );
od;
# reconvert the Tietze relators to abstract words
relsP := tietze[TZ_RELATORS];
relsG := [ ];
for tzword in relsP do
if tzword <> [ ] then
if allnums then
Add( relsG, AssocWordByLetterRep(fam,tzword ));
else
Add( relsG, AbstractWordTietzeWord( tzword, gensF ) );
fi;
fi;
od;
# make the rows for the relators and distribute over relsGen
relsGen := RelsSortedByStartGen( gensF, relsG, table, true );
# make the structure that is passed to `MakeConsequencesPres'
app := ListWithIdenticalEntries( 8, 0 );
app[1] := table;
app[2] := defs1;
app[3] := defs2;
# define an appropriate ordering of the cosets,
# enter the coset definitions in the table,
# and construct the Schreier vector,
cosets := ListWithIdenticalEntries( index, 0 );
actcos := ListWithIdenticalEntries( index, 0 );
actgen := ListWithIdenticalEntries( index, 0 );
cosets[1] := 1;
actcos[1] := 1;
j := 1;
i := 0;
while i < index do
i := i + 1;
c := cosets[i];
g := 0;
while g < ngens2 do
g := g + 1;
next := -table[g][c];
if next > 0 and actcos[next] = 0 then
g1 := g + 2*(g mod 2) - 1;
table[g][c] := next;
undefined := undefined - 1;
if table[g1][next] < 0 then
table[g1][next] := c;
undefined := undefined - 1;
fi;
actcos[next] := c;
actgen[next] := g;
ndefs := ndefs + 1;
defs1[ndefs] := c;
defs2[ndefs] := g;
j := j + 1;
cosets[j] := next;
if j = index then
g := ngens2;
i := index;
fi;
fi;
od;
od;
NewRelators:=function(nrels)
local rel;
# add the new relator to the Tietze presentation and reduce it
for rel in nrels do
AddRelator( P, rel );
od;
if tietze[TZ_MODIFIED] then
while tietze[TZ_MODIFIED] and tietze[TZ_TOTAL] > 0 do
TzSearch( P );
od;
# reconvert the Tietze relators to abstract words
rels := relsG;
relsG := [ ];
relsP := tietze[TZ_RELATORS];
for tzword in relsP do
if allnums then
Add( relsG, AssocWordByLetterRep(fam,tzword ));
else
Add( relsG, AbstractWordTietzeWord( tzword, gensF ) );
fi;
od;
# reconstruct the rows for the relators if necessary
if relsG <> rels then
relsGen := RelsSortedByStartGen( gensF, relsG, table, true );
fi;
fi;
end;
newrels:=[];
# run through the coset table and find the next undefined entry
ni := 0;
while ni < index and undefined > 0 do
CompletionBar(InfoFpGroup,2,"Index Loop: ",ni/index);
ni := ni + 1;
i := cosets[ni];
j := 0;
while j < ngens2 and undefined > 0 do
j := j + 1;
if table[j][i] <= 0 then
# define the entry appropriately
g := j + 2*(j mod 2) - 1;
c := -table[j][i];
table[j][i] := c;
undefined := undefined - 1;
if table[g][c] < 0 then
table[g][c] := i;
undefined := undefined - 1;
fi;
ndefs := ndefs + 1;
defs1[ndefs] := i;
defs2[ndefs] := j;
# construct the associated relator
rel := idword;
while c <> 1 do
g := actgen[c];
rel := rel / gensF2[g];
c := actcos[c];
od;
#rel := rel^-1 * gensF2[j]^-1;
rel := (gensF2[j]*rel)^-1;
c := i;
while c <> 1 do
g := actgen[c];
rel := rel / gensF2[g];
c := actcos[c];
od;
if sizeS > 1 then
# lift the tail of the relator from S to G
tail := MappedWord( rel, gensF, gensG );
if tail <> one then
tail1 := UnderlyingElement( tail^iso );
tail2 := UnderlyingElement( (tail^-1)^iso );
rel2 := rel * MappedWord( tail2, fgensH, wordsH );
#rel := rel * MappedWord( tail1, fgensH, wordsH )^-1;
rel := rel / MappedWord( tail1, fgensH, wordsH );
if Length( rel ) > Length( rel2 ) then
rel := rel2;
fi;
fi;
fi;
if Length( rel ) > 0 then
if Length(relsG)<100 or chunk=fail then
# few relators or no chunk option: process step by step
NewRelators([rel]);
else
# if there are many relators add them in chunks.
Add(newrels,rel);
if Length(newrels)>QuoInt(Length(relsG),10) then
NewRelators(newrels);
newrels:=[];
fi;
fi;
fi;
# continue the enumeration and find all consequences
if undefined > 0 then
app[4] := undefined;
app[5] := ndefs;
app[6] := relsGen;
undefined := MakeConsequencesPres( app );
fi;
fi;
od;
od;
Info(InfoFpGroup,2,""); # finish bar
if Length(newrels)>0 then
NewRelators(newrels);
newrels:=[];
fi;
# reduce the resulting presentation
TzGoGo( P );
# reconvert the reduced relators and return them
relsP := tietze[TZ_RELATORS];
relsG := [ ];
for tzword in relsP do
if tzword <> [ ] then
if allnums then
Add( relsG, AssocWordByLetterRep(fam,tzword ));
else
Add( relsG, AbstractWordTietzeWord( tzword, gensF ) );
fi;
fi;
od;
return relsG;
end );
DoShortwordBasepoint:=function(shorb)
local dom, l, n, i, j,o,ld,mp,lp,x;
# do not take all elements but a sampler
#if Length(shorb)>10000 then
# mp:=[1..Length(shorb)];
# shorb:=shorb{Set(List([1..5000],i->Random(mp)))};
#fi;
if Length(shorb)>3000 then
mp:=[1..Length(shorb)];
l:=List([1..1000],i->shorb[Random(mp)][1]);
else
l:=List(shorb,i->i[1]);
fi;
dom:=MovedPointsPerms(l);
o:=OrbitsPerms(l,dom);
l:=[];
if Length(dom)>Length(shorb)*2 then
n:=ListWithIdenticalEntries(Maximum(dom),0);
for j in shorb do
x:=j[1];
if LargestMovedPointPerm(x)>0 then
mp:=[];
lp:=1/(1+Length(j[2]));
for i in dom do
if i^x=i then
n[i]:=n[i]+lp;
fi;
od;
fi;
od;
for j in o do
lp:=Length(j);
for i in j do
if n[i]>0 then
Add(l,[n[i]*lp,i]);
fi;
od;
od;
else
for i in dom do
n:=0;
for j in shorb do
if i^j[1]=i then
n:=n+1/(1+Length(j[2]));
fi;
od;
j:=PositionProperty(o,k->i in k);
n:=n*Length(o[j]);
Add(l,[n,i]);
od;
fi;
Sort(l);
if Length(l)=0 then
return fail;
fi;
return l[Length(l)][2];
end;
#############################################################################
##
#M StabChainMutable( <hom> ) . . . . . . . . . . . . . . for perm group homs
##
# new
InstallOtherMethod( StabChainMutable, "perm mapping by images", true,
[ IsPermGroupGeneralMappingByImages ], 0,
function( hom )
local S,
rnd, # list of random elements of '<hom>.source'
rne, # list of the images of the elements in <rnd>
rni, # index of the next random element to consider
elm, # one element in '<hom>.source'
img, # its image
size, # size of the stabilizer chain constructed so far
stb, # stabilizer in '<hom>.source'
