/usr/share/gap/lib/grp.gd is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 | #############################################################################
##
#W grp.gd GAP library Thomas Breuer
#W & Frank Celler
#W & Bettina Eick
#W & Heiko Theißen
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declarations of operations for groups.
##
#############################################################################
##
## <#GAPDoc Label="[1]{grp}">
## Unless explicitly declared otherwise, all subgroup series are descending.
## That is they are stored in decreasing order.
## <#/GAPDoc>
##
## <#GAPDoc Label="[2]{grp}">
## If a group <M>U</M> is created as a subgroup of another group <M>G</M>,
## <M>G</M> becomes the parent of <M>U</M>.
## There is no <Q>universal</Q> parent group,
## parent-child chains can be arbitrary long.
## &GAP; stores the result of some operations
## (such as <Ref Func="Normalizer" Label="for two groups"/>)
## with the parent as an attribute.
## <#/GAPDoc>
##
#############################################################################
##
#V InfoGroup
##
## <#GAPDoc Label="InfoGroup">
## <ManSection>
## <InfoClass Name="InfoGroup"/>
##
## <Description>
## is the info class for the generic group theoretic functions
## (see <Ref Sect="Info Functions"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareInfoClass( "InfoGroup" );
#############################################################################
##
#C IsGroup( <obj> )
##
## <#GAPDoc Label="IsGroup">
## <ManSection>
## <Filt Name="IsGroup" Arg='obj' Type='Category'/>
##
## <Description>
## A group is a magma-with-inverses (see <Ref Func="IsMagmaWithInverses"/>)
## and associative (see <Ref Func="IsAssociative"/>) multiplication.
## <P/>
## <C>IsGroup</C> tests whether the object <A>obj</A> fulfills these conditions,
## it does <E>not</E> test whether <A>obj</A> is a set of elements that forms a group
## under multiplication;
## use <Ref Func="AsGroup"/> if you want to perform such a test.
## (See <Ref Sect="Categories"/> for details about categories.)
## <Example><![CDATA[
## gap> IsGroup(g);
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "IsGroup", IsMagmaWithInverses and IsAssociative );
InstallTrueMethod( IsFiniteOrderElementCollection, IsGroup and IsFinite );
#############################################################################
##
#A GeneratorsOfGroup( <G> )
##
## <#GAPDoc Label="GeneratorsOfGroup">
## <ManSection>
## <Attr Name="GeneratorsOfGroup" Arg='G'/>
##
## <Description>
## returns a list of generators of the group <A>G</A>.
## If <A>G</A> has been created by the command
## <Ref Func="GroupWithGenerators"/> with argument <A>gens</A>,
## then the list returned by <Ref Attr="GeneratorsOfGroup"/>
## will be equal to <A>gens</A>. For such a group, each generator
## can also be accessed using the <C>.</C> operator
## (see <Ref Attr="GeneratorsOfDomain"/>): for a positive integer
## <M>i</M>, <C><A>G</A>.i</C> returns the <M>i</M>-th element of
## the list returned by <Ref Attr="GeneratorsOfGroup"/>. Moreover,
## if <A>G</A> is a free group, and <C>name</C> is the name of a
## generator of <A>G</A> then <C><A>G</A>.name</C> also returns
## this generator.
## <Example><![CDATA[
## gap> g:=GroupWithGenerators([(1,2,3,4),(1,2)]);
## Group([ (1,2,3,4), (1,2) ])
## gap> GeneratorsOfGroup(g);
## [ (1,2,3,4), (1,2) ]
## ]]></Example>
## <P/>
## While in this example &GAP; displays the group via the generating set
## stored in the attribute <Ref Func="GeneratorsOfGroup"/>,
## the methods installed for <Ref Func="View"/> will in general display only
## some information about the group which may even be just the fact that it
## is a group.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonymAttr( "GeneratorsOfGroup", GeneratorsOfMagmaWithInverses );
#############################################################################
##
#O GroupString( <G>, <name> )
##
## <ManSection>
## <Oper Name="GroupString" Arg='G, name'/>
##
## <Description>
## returns a short string (usually less than one line) with information
## about the group <A>G</A>. <A>name</A> is a display name if the group <A>G</A> does
## not have one.
## </Description>
## </ManSection>
##
DeclareOperation( "GroupString", [IsGroup,IsString] );
#############################################################################
##
#A NameIsomorphismClass( <G> ) . . . . . . . . . . . . . . . . experimental
##
## <ManSection>
## <Attr Name="NameIsomorphismClass" Arg='G'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareAttribute( "NameIsomorphismClass", IsGroup );
#############################################################################
##
#P IsCyclic( <G> )
