/usr/share/gap/lib/groebner.gd is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 | #############################################################################
##
#W groebner.gd GAP Library Alexander Hulpke
##
##
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declarations for monomial orderings and Groebner
## bases.
#############################################################################
##
#P IsPolynomialRingIdeal(<I>)
##
## <ManSection>
## <Prop Name="IsPolynomialRingIdeal" Arg='I'/>
##
## <Description>
## A polynomial ring ideal is a (two sided) ideal in a (commutative)
## polynomial ring.
## </Description>
## </ManSection>
##
DeclareSynonym("IsPolynomialRingIdeal",
IsRing and IsRationalFunctionCollection and HasLeftActingRingOfIdeal
and HasRightActingRingOfIdeal);
#############################################################################
##
#V InfoGroebner
##
## <#GAPDoc Label="InfoGroebner">
## <ManSection>
## <InfoClass Name="InfoGroebner"/>
##
## <Description>
## This info class gives information about Groebner basis calculations.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareInfoClass("InfoGroebner");
#############################################################################
##
#C IsMonomialOrdering(<obj>)
##
## <#GAPDoc Label="IsMonomialOrdering">
## <ManSection>
## <Filt Name="IsMonomialOrdering" Arg='obj' Type='Category'/>
##
## <Description>
## A monomial ordering is an object representing a monomial ordering.
## Its attributes <Ref Func="MonomialComparisonFunction"/> and
## <Ref Func="MonomialExtrepComparisonFun"/> are actual comparison functions.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory("IsMonomialOrdering",IsObject);
#############################################################################
##
#R IsMonomialOrderingDefaultRep
##
## <ManSection>
## <Filt Name="IsMonomialOrderingDefaultRep" Arg='obj' Type='Representation'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareRepresentation("IsMonomialOrderingDefaultRep",
IsAttributeStoringRep and IsPositionalObjectRep and IsMonomialOrdering,[]);
BindGlobal("MonomialOrderingsFamily",
NewFamily("MonomialOrderingsFamily",IsMonomialOrdering,IsMonomialOrdering));
#############################################################################
##
#A MonomialComparisonFunction(<O>)
##
## <#GAPDoc Label="MonomialComparisonFunction">
## <ManSection>
## <Attr Name="MonomialComparisonFunction" Arg='O'/>
##
## <Description>
## If <A>O</A> is an object representing a monomial ordering, this attribute
## returns a <E>function</E> that can be used to compare or sort monomials (and
## polynomials which will be compared by their monomials in decreasing
## order) in this order.
## <Example><![CDATA[
## gap> MonomialComparisonFunction(lexord);
## function( a, b ) ... end
## gap> l:=[f,Derivative(f,x),Derivative(f,y),Derivative(f,z)];;
## gap> Sort(l,MonomialComparisonFunction(lexord));l;
## [ -12*z+4, 21*y^2+3, 10*x+2, 7*y^3+5*x^2-6*z^2+2*x+3*y+4*z ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute("MonomialComparisonFunction",IsMonomialOrdering);
#############################################################################
##
#A MonomialExtrepComparisonFun(<O>)
##
## <#GAPDoc Label="MonomialExtrepComparisonFun">
## <ManSection>
## <Attr Name="MonomialExtrepComparisonFun" Arg='O'/>
##
## <Description>
## If <A>O</A> is an object representing a monomial ordering, this attribute
## returns a <E>function</E> that can be used to compare or sort monomials <E>in
## their external representation</E> (as lists). This comparison variant is
## used inside algorithms that manipulate the external representation.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute("MonomialExtrepComparisonFun",IsObject);
#############################################################################
##
#A OccuringVariableIndices(<O>)
#A OccuringVariableIndices(<P>)
##
## <ManSection>
## <Attr Name="OccuringVariableIndices" Arg='O'/>
## <Attr Name="OccuringVariableIndices" Arg='P'/>
##
## <Description>
## If <A>O</A> is an object representing a monomial ordering, this attribute
## returns either a list of variable indices for which this ordering is
## defined, or <K>true</K> in case it is defined for all variables.
## <P/>
## If <A>P</A> is a polynomial, it returns the indices of all variables occuring
## in it.
## </Description>
## </ManSection>
##
DeclareAttribute("OccuringVariableIndices",IsMonomialOrdering);
#############################################################################
##
#F LeadingMonomialOfPolynomial(<pol>,<ord>)