bpt, # base point
two, # power of two
trivgens, # trivial generators and their images, must be
trivimgs, # entered into every level of the chain
mapi,
i, T, # loop variables
orb,
orbf, # indicates with which generator the image was obtained
dict,
cnt,
short,
FillTransversalShort,
BuildOrb,
AddToStbO,
maxstor,
gsize,
l; # position
# Add to short word orbit fct.
AddToStbO:=function(o,dict,e,w)
local i;
#Print("add length ",Length(UnderlyingElement(w)),"\n");
i:=LookupDictionary(dict,e);
if i<>fail then
if Length(o[i][2])>Length(w) then
o[i]:=Immutable([e,w]);
return 0;
fi;
return 1;
else
Add(o,Immutable([e,w]));
AddDictionary(dict,e,Length(o));
return 0;
fi;
# if l<>Fail then
# for i in [1..Length(o)] do
# if o[i][1]=e then
# if Length(o[i][2])>Length(w) then
# o[i]:=Immutable([e,w]);
# fi;
# return;
# fi;
# od;
# Add(o,Immutable([e,w]));
end;
# build short words by an orbit algorithm on genimg
BuildOrb:=function(genimg)
local orb,dict,orbf,T,elm,img,i,n;
dict:=NewDictionary(genimg[1][1],false);
AddDictionary(dict,One(genimg[1][1]));
orb:=[Immutable([One(genimg[1][1]),One(genimg[2][1])])];
orbf:=[0];
i:=1;
n:=Length(genimg[1]);
while Length(orb)<maxstor and i<=Length(orb) do
for T in [1..n] do
if orbf[i]<>-T then
elm:=orb[i][1]*genimg[1][T];
if not KnowsDictionary(dict,elm) then
# new rep found
img:=orb[i][2]*genimg[2][T];
AddDictionary(dict,elm);
Add(orb,Immutable([elm,img]));
Add(orbf,T);
fi;
fi;
if orbf[i]<>T then
elm:=orb[i][1]/genimg[1][T];
if not KnowsDictionary(dict,elm) then
# new rep found
img:=orb[i][2]/genimg[2][T];
AddDictionary(dict,elm);
Add(orb,Immutable([elm,img]));
Add(orbf,-T);
fi;
fi;
od;
i:=i+1;
od;
return orb;
end;
mapi:=MappingGeneratorsImages(hom);
# do products build up? (Must we prefer short words?)
short:=(IsFreeGroup(Range(hom)) or IsFpGroup(Range(hom)))
and ValueOption("noshort")<>true;
if short then
# compute how many perms we permit to store?
maxstor:=LargestMovedPoint(Source(hom))+1;
if maxstor>65535 then
maxstor:=maxstor*2; # perms need twice as much memory
fi;
maxstor:=Int(40*1024^2/maxstor); # allocate at most 40MB to the perms
# but don't be crazy
maxstor:=Minimum(maxstor,
Size(Source(hom))/10,
500*LogInt(Size(Source(hom)),2),
25000);
# fill transversal with elements that are short words
# This is similar to Minkwitz' approach and produces much shorter
# words when decoding.
FillTransversalShort:=function(stb,size)
local l,i,bpt,m,elm,wrd,z,j,dict,fc,mfc;
mfc:=Minimum(maxstor*10,gsize/size);
bpt:=stb.orbit[1];
stb.norbit:=ShallowCopy(stb.orbit);
# fill transversal with short words
for l in stb.orb do
i:=bpt/l[1];
if not i in stb.norbit then
Add(stb.norbit,i);
stb.transversal[i]:=l[1];
stb.transimages[i]:=l[2];
fi;
i:=bpt^l[1];
if not i in stb.norbit then
Add(stb.norbit,i);
stb.transversal[i]:=Inverse(l[1]);
stb.transimages[i]:=Inverse(l[2]);
fi;
od;
stb.stabilizer.orb:=Filtered(stb.orb,i->bpt^i[1]=bpt);
dict:=NewDictionary(stb.stabilizer.orb[1][1],true);
for l in [1..Length(stb.stabilizer.orb)] do
AddDictionary(dict,stb.stabilizer.orb[l][1],l);
od;
l:=1;
fc:=1;
maxstor:=Minimum(maxstor,QuoInt(5*gsize,size));
if maxstor<1000 then
maxstor:=Maximum(maxstor,Minimum(QuoInt(gsize,size),1000));
fi;
#Print(maxstor," ",gsize/size,"<\n");
while Length(stb.stabilizer.orb)*5<maxstor and l<=Length(stb.orb)
and fc<mfc do
# add schreier gens
elm:=stb.orb[l][1];
wrd:=stb.orb[l][2];
for z in [1,2] do
if z=2 then
elm:=elm^-1;
wrd:=wrd^-1;
fi;
i:=bpt^elm;
for j in stb.orb do
if bpt^j[1]=i then
fc:=fc+AddToStbO(stb.stabilizer.orb,dict,elm/j[1],wrd/j[2]);
elif i^j[1]=bpt then
fc:=fc+AddToStbO(stb.stabilizer.orb,dict,elm*j[1],wrd*j[2]);
fi;
od;
od;
l:=l+1;
od;
Unbind(stb.orb);
Unbind(stb.norbit);
stb:=stb.stabilizer;
#Print("|o|=",Length(stb.orb),"\n");
# is there too little left? If yes, extend!
if Length(stb.orb)*20<maxstor then
stb.orb:=BuildOrb([List(stb.orb,i->i[1]),
List(stb.orb,i->i[2])]);
fi;
#Print(bpt,":",Length(stb.orb),"\n");
end;
else
FillTransversalShort:=Ignore;
fi;
# initialize the random generators
two := 16;
rnd := ShallowCopy( mapi[1] );
for i in [Length(rnd)..two] do
Add( rnd, One( Source( hom ) ) );
od;
rne := ShallowCopy( mapi[2] );
for i in [Length(rne)..two] do
Add( rne, One( Range( hom ) ) );
od;
rni := 1;
S := EmptyStabChain( [ ], One( Source( hom ) ),
[ ], One( Range( hom ) ) );
if short then
S.orb:=BuildOrb(mapi);
fi;
# initialize the top level
bpt:=fail;
if short then
bpt:=DoShortwordBasepoint(S.orb);
fi;
if bpt=fail then;
bpt := SmallestMovedPoint( Source( hom ) );
if bpt = infinity then
bpt := 1;
fi;
fi;
InsertTrivialStabilizer( S, bpt );
# the short words usable on this level
gsize:=Size(PreImagesRange(hom));
FillTransversalShort(S,1);