##
## <#GAPDoc Label="IsCyclic">
## <ManSection>
## <Prop Name="IsCyclic" Arg='G'/>
##
## <Description>
## A group is <E>cyclic</E> if it can be generated by one element.
## For a cyclic group, one can compute a generating set consisting of only
## one element using <Ref Func="MinimalGeneratingSet"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsCyclic", IsGroup );
InstallSubsetMaintenance( IsCyclic, IsGroup and IsCyclic, IsGroup );
InstallFactorMaintenance( IsCyclic,
IsGroup and IsCyclic, IsObject, IsGroup );
InstallTrueMethod( IsCyclic, IsGroup and IsTrivial );
InstallTrueMethod( IsCommutative, IsGroup and IsCyclic );
#############################################################################
##
#P IsElementaryAbelian( <G> )
##
## <#GAPDoc Label="IsElementaryAbelian">
## <ManSection>
## <Prop Name="IsElementaryAbelian" Arg='G'/>
##
## <Description>
## A group <A>G</A> is elementary abelian if it is commutative and if there is a
## prime <M>p</M> such that the order of each element in <A>G</A> divides <M>p</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsElementaryAbelian", IsGroup );
InstallSubsetMaintenance( IsElementaryAbelian,
IsGroup and IsElementaryAbelian, IsGroup );
InstallFactorMaintenance( IsElementaryAbelian,
IsGroup and IsElementaryAbelian, IsObject, IsGroup );
InstallTrueMethod( IsElementaryAbelian, IsGroup and IsTrivial );
InstallTrueMethod( IsCommutative, IsGroup and IsElementaryAbelian );
#############################################################################
##
#P IsFinitelyGeneratedGroup( <G> )
##
## <#GAPDoc Label="IsFinitelyGeneratedGroup">
## <ManSection>
## <Prop Name="IsFinitelyGeneratedGroup" Arg='G'/>
##
## <Description>
## tests whether the group <A>G</A> can be generated by a finite number of
## generators. (This property is mainly used to obtain finiteness
## conditions.)
## <P/>
## Note that this is a pure existence statement. Even if a group is known
## to be generated by a finite number of elements, it can be very hard or
## even impossible to obtain such a generating set if it is not known.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsFinitelyGeneratedGroup", IsGroup );
InstallFactorMaintenance( IsFinitelyGeneratedGroup,
IsGroup and IsFinitelyGeneratedGroup, IsObject, IsGroup );
InstallTrueMethod( IsFinitelyGeneratedGroup, IsGroup and IsFinite );
#############################################################################
##
#P IsSubsetLocallyFiniteGroup(<U>) . . . . test if a group is locally finite
##
## <#GAPDoc Label="IsSubsetLocallyFiniteGroup">
## <ManSection>
## <Prop Name="IsSubsetLocallyFiniteGroup" Arg='U'/>
##
## <Description>
## A group is called locally finite if every finitely generated subgroup is
## finite. This property checks whether the group <A>U</A> is a subset of a
## locally finite group. This is used to check whether finite generation
## will imply finiteness, as it does for example for permutation groups.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsSubsetLocallyFiniteGroup", IsGroup );
# this true method will enforce that many groups are finite, which is needed
# implicitly
InstallTrueMethod( IsFinite, IsFinitelyGeneratedGroup and IsGroup
and IsSubsetLocallyFiniteGroup );
InstallTrueMethod( IsSubsetLocallyFiniteGroup, IsFinite and IsGroup );
InstallSubsetMaintenance( IsSubsetLocallyFiniteGroup,
IsGroup and IsSubsetLocallyFiniteGroup, IsGroup );
#############################################################################
##
#M IsSubsetLocallyFiniteGroup( <G> ) . . . . . . . . . . for magmas of FFEs
##
InstallTrueMethod( IsSubsetLocallyFiniteGroup, IsFFECollection and IsMagma );