##
## <#GAPDoc Label="LeadingMonomialOfPolynomial">
## <ManSection>
## <Func Name="LeadingMonomialOfPolynomial" Arg='pol,ord'/>
##
## <Description>
## returns the leading monomial (with respect to the ordering <A>ord</A>)
## of the polynomial <A>pol</A>.
## <Example><![CDATA[
## gap> x:=Indeterminate(Rationals,"x");;
## gap> y:=Indeterminate(Rationals,"y");;
## gap> z:=Indeterminate(Rationals,"z");;
## gap> lexord:=MonomialLexOrdering();grlexord:=MonomialGrlexOrdering();
## MonomialLexOrdering()
## MonomialGrlexOrdering()
## gap> f:=2*x+3*y+4*z+5*x^2-6*z^2+7*y^3;
## 7*y^3+5*x^2-6*z^2+2*x+3*y+4*z
## gap> LeadingMonomialOfPolynomial(f,lexord);
## x^2
## gap> LeadingMonomialOfPolynomial(f,grlexord);
## y^3
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("LeadingMonomialOfPolynomial",
[IsPolynomialFunction,IsMonomialOrdering]);
#############################################################################
##
#O LeadingCoefficientOfPolynomial( <pol>,<ord> )
##
## <#GAPDoc Label="LeadingCoefficientOfPolynomial">
## <ManSection>
## <Oper Name="LeadingCoefficientOfPolynomial" Arg='pol,ord'/>
##
## <Description>
## returns the leading coefficient (that is the coefficient of the leading
## monomial, see <Ref Func="LeadingMonomialOfPolynomial"/>) of the polynomial <A>pol</A>.
## <Example><![CDATA[
## gap> LeadingTermOfPolynomial(f,lexord);
## 5*x^2
## gap> LeadingTermOfPolynomial(f,grlexord);
## 7*y^3
## gap> LeadingCoefficientOfPolynomial(f,lexord);
## 5
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("LeadingCoefficientOfPolynomial",
[IsPolynomialFunction,IsMonomialOrdering]);
#############################################################################
##
#F LeadingTermOfPolynomial(<pol>,<ord>)
##
## <#GAPDoc Label="LeadingTermOfPolynomial">
## <ManSection>
## <Func Name="LeadingTermOfPolynomial" Arg='pol,ord'/>
##
## <Description>
## returns the leading term (with respect to the ordering <A>ord</A>)
## of the polynomial <A>pol</A>, i.e. the product of leading coefficient and
## leading monomial.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("LeadingTermOfPolynomial",
[IsPolynomialFunction,IsMonomialOrdering]);
#############################################################################
##
#F MonomialLexOrdering( [<vari>] )