# Extend orbit and transversal. Store images of the identity for other
# levels.
AddGeneratorsGenimagesExtendSchreierTree( S, mapi[1], mapi[2] );
trivgens := [ ]; trivimgs := [ ];
for i in [ 1 .. Length( mapi[1] ) ] do
if mapi[1][ i ] = One( Source( hom ) ) then
Add( trivgens, mapi[1][ i ] );
Add( trivimgs, mapi[2][ i ] );
fi;
od;
# get the size of the stabilizer chain
size := Length( S.orbit );
# create new elements until we have reached the size
while size <> gsize do
# try random elements
elm := rnd[rni];
img := rne[rni];
i := Random( [ 1 .. Length( mapi[1] ) ] );
rnd[rni] := rnd[rni] * mapi[1][i];
rne[rni] := rne[rni] * mapi[2][i];
rni := rni mod two + 1;
# divide the element through the stabilizer chain
stb := S;
bpt := BasePoint( stb );
while bpt <> false
and elm <> stb.identity
and Length( stb.genlabels ) <> 0 do
i := bpt ^ elm;
if IsBound( stb.translabels[ i ] ) then
while i <> bpt do
img := img * stb.transimages[ i ];
elm := elm * stb.transversal[ i ];
i := bpt ^ elm;
od;
stb := stb.stabilizer;
bpt := BasePoint( stb );
else
bpt := false;
fi;
od;
# if the element was not in the stabilizer chain
if elm <> stb.identity then
# if this stabilizer is trivial add an new level
if not IsBound( stb.stabilizer ) then
l:=fail;
if short and IsBound(stb.orb) then
l:=DoShortwordBasepoint(stb.orb);
fi;
if l=fail then
l:=SmallestMovedPoint(elm);
fi;
InsertTrivialStabilizer( stb, l );
AddGeneratorsGenimagesExtendSchreierTree( stb,
trivgens, trivimgs );
# the short words usable on this level
FillTransversalShort(stb,size);
fi;
# if short then
# l:=LookupDictionary(dict,elm);
# if l<>fail then
# img:=l;
# fi;
# fi;
# extend the Schreier trees above level `stb'
T := S;
repeat
T := T.stabilizer;
size := size / Length( T.orbit );
AddGeneratorsGenimagesExtendSchreierTree( T, [elm], [img] );
size := size * Length( T.orbit );
until T.orbit[ 1 ] = stb.orbit[ 1 ];
fi;
od;
return S;
end );
#############################################################################
##
#M CoKernelOfMultiplicativeGeneralMapping( <hom> ) . . . for perm group homs
##
InstallMethod( CoKernelOfMultiplicativeGeneralMapping,
true, [ IsPermGroupGeneralMappingByImages ], 0,
function( hom )
local is;
# As ImagesSource might call ImagesSet which would require the co-kernel
# again, one has to be a careful a bit.
# However, the default ImagesSource method for IsGroupGeneralMappingByImages
# does not use ImagesSet, and these days there should be no reason to use
# ImagesSet in any ImagesSource method due to the existence of
# MappingGeneratorsImages.
is:=ImagesSource(hom);
return NormalClosure( is, SubgroupNC
( Range( hom ), CoKernelGensPermHom( hom ) ) );
end );
#############################################################################
##
#M IsSingleValued( <hom> ) . . . . . . . . . . . . . . . for perm group homs
##
InstallMethod( IsSingleValued, true,
[ IsPermGroupGeneralMappingByImages ], 0,
function( hom )
local sch;
for sch in CoKernelGensIterator( hom ) do
if sch <> One( sch ) then
return false;
fi;
od;
return true;
end );
#############################################################################
##
#M ImagesRepresentative( <hom>, <elm> ) . . . . . . . . for perm group homs
##
InstallMethod( ImagesRepresentative, "perm group hom",FamSourceEqFamElm,
[ IsPermGroupGeneralMappingByImages,
IsMultiplicativeElementWithInverse ],
function( hom, elm )
local S,img,img2;
if not ( HasIsTotal( hom ) and IsTotal( hom ) )
and not elm in PreImagesRange( hom ) then
return fail;
else
S := StabChainMutable( hom );
img := ImageSiftedBaseImage( S, OnTuples( BaseStabChain( S ), elm ),
S.idimage, OnRight );
if IsPerm( img ) then
if IsInternalRep( img ) then
TRIM_PERM( img, LargestMovedPoint( Range( hom ) ) );
else
img:=RestrictedPermNC(img,[1..LargestMovedPoint(Range(hom))]);
fi;
elif IsAssocWord(img) or IsElementOfFpGroup(img) then
# try the inverse as well -- it might be better
img2:= ImageSiftedBaseImage( S, List(BaseStabChain(S),i->i/elm),
S.idimage, OnRight );
if Length(UnderlyingElement(img2))<Length(UnderlyingElement(img)) then
return img2;
fi;
fi;
return img^-1;
fi;
end );
#############################################################################
##
#M CompositionMapping2( <hom1>, <hom2> ) . . . . . . . . for perm group homs
##
InstallMethod( CompositionMapping2, "group hom. with perm group hom.",
FamSource1EqFamRange2, [ IsGroupHomomorphism,
IsPermGroupGeneralMappingByImages and IsGroupHomomorphism ], 0,
function( hom1, hom2 )
local prd, stb, levs, S,t,i,oli;
stb := StructuralCopy( StabChainMutable( hom2 ) );
levs := [ ];
S := stb;
while IsBound( S.stabilizer ) do
S.idimage := One( Range( hom1 ) );
oli:=S.labelimages;
if not ForAny( levs, lev -> IsIdenticalObj( lev, S.labelimages ) ) then
Add( levs, S );
S.labelimages := List( S.labelimages, g ->
ImagesRepresentative( hom1, g ) );
fi;
S.generators := S.labels { S.genlabels };
S.genimages := S.labelimages{ S.genlabels };
t:=S.translabels{ S.orbit };
# are transimages actually given by translabels?
if ForAll([1..Length(S.orbit)],
x->IsIdenticalObj(S.transimages[S.orbit[x]],oli[t[x]])) then
S.transimages := [ ];
S.transimages{ S.orbit } := S.labelimages{ S.translabels{ S.orbit } };
else
for i in S.orbit do
S.transimages[i]:=Image(hom1,S.transimages[i]);
od;
fi;
S := S.stabilizer;
od;
S.idimage := One( Range( hom1 ) );
prd := GroupHomomorphismByImagesNC( Source( hom2 ), Range( hom1 ),
stb.generators, stb.genimages );
SetStabChainMutable( prd, stb );
return prd;
end );