#############################################################################
##
## <#GAPDoc Label="[3]{grp}">
## The following filters and operations indicate capabilities of &GAP;.
## They can be used in the method selection or algorithms to check whether
## it is feasible to compute certain operations for a given group.
## In general, they return <K>true</K> if good algorithms for the given arguments
## are available in &GAP;.
## An answer <K>false</K> indicates that no method for this group may exist,
## or that the existing methods might run into problems.
## <P/>
## Typical examples when this might happen is with finitely presented
## groups, for which many of the methods cannot be guaranteed to succeed in
## all situations.
## <P/>
## The willingness of &GAP; to perform certain operations may change,
## depending on which further information is known about the arguments.
## Therefore the filters used are not implemented as properties but as
## <Q>other filters</Q> (see <Ref Sect="Properties"/> and <Ref Sect="Other Filters"/>).
## <#/GAPDoc>
##
#############################################################################
##
#F CanEasilyTestMembership( <G> )
##
## <#GAPDoc Label="CanEasilyTestMembership">
## <ManSection>
## <Func Name="CanEasilyTestMembership" Arg='G'/>
##
## <Description>
## This filter indicates whether &GAP; can test membership of elements in
## the group <A>G</A>
## (via the operation <Ref Oper="\in" Label="for a collection"/>)
## in reasonable time.
## It is used by the method selection to decide whether an algorithm
## that relies on membership tests may be used.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareFilter( "CanEasilyTestMembership" );
#############################################################################
##
#F CanEasilyComputeWithIndependentGensAbelianGroup( <G> )
##
## <#GAPDoc Label="CanEasilyComputeWithIndependentGensAbelianGroup">
## <ManSection>
## <Func Name="CanEasilyComputeWithIndependentGensAbelianGroup" Arg='G'/>
##
## <Description>
## This filter indicates whether &GAP; can in reasonable time compute
## independent abelian generators of the group <A>G</A>
## (via <Ref Func="IndependentGeneratorsOfAbelianGroup"/>) and
## then can decompose arbitrary group elements with respect to these
## generators using <Ref Func="IndependentGeneratorExponents"/>.
##
## It is used by the method selection to decide whether an algorithm
## that relies on these two operations may be used.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareFilter( "CanEasilyComputeWithIndependentGensAbelianGroup" );
#############################################################################
##
#F CanComputeSizeAnySubgroup( <G> )
##
## <#GAPDoc Label="CanComputeSizeAnySubgroup">
## <ManSection>
## <Func Name="CanComputeSizeAnySubgroup" Arg='G'/>
##
## <Description>
## This filter indicates whether &GAP; can easily compute the size of any
## subgroup of the group <A>G</A>.
## (This is for example advantageous if one can test that a stabilizer index
## equals the length of the orbit computed so far to stop early.)
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareFilter( "CanComputeSizeAnySubgroup" );
InstallTrueMethod(CanEasilyTestMembership,
IsFinite and CanComputeSizeAnySubgroup);
InstallTrueMethod(CanComputeSize,CanComputeSizeAnySubgroup);
InstallTrueMethod( CanComputeSize, IsTrivial );
# these implications can create problems with some fp groups. Therefore we
# are a bit less eager
#InstallTrueMethod( CanComputeSizeAnySubgroup, IsTrivial );
#InstallTrueMethod( CanEasilyTestMembership, IsTrivial );
#############################################################################
##
#F CanComputeIndex( <G>, <H> )
##
## <#GAPDoc Label="CanComputeIndex">
## <ManSection>
## <Func Name="CanComputeIndex" Arg='G, H'/>
##
## <Description>
## This function indicates whether the index <M>[<A>G</A>:<A>H</A>]</M>
## (which might be <Ref Var="infinity"/>) can be computed.
## It assumes that <M><A>H</A> \leq <A>G</A></M>
## (see <Ref Func="CanComputeIsSubset"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "CanComputeIndex", [IsGroup,IsGroup] );
#############################################################################
##
#P KnowsHowToDecompose( <G>[, <gens>] )
##
## <#GAPDoc Label="KnowsHowToDecompose">
## <ManSection>
## <Prop Name="KnowsHowToDecompose" Arg='G[, gens]'/>
##
## <Description>
## Tests whether the group <A>G</A> can decompose elements in the generators
## <A>gens</A>.
## If <A>gens</A> is not given it tests, whether it can decompose in the
## generators given in the <Ref Func="GeneratorsOfGroup"/> value of
## <A>G</A>.
## <P/>
## This property can be used for example to check whether a
## group homomorphism by images
## (see <Ref Func="GroupHomomorphismByImages"/>) can be reasonably defined
## from this group.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "KnowsHowToDecompose", IsGroup );
DeclareOperation( "KnowsHowToDecompose", [ IsGroup, IsList ] );
#############################################################################
##
#P IsPGroup( <G> ) . . . . . . . . . . . . . . . . . is a group a p-group ?