##
## <#GAPDoc Label="MonomialLexOrdering">
## <ManSection>
## <Func Name="MonomialLexOrdering" Arg='[vari]'/>
##
## <Description>
## This function creates a lexicographic ordering for monomials.
## Monomials are compared first by the exponents of the largest variable,
## then the exponents of the second largest variable and so on.
## <P/>
## The variables are ordered according to their (internal) index, i.e.,
## <M>x_1</M> is larger than <M>x_2</M> and so on.
## If <A>vari</A> is given, and is a list of variables or variable indices,
## instead this arrangement of variables (in descending order; i.e. the
## first variable is larger than the second) is
## used as the underlying order of variables.
## <Example><![CDATA[
## gap> l:=List(Tuples([1..3],3),i->x^(i[1]-1)*y^(i[2]-1)*z^(i[3]-1));
## [ 1, z, z^2, y, y*z, y*z^2, y^2, y^2*z, y^2*z^2, x, x*z, x*z^2, x*y,
## x*y*z, x*y*z^2, x*y^2, x*y^2*z, x*y^2*z^2, x^2, x^2*z, x^2*z^2,
## x^2*y, x^2*y*z, x^2*y*z^2, x^2*y^2, x^2*y^2*z, x^2*y^2*z^2 ]
## gap> Sort(l,MonomialComparisonFunction(MonomialLexOrdering()));l;
## [ 1, z, z^2, y, y*z, y*z^2, y^2, y^2*z, y^2*z^2, x, x*z, x*z^2, x*y,
## x*y*z, x*y*z^2, x*y^2, x*y^2*z, x*y^2*z^2, x^2, x^2*z, x^2*z^2,
## x^2*y, x^2*y*z, x^2*y*z^2, x^2*y^2, x^2*y^2*z, x^2*y^2*z^2 ]
## gap> Sort(l,MonomialComparisonFunction(MonomialLexOrdering([y,z,x])));l;
## [ 1, x, x^2, z, x*z, x^2*z, z^2, x*z^2, x^2*z^2, y, x*y, x^2*y, y*z,
## x*y*z, x^2*y*z, y*z^2, x*y*z^2, x^2*y*z^2, y^2, x*y^2, x^2*y^2,
## y^2*z, x*y^2*z, x^2*y^2*z, y^2*z^2, x*y^2*z^2, x^2*y^2*z^2 ]
## gap> Sort(l,MonomialComparisonFunction(MonomialLexOrdering([z,x,y])));l;
## [ 1, y, y^2, x, x*y, x*y^2, x^2, x^2*y, x^2*y^2, z, y*z, y^2*z, x*z,
## x*y*z, x*y^2*z, x^2*z, x^2*y*z, x^2*y^2*z, z^2, y*z^2, y^2*z^2,
## x*z^2, x*y*z^2, x*y^2*z^2, x^2*z^2, x^2*y*z^2, x^2*y^2*z^2 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("MonomialLexOrdering");
#############################################################################
##
#F MonomialGrlexOrdering( [<vari>] )
##
## <#GAPDoc Label="MonomialGrlexOrdering">
## <ManSection>
## <Func Name="MonomialGrlexOrdering" Arg='[vari]'/>
##
## <Description>
## This function creates a degree/lexicographic ordering.
## In this ordering monomials are compared first by their total degree,
## then lexicographically (see <Ref Func="MonomialLexOrdering"/>).
## <P/>
## The variables are ordered according to their (internal) index, i.e.,
## <M>x_1</M> is larger than <M>x_2</M> and so on.
## If <A>vari</A> is given, and is a list of variables or variable indices,
## instead this arrangement of variables (in descending order; i.e. the
## first variable is larger than the second) is
## used as the underlying order of variables.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("MonomialGrlexOrdering");
#############################################################################
##
#F MonomialGrevlexOrdering( [<vari>] )
##
## <#GAPDoc Label="MonomialGrevlexOrdering">
## <ManSection>
## <Func Name="MonomialGrevlexOrdering" Arg='[vari]'/>
##
## <Description>
## This function creates a <Q>grevlex</Q> ordering.
## In this ordering monomials are compared first by total degree and then
## backwards lexicographically.
## (This is different than <Q>grlex</Q> ordering with variables reversed.)
## <P/>
## The variables are ordered according to their (internal) index, i.e.,
## <M>x_1</M> is larger than <M>x_2</M> and so on.
## If <A>vari</A> is given, and is a list of variables or variable indices,
## instead this arrangement of variables (in descending order; i.e. the
## first variable is larger than the second) is
## used as the underlying order of variables.
## <Example><![CDATA[
## gap> Sort(l,MonomialComparisonFunction(MonomialGrlexOrdering()));l;
## [ 1, z, y, x, z^2, y*z, y^2, x*z, x*y, x^2, y*z^2, y^2*z, x*z^2,
## x*y*z, x*y^2, x^2*z, x^2*y, y^2*z^2, x*y*z^2, x*y^2*z, x^2*z^2,
## x^2*y*z, x^2*y^2, x*y^2*z^2, x^2*y*z^2, x^2*y^2*z, x^2*y^2*z^2 ]
## gap> Sort(l,MonomialComparisonFunction(MonomialGrevlexOrdering()));l;
## [ 1, z, y, x, z^2, y*z, x*z, y^2, x*y, x^2, y*z^2, x*z^2, y^2*z,
## x*y*z, x^2*z, x*y^2, x^2*y, y^2*z^2, x*y*z^2, x^2*z^2, x*y^2*z,
## x^2*y*z, x^2*y^2, x*y^2*z^2, x^2*y*z^2, x^2*y^2*z, x^2*y^2*z^2 ]
## gap> Sort(l,MonomialComparisonFunction(MonomialGrlexOrdering([z,y,x])));l;
## [ 1, x, y, z, x^2, x*y, y^2, x*z, y*z, z^2, x^2*y, x*y^2, x^2*z,
## x*y*z, y^2*z, x*z^2, y*z^2, x^2*y^2, x^2*y*z, x*y^2*z, x^2*z^2,
## x*y*z^2, y^2*z^2, x^2*y^2*z, x^2*y*z^2, x*y^2*z^2, x^2*y^2*z^2 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("MonomialGrevlexOrdering");
#############################################################################
##
#F EliminationOrdering( <elim>[, <rest>] )