# this method is better if hom2 maps to an fp group -- otherwise for
# computing preimages we need to do an MTC.
InstallMethod( CompositionMapping2, "fp hom. with perm group hom.",
FamSource1EqFamRange2,
[ IsGroupHomomorphism and IsToFpGroupGeneralMappingByImages and IsSurjective,
IsPermGroupGeneralMappingByImages and IsGroupHomomorphism ], 0,
function( hom1, hom2 )
local r, fgens, gens, kg;
r:=Range(hom1);
if (not KnowsHowToDecompose(Source(hom2))) or not IsWholeFamily(r) then
TryNextMethod();
fi;
fgens:=ShallowCopy(GeneratorsOfGroup(r));
gens:=List(fgens,
i->PreImagesRepresentative(hom2,PreImagesRepresentative(hom1,i)));
kg:=GeneratorsOfGroup(KernelOfMultiplicativeGeneralMapping(hom2));
Append(gens,kg);
Append(fgens,List(kg,i->One(r)));
return GroupHomomorphismByImagesNC(Source(hom2),r,gens,fgens);
end);
#############################################################################
##
#M PreImagesRepresentative( <hom>, <elm> ) . . . . . . for perm group range
##
InstallMethod( PreImagesRepresentative, FamRangeEqFamElm,
[ IsToPermGroupGeneralMappingByImages,
IsMultiplicativeElementWithInverse ], 0,
function( hom, elm )
return ImagesRepresentative( InverseGeneralMapping( hom ), elm );
end );
#############################################################################
##
#F StabChainPermGroupToPermGroupGeneralMappingByImages( <hom> ) . . . local
##
InstallGlobalFunction( StabChainPermGroupToPermGroupGeneralMappingByImages,
function( hom )
local options, # options record for stabilizer construction
n,
k,
i,
a,b,
longgens,
longgroup,
conperm,
conperminv,
mapi,
op;
if IsTrivial( Source( hom ) )
then n := 0;
else n := LargestMovedPoint( Source( hom ) ); fi;
if IsTrivial( Range( hom ) )
then k := 0;
else k := LargestMovedPoint( Range( hom ) ); fi;
# collect info for options
options := rec();
# random or deterministic
if IsBound( StabChainOptions( Parent( Source( hom ) ) ).random ) then
options.randomSource :=
StabChainOptions( Parent( Source( hom ) ) ).random;
elif IsBound( StabChainOptions( Source( hom ) ).random ) then
options.randomSource := StabChainOptions( Source( hom ) ).random;
elif IsBound( StabChainOptions( PreImagesRange( hom ) ).random ) then
options.randomSource := StabChainOptions( PreImagesRange( hom ) ).random;
else
options.randomSource := DefaultStabChainOptions.random;
fi;
if IsBound( StabChainOptions( Parent( Range( hom ) ) ).random ) then
options.randomRange :=
StabChainOptions( Parent( Range( hom ) ) ).random;
elif IsBound( StabChainOptions( Range( hom ) ).random ) then
options.randomRange := StabChainOptions( Range( hom ) ).random;
elif HasImagesSource(hom)
and IsBound( StabChainOptions( ImagesSource( hom ) ).random ) then
options.randomRange := StabChainOptions( ImagesSource( hom ) ).random;
else
options.randomRange := DefaultStabChainOptions.random;
fi;
options.random := Minimum(options.randomSource,options.randomRange);
# if IsMapping, try to extract info from source
if Tester( IsMapping )( hom ) and IsMapping( hom ) then
if HasSize( Source( hom ) ) then
options.size := Size( Source( hom ) );
elif HasSize( PreImagesRange( hom ) ) then
options.size := Size( PreImagesRange( hom ) );
fi;
if not IsBound( options.size )
and HasSize( Parent( Source( hom ) ) ) then
options.limit := Size( Parent( Source( hom ) ) );
fi;
if IsBound( StabChainOptions( Source( hom ) ).knownBase ) then
options.knownBase := StabChainOptions( Source( hom ) ).knownBase;
elif IsBound( StabChainOptions( PreImagesRange( hom ) ).knownBase )
then
options.knownBase := StabChainOptions( PreImagesRange( hom ) ).
knownBase;
elif HasBaseOfGroup( Source( hom ) ) then
options.knownBase := BaseOfGroup( Source( hom ) );
elif HasBaseOfGroup( PreImagesRange( hom ) ) then
options.knownBase := BaseOfGroup( PreImagesRange( hom ) );
elif IsBound( StabChainOptions( Parent( Source( hom ) ) ).knownBase )
then
options.knownBase :=
StabChainOptions( Parent( Source( hom ) ) ).knownBase;
elif HasBaseOfGroup( Parent( Source( hom ) ) ) then
options.knownBase := BaseOfGroup( Parent( Source( hom ) ) );
fi;
# if not IsMapping, settle for less
else
if HasSize( Source( hom ) ) then
options.limitSource := Size( Source( hom ) );
elif HasSize( PreImagesRange( hom ) ) then
options.limitSource := Size( PreImagesRange( hom ) );
elif HasSize( Parent( Source( hom ) ) ) then
options.limitSource := Size( Parent( Source( hom ) ) );
fi;
if IsBound( StabChainOptions( Source( hom ) ).knownBase ) then
options.knownBaseSource :=
StabChainOptions( Source( hom ) ).knownBase;
elif IsBound( StabChainOptions( PreImagesRange( hom ) ).knownBase )
then
options.knownBaseSource :=
StabChainOptions( PreImagesRange( hom ) ).knownBase;
elif IsBound( StabChainOptions( Parent( Source( hom ) ) ).knownBase )
then
options.knownBaseSource :=
StabChainOptions( Parent( Source( hom ) ) ).knownBase;
fi;
# if we have info about source, try to collect info about range
if IsBound( options.limitSource ) then
if HasSize( Range( hom ) ) then
options.limitRange := Size( Range( hom ) );
elif HasImagesSource(hom) and HasSize( ImagesSource( hom ) ) then
options.limitRange := Size( ImagesSource( hom ) );
elif HasSize( Parent( Range( hom ) ) ) then
options.limitRange := Size( Parent( Range( hom ) ) );
fi;
if IsBound( options.limitRange ) then
options.limit := options.limitSource * options.limitRange;
fi;
fi;
if IsBound( options.knownBaseRange ) then
if IsBound( StabChainOptions( Range( hom ) ).knownBase ) then
options.knownBaseRange :=
StabChainOptions( Range( hom ) ).knownBase;
elif IsBound( StabChainOptions( PreImagesRange( hom ) ).