##
## <#GAPDoc Label="IsPGroup">
## <ManSection>
## <Prop Name="IsPGroup" Arg='G'/>
##
## <Description>
## <Index Key="p-group"><M>p</M>-group</Index>
## A <E><M>p</M>-group</E> is a finite group whose order
## (see <Ref Func="Size"/>) is of the form <M>p^n</M> for a prime
## integer <M>p</M> and a nonnegative integer <M>n</M>.
## <Ref Prop="IsPGroup"/> returns <K>true</K> if <A>G</A> is a
## <M>p</M>-group, and <K>false</K> otherwise.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsPGroup", IsGroup );
InstallSubsetMaintenance( IsPGroup,
IsGroup and IsPGroup, IsGroup );
InstallFactorMaintenance( IsPGroup,
IsGroup and IsPGroup, IsObject, IsGroup );
InstallTrueMethod( IsPGroup, IsGroup and IsTrivial );
InstallTrueMethod( IsPGroup, IsGroup and IsElementaryAbelian );
#############################################################################
##
#A PrimePGroup( <G> )
##
## <#GAPDoc Label="PrimePGroup">
## <ManSection>
## <Attr Name="PrimePGroup" Arg='G'/>
##
## <Description>
## If <A>G</A> is a nontrivial <M>p</M>-group
## (see <Ref Func="IsPGroup"/>), <Ref Func="PrimePGroup"/> returns
## the prime integer <M>p</M>;
## if <A>G</A> is trivial then <Ref Func="PrimePGroup"/> returns
## <K>fail</K>.
## Otherwise an error is issued.
## <P/>
## (One should avoid a common error of writing
## <C>if IsPGroup(g) then ... PrimePGroup(g) ...</C> where the code
## represented by dots assumes that <C>PrimePGroup(g)</C> is an integer.)
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "PrimePGroup", IsPGroup );
#############################################################################
##
#A PClassPGroup( <G> )
##
## <#GAPDoc Label="PClassPGroup">
## <ManSection>
## <Attr Name="PClassPGroup" Arg='G'/>
##
## <Description>
## The <M>p</M>-class of a <M>p</M>-group <A>G</A>
## (see <Ref Func="IsPGroup"/>)
## is the length of the lower <M>p</M>-central series
## (see <Ref Func="PCentralSeries"/>) of <A>G</A>.
## If <A>G</A> is not a <M>p</M>-group then an error is issued.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "PClassPGroup", IsPGroup );
#############################################################################
##
#A RankPGroup( <G> )
##
## <#GAPDoc Label="RankPGroup">
## <ManSection>
## <Attr Name="RankPGroup" Arg='G'/>
##
## <Description>
## For a <M>p</M>-group <A>G</A> (see <Ref Func="IsPGroup"/>),
## <Ref Func="RankPGroup"/> returns the <E>rank</E> of <A>G</A>,
## which is defined as the minimal size of a generating system of <A>G</A>.
## If <A>G</A> is not a <M>p</M>-group then an error is issued.
## <Example><![CDATA[
## gap> h:=Group((1,2,3,4),(1,3));;
## gap> PClassPGroup(h);
## 2
## gap> RankPGroup(h);
## 2
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "RankPGroup", IsPGroup );
#############################################################################
##
#P IsNilpotentGroup( <G> )
##
## <#GAPDoc Label="IsNilpotentGroup">
## <ManSection>
## <Prop Name="IsNilpotentGroup" Arg='G'/>
##
## <Description>
## A group is <E>nilpotent</E> if the lower central series
## (see <Ref Func="LowerCentralSeriesOfGroup"/> for a definition)
## reaches the trivial subgroup in a finite number of steps.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsNilpotentGroup", IsGroup );
InstallSubsetMaintenance( IsNilpotentGroup,
IsGroup and IsNilpotentGroup, IsGroup );
InstallFactorMaintenance( IsNilpotentGroup,
IsGroup and IsNilpotentGroup, IsObject, IsGroup );
InstallTrueMethod( IsNilpotentGroup, IsGroup and IsCommutative );
InstallTrueMethod( IsNilpotentGroup, IsGroup and IsPGroup );
#############################################################################
##
#P IsPerfectGroup( <G> )
##
## <#GAPDoc Label="IsPerfectGroup">
## <ManSection>
## <Prop Name="IsPerfectGroup" Arg='G'/>
##
## <Description>
## A group is <E>perfect</E> if it equals its derived subgroup
## (see <Ref Func="DerivedSubgroup"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsPerfectGroup", IsGroup );
InstallFactorMaintenance( IsPerfectGroup,
IsGroup and IsPerfectGroup, IsObject, IsGroup );
#############################################################################
##
#P IsSporadicSimpleGroup( <G> )