##
## <#GAPDoc Label="EliminationOrdering">
## <ManSection>
## <Func Name="EliminationOrdering" Arg='elim[, rest]'/>
##
## <Description>
## This function creates an elimination ordering for eliminating the
## variables in <A>elim</A>.
## Two monomials are compared first by the exponent vectors for the
## variables listed in <A>elim</A> (a lexicographic comparison with respect
## to the ordering indicated in <A>elim</A>).
## If these submonomial are equal, the submonomials given by the other
## variables are compared by a graded lexicographic ordering
## (with respect to the variable order given in <A>rest</A>,
## if called with two parameters).
## <P/>
## Both <A>elim</A> and <A>rest</A> may be a list of variables or a list of
## variable indices.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("EliminationOrdering");
#############################################################################
##
#F PolynomialDivisionAlgorithm(<poly>,<gens>,<order>)
##
## <#GAPDoc Label="PolynomialDivisionAlgorithm">
## <ManSection>
## <Func Name="PolynomialDivisionAlgorithm" Arg='poly,gens,order'/>
##
## <Description>
## This function implements the division algorithm for multivariate
## polynomials as given in
## <Cite Key="coxlittleoshea" Where="Theorem 3 in Chapter 2"/>.
## (It might be slower than <Ref Func="PolynomialReduction"/> but the
## remainders are guaranteed to agree with the textbook.)
## <P/>
## The operation returns a list of length two, the first entry is the
## remainder after the reduction. The second entry is a list of quotients
## corresponding to <A>gens</A>.
## <Example><![CDATA[
## gap> bas:=[x^3*y*z,x*y^2*z,z*y*z^3+x];;
## gap> pol:=x^7*z*bas[1]+y^5*bas[3]+x*z;;
## gap> PolynomialReduction(pol,bas,MonomialLexOrdering());
## [ -y*z^5, [ x^7*z, 0, y^5+z ] ]
## gap> PolynomialReducedRemainder(pol,bas,MonomialLexOrdering());
## -y*z^5
## gap> PolynomialDivisionAlgorithm(pol,bas,MonomialLexOrdering());
## [ -y*z^5, [ x^7*z, 0, y^5+z ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("PolynomialDivisionAlgorithm");
#############################################################################
##
#F PolynomialReduction(<poly>,<gens>,<order>)
##
## <#GAPDoc Label="PolynomialReduction">
## <ManSection>
## <Func Name="PolynomialReduction" Arg='poly,gens,order'/>
##
## <Description>
## reduces the polynomial <A>poly</A> by the ideal generated by the polynomials
## in <A>gens</A>, using the order <A>order</A> of monomials. Unless <A>gens</A> is a
## Gröbner basis the result is not guaranteed to be unique.
## <P/>
## The operation returns a list of length two, the first entry is the
## remainder after the reduction. The second entry is a list of quotients
## corresponding to <A>gens</A>.
## <P/>
## Note that the strategy used by <Ref Func="PolynomialReduction"/> differs from the
## standard textbook reduction algorithm, which is provided by
## <Ref Func="PolynomialDivisionAlgorithm"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("PolynomialReduction");
#############################################################################
##
#F PolynomialReducedRemainder(<poly>,<gens>,<order>)
##
## <#GAPDoc Label="PolynomialReducedRemainder">
## <ManSection>
## <Func Name="PolynomialReducedRemainder" Arg='poly,gens,order'/>
##
## <Description>
## this operation does the same way as
## <Ref Func="PolynomialReduction"/> but does not keep track of the actual quotients
## and returns only the remainder (it is therefore slightly faster).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("PolynomialReducedRemainder");
#############################################################################
##
#O GroebnerBasis(<L>,<O>)
#O GroebnerBasis(<I>,<O>)
#O GroebnerBasisNC(<L>,<O>)