knownBase ) then
options.knownBaseRange :=
StabChainOptions( PreImagesRange( hom ) ).knownBase;
elif IsBound( StabChainOptions( Parent( Range( hom ) ) )
.knownBase )
then
options.knownBaseRange :=
StabChainOptions( Parent( Range( hom ) ) ).knownBase;
fi;
if IsBound( options.knownBaseRange ) then
options.knownBase := Union( options.knownBaseSource,
options.knownBaseRange + n );
fi;
fi;
fi; # if IsMapping
options.base := [1..n];
# create concatenation of perms in hom.generators, hom.genimages
longgens := [];
conperm := MappingPermListList([1..k],[n+1..n+k]);
conperminv := conperm^(-1);
mapi:=MappingGeneratorsImages(hom);
for i in [1..Length(mapi[1])] do
# this is necessary to remove spurious points if the permutations are
# not internal
a:=mapi[1][i];
b:=mapi[2][i];
if not IsInternalRep(a) then
a:=RestrictedPermNC(a,[1..n]);
fi;
if not IsInternalRep(b) then
b:=RestrictedPermNC(b,[1..k]);
fi;
longgens[i] := a * (b ^ conperm);
od;
longgroup := GroupByGenerators( longgens, One( Source( hom ) ) );
for op in [ PreImagesRange, ImagesSource ] do
if Tester(op)(hom) and HasIsSolvableGroup( op( hom ) )
and not IsSolvableGroup( op( hom ) ) then
SetIsSolvableGroup( longgroup, false );
break;
fi;
od;
MakeStabChainLong( hom, StabChainOp( longgroup, options ),
[ 1 .. n ], One( Source( hom ) ), conperminv, hom,
CoKernelOfMultiplicativeGeneralMapping );
if NrMovedPoints(longgroup)<=10000 and
(not HasInverseGeneralMapping( hom )
or not HasStabChainMutable( InverseGeneralMapping( hom ) )
or not HasKernelOfMultiplicativeGeneralMapping( hom )
)then
MakeStabChainLong( InverseGeneralMapping( hom ),
StabChainOp( longgroup, [ n + 1 .. n + k ] ),
[ n + 1 .. n + k ], conperminv, One( Source( hom ) ), hom,
KernelOfMultiplicativeGeneralMapping );
fi;
return StabChainMutable( hom );
end );
#############################################################################
##
#F MakeStabChainLong( ... ) . . . . . . . . . . . . . . . . . . . . . local
##
InstallGlobalFunction( MakeStabChainLong,
function( hom, stb, ran, c1, c2, cohom, cokername )
local newlevs, S, idimage, i, len, rest, trans;
# Construct the stabilizer chain for <hom>.
S := CopyStabChain( stb );
SetStabChainMutable( hom, S );
newlevs := [ ];
idimage:= One( Range( hom ) );
repeat
len := Length( S.labels );
if len = 0 or IsPerm( S.labels[ len ] ) then
Add( S.labels, rec( labels := [ ], labelimages := [ ] ) );
len := len + 1;
for i in [ 1 .. len - 1 ] do
rest := RestrictedPermNC( S.labels[ i ], ran );
#T !!
Add( S.labels[ len ].labels, rest ^ c1 );
Add( S.labels[ len ].labelimages,
LeftQuotient( rest, S.labels[ i ] ) ^ c2 );
od;
Add( newlevs, S.labels );
fi;
S.labels{ [ 1 .. len - 1 ] } := S.labels[ len ].labels;
S.labelimages := S.labels[ len ].labelimages;
S.generators := S.labels{ S.genlabels };
S.genimages := S.labelimages{ S.genlabels };
S.idimage := idimage;
if BasePoint( S ) in ran then
trans := S.translabels{ S.orbit };
S.orbit := S.orbit - ran[ 1 ] + 1;
S.translabels := [ ];
S.translabels{ S.orbit } := trans;
S.transversal := [ ];
S.transversal{ S.orbit } := S.labels{ trans };
S.transimages := [ ];
S.transimages{ S.orbit } := S.labelimages{ trans };
S := S.stabilizer;
stb := stb.stabilizer;
else
RemoveStabChain( S );
S.genimages:=[];
S.labelimages := [ ];
S := false;
fi;
until S = false;
for S in newlevs do
Unbind( S[ Length( S ) ] );
od;
# Construct the cokernel.
if not IsEmpty( stb.genlabels ) then
if not Tester( cokername )( cohom ) then
S := EmptyStabChain( [ ], idimage );
ConjugateStabChain( stb, S, c2, c2 );
TrimStabChain(S,LargestMovedPoint(Range(hom)));
Setter( cokername )
( cohom, GroupStabChain( Range( hom ), S, true ) );
fi;
else
Setter( cokername )( cohom, TrivialSubgroup( Range( hom ) ) );
fi;
end );
#############################################################################
##
#M StabChainMutable( <hom> ) . . . . . . . . . . for perm to perm group homs
##
InstallMethod( StabChainMutable, "perm to perm mapping by images",true,
[ IsPermGroupGeneralMappingByImages and
IsToPermGroupGeneralMappingByImages ], 0,
StabChainPermGroupToPermGroupGeneralMappingByImages );
#############################################################################
##
#M KernelOfMultiplicativeGeneralMapping(<hom>) . for perm to perm group homs
##
InstallMethod( KernelOfMultiplicativeGeneralMapping,
"for perm to perm group homs, compute stab chain, try again",
[ IsPermGroupGeneralMappingByImages and
IsToPermGroupGeneralMappingByImages ], 0,
function( hom )
local ker;
if HasStabChainMutable( hom ) then TryNextMethod(); fi;
StabChainPermGroupToPermGroupGeneralMappingByImages( hom );
ker:=KernelOfMultiplicativeGeneralMapping( hom );
if Size(ker)=1 then
SetIsInjective(hom,true);
fi;
return ker;
end );
#############################################################################
##
#M CoKernelOfMultiplicativeGeneralMapping(<hom>) for perm to perm group homs
##
InstallMethod( CoKernelOfMultiplicativeGeneralMapping, true,
[ IsPermGroupGeneralMappingByImages and
IsToPermGroupGeneralMappingByImages ], 0,
function( hom )
StabChainPermGroupToPermGroupGeneralMappingByImages( hom );
return CoKernelOfMultiplicativeGeneralMapping( hom );
end );
#############################################################################
##
#M ImagesRepresentative( <hom>, <elm> ) . . . . . . . . . . . for const hom
##
InstallMethod( ImagesRepresentative,"Constituent homomorphism",
FamSourceEqFamElm,
[ IsConstituentHomomorphism, IsMultiplicativeElementWithInverse ], 0,
function( hom, elm )
local D;
D := Enumerator( UnderlyingExternalSet( hom ) );
if Length( D ) = 0 then
return ();
else
return PermList( OnTuples( [ 1 .. Length( D ) ],
elm ^ hom!.conperm ) );
fi;
#T problem if the image consists of wrapped permutations!
end );
#############################################################################
##
#M ImagesSet( <hom>, <H> ) . . . . . . . . . . . . . . . . . . for const hom
##
InstallMethod( ImagesSet,"constituent homomorphism", CollFamSourceEqFamElms,
# this method should *not* be applied if the group to be mapped has
# no stabilizer chain (for example because it is very big).
[ IsConstituentHomomorphism, IsPermGroup and HasStabChainMutable], 0,
function( hom, H )
local D, I,G;
D := Enumerator( UnderlyingExternalSet( hom ) );
I := EmptyStabChain( [ ], One(Range(hom)) );
RemoveStabChain( ConjugateStabChain( StabChainOp( H, D ), I,
hom, hom!.conperm,
S -> BasePoint( S ) <> false
and BasePoint( S ) in D ) );
#GroupStabChain might give too many generators
if Length(I.generators)<10 then
return GroupStabChain( Range( hom ), I, true );
else
G:=SubgroupNC(Range(hom),
List(GeneratorsOfGroup(H),i->Permutation(i,D)));
SetStabChainMutable(G,I);
return G;
fi;
end );
#############################################################################
##
#M Range( <hom>, <H> ) . . . . . . . . . . . . . . . . . . for const hom
##
RanImgSrcSurjTraho:=function(hom)
local D,H,I,G;
H:=Source(hom);
# only worth if the source has a stab chain to utilize
if not HasStabChainMutable(H) then
TryNextMethod();
fi;
D := Enumerator( UnderlyingExternalSet( hom ) );
I := EmptyStabChain( [ ], () );
RemoveStabChain( ConjugateStabChain( StabChainOp( H, D ), I,
hom, hom!.conperm,
S -> BasePoint( S ) <> false
and BasePoint( S ) in D ) );
#GroupStabChain might give too many generators
if Length(I.generators)<10 then
return GroupStabChain( I );
else
G:=Group(List(GeneratorsOfGroup(H),i->Permutation(i,D)),());
SetStabChainMutable(G,I);
return G;
fi;
end;
InstallMethod( Range,"surjective constituent homomorphism",true,
[ IsConstituentHomomorphism and IsActionHomomorphism and IsSurjective ],0,
RanImgSrcSurjTraho);
InstallMethod( ImagesSource,"constituent homomorphism",true,
[ IsConstituentHomomorphism and IsActionHomomorphism ],0,
RanImgSrcSurjTraho);
#############################################################################
##
#M PreImagesRepresentative( <hom>, <elm> )
##
InstallMethod( PreImagesRepresentative,"constituent homomorphism",
FamRangeEqFamElm,[IsConstituentHomomorphism,IsPerm], 0,
function( hom, elm )
local D,DP;
if not HasStabChainMutable(Source(hom)) then
# do not enforce a stabchain if not neccessary -- it could be big
TryNextMethod();
fi;
D:=Enumerator(UnderlyingExternalSet(hom));
DP:=Permuted(D,elm^-1);
return RepresentativeAction(Source(hom),D,DP,OnTuples);
end);
#############################################################################
##
#M PreImagesSet( <hom>, <I> ) . . . . . . . . . . . . . . . . for const hom
##
InstallMethod( PreImagesSet, "constituent homomorphism",CollFamRangeEqFamElms,
[ IsConstituentHomomorphism, IsPermGroup ], 0,
function( hom, I )
local H, # preimage of <I>, result
K, # kernel of <hom>
S, T, name;
# compute the kernel of <hom>
K := KernelOfMultiplicativeGeneralMapping( hom );
# create the preimage group
H := EmptyStabChain( [ ], One( Source( hom ) ) );
S := ConjugateStabChain( StabChainMutable( I ), H, x ->
PreImagesRepresentative( hom, x ), hom!.conperm ^ -1 );
T := H;
while IsBound( T.stabilizer ) do
AddGeneratorsExtendSchreierTree( T, GeneratorsOfGroup( K ) );
T := T.stabilizer;
od;
# append the kernel to the stabilizer chain of <H>
K := StabChainMutable( K );
for name in RecNames( K ) do
S.( name ) := K.( name );
od;
return GroupStabChain( Source( hom ), H, true );
end );
#############################################################################
##
#M KernelOfMultiplicativeGeneralMapping( <hom> ) . . . . . . . for const hom
##
InstallMethod( KernelOfMultiplicativeGeneralMapping,
"for constituent homomorphism",
true, [ IsConstituentHomomorphism ], 0,
function( hom )
return Stabilizer( Source( hom ), Enumerator( UnderlyingExternalSet( hom ) ),
OnTuples );
end );
#############################################################################
##
#M StabChainMutable( <hom> ) . . . . . . . . . . . . . . . . for blocks hom
##
InstallMethod( StabChainMutable,
"for blocks homomorphism",
true, [ IsBlocksHomomorphism ], 0,
function( hom )
local img;
img := ImageKernelBlocksHomomorphism( hom, Source( hom ),false );
if not HasImagesSource( hom ) then
SetImagesSource( hom, img );
fi;
return StabChainMutable( hom );
end );
#############################################################################
##
#M ImagesRepresentative( <hom>, <elm> ) . . . . . . . . . . for blocks hom
##
InstallMethod( ImagesRepresentative, "blocks homomorphism", FamSourceEqFamElm,
[ IsBlocksHomomorphism, IsMultiplicativeElementWithInverse ], 0,
function( hom, elm )
local img, D, i;
D := Enumerator( UnderlyingExternalSet( hom ) );
# make the image permutation as a list
img := [ ];
for i in [ 1 .. Length( D ) ] do
img[ i ] := hom!.reps[ D[ i ][ 1 ] ^ elm ];
od;
# return the image as a permutation
return PermList( img );
end );
#############################################################################
#
#F ImageKernelBlocksHomomorphism( <hom>, <H> ) . . . . . . image and kernel
##
InstallGlobalFunction( ImageKernelBlocksHomomorphism, function( hom, H,par )
local D, # the block system
I, # image of <H>, result
S, # block stabilizer in <H>
T, # corresponding stabilizer in <I>
full, # flag: true if <H> is (identical to) the source
B, # current block
i, j; # loop variables
D := Enumerator( UnderlyingExternalSet( hom ) );
S := CopyStabChain( StabChainMutable( H ) );
full := IsIdenticalObj( H, Source( hom ) );
if full then
SetStabChainMutable( hom, S );
fi;
if par<>false then
I := EmptyStabChain( [ ], One(par) );
else
I := EmptyStabChain( [ ], () );
fi;
T := I;
# loop over the blocks
for i in [ 1 .. Length( D ) ] do
B := D[ i ];
# if <S> does not already stabilize this block
if IsBound( B[1] )
and ForAny( S.generators, gen -> hom!.reps[ B[ 1 ] ^ gen ] <> i )
then
ChangeStabChain( S, [ B[ 1 ] ] );
# Make the next level of <T> and go down to `<T>.stabilizer'.
T := ConjugateStabChain( S, T, hom, hom!.reps,
S -> BasePoint( S ) = B[ 1 ] );