##
## <#GAPDoc Label="GroebnerBasis">
## <ManSection>
## <Heading>GroebnerBasis</Heading>
## <Oper Name="GroebnerBasis" Arg='L, O'
## Label="for a list and a monomial ordering"/>
## <Oper Name="GroebnerBasis" Arg='I, O'
## Label="for an ideal and a monomial ordering"/>
## <Oper Name="GroebnerBasisNC" Arg='L, O'/>
##
## <Description>
## Let <A>O</A> be a monomial ordering and <A>L</A> be a list of polynomials
## that generate an ideal <A>I</A>.
## This operation returns a Groebner basis of <A>I</A> with respect to the
## ordering <A>O</A>.
## <P/>
## <Ref Oper="GroebnerBasisNC"/> works like
## <Ref Oper="GroebnerBasis" Label="for a list and a monomial ordering"/>
## with the only distinction that the first argument has to be a list of
## polynomials and that no test is performed to check whether the ordering
## is defined for all occuring variables.
## <P/>
## Note that &GAP; at the moment only includes
## a naïve implementation of Buchberger's algorithm (which is mainly
## intended as a teaching tool).
## It might not be sufficient for serious problems.
## <Example><![CDATA[
## gap> l:=[x^2+y^2+z^2-1,x^2+z^2-y,x-y];;
## gap> GroebnerBasis(l,MonomialLexOrdering());
## [ x^2+y^2+z^2-1, x^2+z^2-y, x-y, -y^2-y+1, -z^2+2*y-1,
## 1/2*z^4+2*z^2-1/2 ]
## gap> GroebnerBasis(l,MonomialLexOrdering([z,x,y]));
## [ x^2+y^2+z^2-1, x^2+z^2-y, x-y, -y^2-y+1 ]
## gap> GroebnerBasis(l,MonomialGrlexOrdering());
## [ x^2+y^2+z^2-1, x^2+z^2-y, x-y, -y^2-y+1, -z^2+2*y-1 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("GroebnerBasis",
[IsHomogeneousList and IsRationalFunctionCollection,IsMonomialOrdering]);
DeclareOperation("GroebnerBasis",[IsPolynomialRingIdeal,IsMonomialOrdering]);
DeclareGlobalFunction("GroebnerBasisNC");
#############################################################################
##
#O ReducedGroebnerBasis( <L>, <O> )
#O ReducedGroebnerBasis( <I>, <O> )
##
## <#GAPDoc Label="ReducedGroebnerBasis">
## <ManSection>
## <Heading>ReducedGroebnerBasis</Heading>
## <Oper Name="ReducedGroebnerBasis" Arg='L, O'
## Label="for a list and a monomial ordering"/>
## <Oper Name="ReducedGroebnerBasis" Arg='I, O'
## Label="for an ideal and a monomial ordering"/>
##
## <Description>
## a Groebner basis <M>B</M>
## (see <Ref Func="GroebnerBasis" Label="for a list and a monomial ordering"/>)
## is <E>reduced</E> if no monomial in a polynomial in <A>B</A> is divisible
## by the leading monomial of another polynomial in <M>B</M>.
## This operation computes a Groebner basis with respect
## to the monomial ordering <A>O</A> and then reduces it.
## <P/>
## <Example><![CDATA[
## gap> ReducedGroebnerBasis(l,MonomialGrlexOrdering());
## [ x-y, z^2-2*y+1, y^2+y-1 ]
## gap> ReducedGroebnerBasis(l,MonomialLexOrdering());
## [ z^4+4*z^2-1, -1/2*z^2+y-1/2, -1/2*z^2+x-1/2 ]
## gap> ReducedGroebnerBasis(l,MonomialLexOrdering([y,z,x]));
## [ x^2+x-1, z^2-2*x+1, -x+y ]
## ]]></Example>
## <P/>
## For performance reasons it can be advantageous to define
## monomial orderings once and then to reuse them:
## <P/>
## <Example><![CDATA[
## gap> ord:=MonomialGrlexOrdering();;
## gap> GroebnerBasis(l,ord);
## [ x^2+y^2+z^2-1, x^2+z^2-y, x-y, -y^2-y+1, -z^2+2*y-1 ]
## gap> ReducedGroebnerBasis(l,ord);
## [ x-y, z^2-2*y+1, y^2+y-1 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("ReducedGroebnerBasis",
[IsHomogeneousList and IsRationalFunctionCollection,IsMonomialOrdering]);
DeclareOperation("ReducedGroebnerBasis",
[IsPolynomialRingIdeal,IsMonomialOrdering]);
#############################################################################
##
#A StoredGroebnerBasis(<I>)
##
## <#GAPDoc Label="StoredGroebnerBasis">
## <ManSection>
## <Attr Name="StoredGroebnerBasis" Arg='I'/>
##
## <Description>
## For an ideal <A>I</A> in a polynomial ring, this attribute holds a list
## <M>[ B, O ]</M> where <M>B</M> is a Groebner basis for the monomial
## ordering <M>O</M>.
## this can be used to test membership or canonical coset representatives.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute("StoredGroebnerBasis",IsPolynomialRingIdeal);
#############################################################################
##
#E
|