# Make <S> the stabilizer of the block <B>.
InsertTrivialStabilizer( S.stabilizer, B[ 1 ] );
j := 1;
while j < Length( B )
and Length( S.stabilizer.orbit ) < Length( B ) do
j := j + 1;
if IsBound( S.translabels[ B[ j ] ] ) then
AddGeneratorsExtendSchreierTree( S.stabilizer,
[ InverseRepresentative( S, B[ j ] ) ] );
fi;
od;
S := S.stabilizer;
fi;
od;
# if <H> is the full group this also gives us the kernel
if full and not HasKernelOfMultiplicativeGeneralMapping( hom ) then
SetKernelOfMultiplicativeGeneralMapping( hom,
GroupStabChain( Source( hom ), S, true ) );
fi;
if par<>false then
return GroupStabChain( par, I, true );
else
return GroupStabChain(I);
fi;
end );
#############################################################################
##
#M ImagesSet( <hom>, <H> ) . . . . . . . . . . . . . . . . . for blocks hom
##
InstallMethod( ImagesSet, "for blocks homomorphism and perm. group",
CollFamSourceEqFamElms, [ IsBlocksHomomorphism, IsPermGroup ], 0,
function(hom,U)
return ImageKernelBlocksHomomorphism(hom,U,Range(hom));
end);
RanImgSrcSurjBloho:=function(hom)
local gens,imgs,ran,dom;
# using stabchain info will produce just too many generators
if ValueOption("onlyimage")=fail and HasStabChainMutable(Source(hom))
and NrMovedPoints(Source(hom))<20000 then
# transfer stabchain information if not too expensive
ran:=ImageKernelBlocksHomomorphism(hom,Source(hom),false);
else
gens:=GeneratorsOfGroup( Source( hom ) );
imgs:=List(gens,gen->ImagesRepresentative( hom, gen ) );
ran:=GroupByGenerators( imgs,
ImagesRepresentative( hom, One( Source( hom ) ) ) );
SetMappingGeneratorsImages(hom,[gens,imgs]);
fi;
return ran;
end;
InstallMethod( Range, "surjective blocks homomorphism",true,
[ IsBlocksHomomorphism and IsSurjective ], 0,
RanImgSrcSurjBloho);
InstallMethod( ImagesSource, "blocks homomorphism",true,
[ IsBlocksHomomorphism ], 0,
RanImgSrcSurjBloho);
#############################################################################
##
#M PreImagesRepresentative( <hom>, <elm> ) . . . . . . . . . for blocks hom
##
InstallMethod( PreImagesRepresentative, "blocks homomorphism",
FamRangeEqFamElm,
[ IsBlocksHomomorphism, IsMultiplicativeElementWithInverse ], 0,
function( hom, elm )
local D, # the block system
pre, # preimage of <elm>, result
S, # stabilizer in chain of <hom>
B, # the image block <B>
b, # number of image block <B>
pos; # position of point hit by preimage
D := Enumerator( UnderlyingExternalSet( hom ) );
S := StabChainMutable( hom );
pre := One( Source( hom ) );
# loop over the blocks and their iterated set stabilizers
while Length( S.genlabels ) <> 0 do
# Find the image block <B> of the current block.
# test if the point is in no block (transitive action)
# if not we can simply skip this step in the stabilizer chain.
if IsBound(hom!.reps[S.orbit[1]]) then
b := hom!.reps[ S.orbit[ 1 ] ] ^ elm;
if b > Length( D ) then
return fail;
fi;
B := D[ b ];
# Find a point in <B> that can be hit by the preimage.
pos := PositionProperty( B, pnt ->
IsBound( S.translabels[ pnt/pre ] ) );
if pos = fail then
return fail;
else
pre := LeftQuotient( InverseRepresentative( S, B[ pos ] / pre ),
pre );
fi;
fi;
S := S.stabilizer;
od;
# return the preimage
return pre;
end) ;
#############################################################################
##
#M PreImagesSet( <hom>, <I> ) . . . . . . . . . . . . . . . for blocks hom
##
InstallMethod( PreImagesSet, CollFamRangeEqFamElms,
[ IsBlocksHomomorphism, IsPermGroup ], 0,
function( hom, I )
local H; # preimage of <I> under <hom>, result
H := PreImageSetStabBlocksHomomorphism( hom, StabChainMutable( I ) );
return GroupStabChain( Source( hom ), H, true );
end );
#############################################################################
##
#F PreImageSetStabBlocksHomomorphism( <hom>, <I> ) . . . recursive function
##
InstallGlobalFunction( PreImageSetStabBlocksHomomorphism, function( hom, I )
local H, # preimage of <I> under <hom>, result
pnt, # rep. of the block that is the basepoint <I>
gen, # one generator of <I>
pre; # a representative of its preimages
# if <I> is trivial then preimage is the kernel of <hom>
if IsEmpty( I.genlabels ) then
H := CopyStabChain( StabChainMutable(
KernelOfMultiplicativeGeneralMapping( hom ) ) );
# else begin with the preimage $H_{block[i]}$ of the stabilizer $I_{i}$,
# adding preimages of the generators of $I$ to those of $H_{block[i]}$
# gives us generators for $H$. Because $H_{block[i][1]} \<= H_{block[i]}$
# the stabilizer chain below $H_{block[i][1]}$ is already complete, so we
# only have to care about the top level with the basepoint $block[i][1]$.
else
pnt := Enumerator( UnderlyingExternalSet( hom ) )[ I.orbit[ 1 ] ][1];
H := PreImageSetStabBlocksHomomorphism( hom, I.stabilizer );
ChangeStabChain( H, [ pnt ], false );
for gen in I.generators do
pre := PreImagesRepresentative( hom, gen );
if not IsBound( H.translabels[ pnt ^ pre ] ) then
AddGeneratorsExtendSchreierTree( H, [ pre ] );
fi;
od;
fi;
# return the preimage
return H;
end );
#############################################################################
##
#M KernelOfMultiplicativeGeneralMapping( <hom> ) . . . . . . for blocks hom
##
InstallMethod( KernelOfMultiplicativeGeneralMapping,"blocks homomorphism",
true,
[ IsBlocksHomomorphism ], 0,
function( hom )
local img;
img := ImageKernelBlocksHomomorphism( hom, Source( hom ),false);
if not HasImagesSource( hom ) then
SetImagesSource( hom, img );
fi;
return KernelOfMultiplicativeGeneralMapping( hom );
end );
DeclareRepresentation("IsBlocksOfActionHomomorphism",
IsActionHomomorphismByBase,[]);
#############################################################################
##
#M CompositionMapping2( <hom1>, <hom2> ) blocks of action
##
InstallMethod( CompositionMapping2,
"for action homomorphism with blocks homomorphism",
FamSource1EqFamRange2,
[ IsGroupHomomorphism and IsBlocksHomomorphism,
IsGroupHomomorphism and IsActionHomomorphism ], 0,
function(map2,map1)
local e1,e2,d1,d2,i,ac,act,hom,xset;
e1:=UnderlyingExternalSet(map1);
d1:=HomeEnumerator(e1);
if not IsPlistRep(d1) then
TryNextMethod();
fi;
#sort:=CanEasilySortElements(d1[1]);
ac:=FunctionAction(e1);
act:=function(set,g)
set:=List(set,i->ac(i,g));
Sort(set);
return set;
end;
e2:=UnderlyingExternalSet(map2);
d2:=HomeEnumerator(e2);
d2:=List(d2,i->d1{i});
for i in d2 do
Sort(i);
IsSSortedList(i);
od;
MakeImmutable(d2);
IsSSortedList(d2);
xset:=ExternalSet(Source(map1),d2,act);
xset!.basePermImage:=BaseStabChain(StabChainMutable(ImagesSource(map2)));
SetBaseOfGroup(xset,d2{xset!.basePermImage});
if HasImagesSource(map1) and HasIsSurjective(map2)
and ImagesSource(map1)=Source(map2) then
hom:=ActionHomomorphismConstructor(xset,true,
IsBlocksOfActionHomomorphism);
SetRange(hom,Range(map2));
SetImagesSource(hom,Range(map2));
else
hom:=ActionHomomorphismConstructor(xset,false,
IsBlocksOfActionHomomorphism);
fi;
hom!.innerAct:=ac;
if HasMappingGeneratorsImages(map1)
and MappingGeneratorsImages(map1)[2]=MappingGeneratorsImages(map2)[1] then
SetMappingGeneratorsImages(hom,[MappingGeneratorsImages(map1)[1],
MappingGeneratorsImages(map2)[2]]);
fi;
return hom;
end);
# seems to be not worth doing
# #############################################################################
# ##
# #M ImagesRepresentative( <hom>, <elm> )
# ##
# InstallMethod( ImagesRepresentative,
# "action blocks, using `RepresentativeAction'",
# FamSourceEqFamElm, [ IsBlocksOfActionHomomorphism and HasImagesSource,
# IsMultiplicativeElementWithInverse ], 0,
# function( hom, elm )
# local xset, D, imgs, i, a;
#
# TryNextMethod();
# xset := UnderlyingExternalSet( hom );
# D := HomeEnumerator( xset );
# imgs:=[];
# for i in BaseOfGroup(xset) do
# a:=hom!.innerAct(i[1],elm);
# Add(imgs,PositionProperty(D,j->a in j));
# od;
# Error();
#
# return RepresentativeActionOp( ImagesSource( hom ),
# xset!.basePermImage, imgs, OnTuples );
# end );
#############################################################################
##
#F IsomorphismPermGroup( <G> )
##
InstallMethod( IsomorphismPermGroup,
"perm groups",
true,
[ IsPermGroup ], 0,
IdentityMapping );
#############################################################################
##
#M IsConjugatorIsomorphism( <hom> )
##
InstallOtherMethod( IsConjugatorIsomorphism,
"perm group homomorphism",
true,
[ IsGroupGeneralMapping ],
# There is no filter to test whether a homomorphism goes from a perm group
# to a perm group. So we have to test explicitly and make this method
# higher ranking than the default one in `ghom.gi'.
1,
function( hom )
local s, genss, rep,dom,insn,stb,E,bpt,fix,pnt,idom,sliced,
o,oimgs,i,pi,sto,stbs,stbi, r, sym;
s:= Source( hom );
if not IsPermGroup( s ) then
TryNextMethod();
elif not ( IsGroupHomomorphism( hom ) and IsBijective( hom ) ) then
return false;
fi;
genss:= GeneratorsOfGroup( s );
if IsEndoGeneralMapping( hom ) then
# test in transitive case whether we can realize in S_n
# we do not yet compute the permutation here because we will still have to
# test first whether it is in fact an inner automorphism:
# ConjugatorAutomorphisms are guaranteed to conjugate with an inner
# element if possible!
insn:=false;
dom:=MovedPoints(s);
if IsTransitive(s,dom) then
bpt := dom[ 1 ];
stb:=Stabilizer(s,bpt);
E:=Image(hom,stb);
if Number(dom,i->ForAll(GeneratorsOfGroup(E),j->i^j=i))=
Number(dom,i->ForAll(GeneratorsOfGroup(stb),j->i^j=i)) then
#T why not with NrMovedPoints?
#T why not compare orbit lengths of point stabilizer and its image?
insn:=true;
else
# we cannot realize in S_n
return false;
fi;
else
# compute the orbits and their image orbits
o:=OrbitsDomain(s,dom);
oimgs:=[];
stbs:=[];
stbi:=[];
i:=1;
while i<=Length(o) do
stb:=Stabilizer(s,o[i][1]);
sto:=Collected(List(OrbitsDomain(stb,o[i]),Length)); # stb orbit lengths
E:=Image(hom,stb);
Add(stbs,stb);
Add(stbi,E);
pi:=Filtered(o,j->Length(j)=Length(o[i])); # possible images by length
# possible images by stabilizer orbit lengths
pi:=Filtered(pi,j->Collected(List(OrbitsDomain(E,j),Length))=sto);
if Length(pi)=0 then
return false; # image cannot be stabilizer
elif Length(pi)=1 then
Add(oimgs,pi[1]);
else
# orbit image not unique. We would have to backtrack. For the time
# being, give up
#T why not inspect other orbits, and hope for a cheap `false' answer?
i:=Length(o)+10;
fi;
i:=i+1;
od;
if Length(oimgs)=Length(o) then
insn:=2; # conjugation in S_n established on multiple orbits
fi;
fi;
# try first to find an element in the group itself
rep:=RepresentativeAction(s, genss,
List( genss, i -> ImagesRepresentative( hom, i ) ), OnTuples );
if rep<>fail then
# we found the automorphism is in fact inner
Assert( 1, ForAll( genss, i -> ImagesRepresentative( hom, i ) = i^rep ) );
SetIsInnerAutomorphism(hom,true);
else
if insn=true then
hom:=AsGroupGeneralMappingByImages(hom);
fix := First( dom, p -> ForAll( GeneratorsOfGroup( E ),
gen -> p ^ gen = p ) );
# The automorphism <aut> maps <d>_bpt to <e>_fix, so permutes the points.
# Find an element in <G> with the same action.
idom := [ ];
for pnt in dom do
sliced := [ ];
while pnt <> bpt do
Add( sliced, StabChainMutable( hom ).transimages[ pnt ] );
pnt := pnt ^ StabChainMutable( hom ).transversal[ pnt ];
od;
Add( idom, PreImageWord( fix, sliced ) );
od;
rep:=MappingPermListList( dom, idom );
elif insn=2 then
dom:=[];
idom:=[];
for i in [1..Length(o)] do
# compute the images for orbit o[i]
stb:=stbs[i]; # pnt stabilizer and its image
E:=stbi[i];
# base point and image
bpt:=o[i][1];
fix:=First(oimgs[i],p->ForAll(GeneratorsOfGroup(E),
gen -> p ^ gen = p ) );
# we could try to use stabilizer chains, but the homomorphism does
# not necessarily have one which acts in every orbit. So we use the
# time-homoured transversal
sliced:=RightTransversal(s,stb);
for pnt in sliced do
Add(dom,bpt^pnt);
Add(idom,fix^ImageElm(hom,pnt));
od;
od;
rep:=MappingPermListList( dom, idom );
else
# we got
rep:=RepresentativeAction(OrbitStabilizingParentGroup(s),
genss,
List( genss, i -> ImagesRepresentative( hom, i ) ), OnTuples );
if rep<>fail then
Assert(1,ForAll(genss,i->ImagesRepresentative(hom,i)=i^rep));
fi;
fi;
fi;
else
r:= Range( hom );
if not IsPermGroup( r ) then
return false;
fi;
sym:= SymmetricGroup( Union( MovedPoints( s ), MovedPoints( r ) ) );
# Simply compute a conjugator in the enveloping symmetric group.
# (Note that all checks whether source and range
# can fit together under conjugation
# should better be left to `RepresentativeAction'.)
rep:= RepresentativeAction( sym, genss, List( genss,
i -> ImagesRepresentative( hom, i ) ), OnTuples );
if rep<>fail then
Assert(1,ForAll(genss,i->ImagesRepresentative(hom,i)=i^rep));
fi;
fi;
# Return the result.
if rep <> fail then
SetConjugatorOfConjugatorIsomorphism( hom, rep );
return true;
else
return false;
fi;
end );
#############################################################################
##
#E
|