##
## <ManSection>
## <Prop Name="IsSporadicSimpleGroup" Arg='G'/>
##
## <Description>
## A group is <E>sporadic simple</E> if it is one of the
## <M>26</M> sporadic simple groups;
## these are (in &ATLAS; notation, see <Cite Key="CCN85"/>)
## <M>M_{11}</M>, <M>M_{12}</M>, <M>J_1</M>, <M>M_{22}</M>, <M>J_2</M>,
## <M>M_{23}</M>, <M>HS</M>, <M>J_3</M>, <M>M_{24}</M>, <M>M^cL</M>,
## <M>He</M>, <M>Ru</M>, <M>Suz</M>, <M>O'N</M>, <M>Co_3</M>, <M>Co_2</M>,
## <M>Fi_{22}</M>, <M>HN</M>, <M>Ly</M>, <M>Th</M>, <M>Fi_{23}</M>,
## <M>Co_1</M>, <M>J_4</M>, <M>Fi_{24}'</M>, <M>B</M>, and <M>M</M>.
## <P/>
## This property can be used for example for selecting the character tables
## of the sporadic simple groups,
## see the documentation of the &GAP; package <Package>CTblLib</Package>.
## </Description>
## </ManSection>
##
DeclareProperty( "IsSporadicSimpleGroup", IsGroup );
InstallIsomorphismMaintenance( IsSporadicSimpleGroup,
IsGroup and IsSporadicSimpleGroup, IsGroup );
#############################################################################
##
#P IsSimpleGroup( <G> )
##
## <#GAPDoc Label="IsSimpleGroup">
## <ManSection>
## <Prop Name="IsSimpleGroup" Arg='G'/>
##
## <Description>
## A group is <E>simple</E> if it is nontrivial and has no nontrivial normal
## subgroups.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsSimpleGroup", IsGroup );
InstallIsomorphismMaintenance( IsSimpleGroup,
IsGroup and IsSimpleGroup, IsGroup );
InstallTrueMethod( IsSimpleGroup, IsGroup and IsSporadicSimpleGroup );
#############################################################################
##
#P IsAlmostSimpleGroup( <G> )
##
## <#GAPDoc Label="IsAlmostSimpleGroup">
## <ManSection>
## <Prop Name="IsAlmostSimpleGroup" Arg='G'/>
##
## <Description>
## A group <A>G</A> is <E>almost simple</E> if a nonabelian simple group
## <M>S</M> exists such that <A>G</A> is isomorphic to a subgroup of the
## automorphism group of <M>S</M> that contains all inner automorphisms of
## <M>S</M>.
## <P/>
## Equivalently, <A>G</A> is almost simple if and only if it has a unique
## minimal normal subgroup <M>N</M> and if <M>N</M> is a nonabelian simple
## group.
## <P/>
## <!--
## (Note that the centralizer of <M>N</M> in <A>G</A> is trivial because
## it is a normal subgroup of <A>G</A> that intersects <M>N</M>
## trivially,
## so if it would be nontrivial then it would contain another minimal normal
## subgroup of <A>G</A>.
## Hence the conjugation action of <A>G</A> on <M>N</M> defines an embedding
## of <A>G</A> into the automorphism group of <M>N</M>,
## and this embedding maps <M>N</M> to the group of inner automorphisms of
## <M>N</M>.)
## <P/>
## -->
## Note that an almost simple group is <E>not</E> defined as an extension of
## a simple group by outer automorphisms,
## since we want to exclude extensions of groups of prime order.
## In particular, a <E>simple</E> group is <E>almost simple</E> if and only
## if it is nonabelian.
## <P/>
## <Example><![CDATA[
## gap> IsAlmostSimpleGroup( AlternatingGroup( 5 ) );
## true
## gap> IsAlmostSimpleGroup( SymmetricGroup( 5 ) );
## true
## gap> IsAlmostSimpleGroup( SymmetricGroup( 3 ) );
## false
## gap> IsAlmostSimpleGroup( SL( 2, 5 ) );
## false
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsAlmostSimpleGroup", IsGroup );
#############################################################################
##
#P IsSupersolvableGroup( <G> )
##
## <#GAPDoc Label="IsSupersolvableGroup">
## <ManSection>
## <Prop Name="IsSupersolvableGroup" Arg='G'/>
##
## <Description>
## A finite group is <E>supersolvable</E> if it has a normal series
## with cyclic factors.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsSupersolvableGroup", IsGroup );
InstallSubsetMaintenance( IsSupersolvableGroup,
IsGroup and IsSupersolvableGroup, IsGroup );
InstallFactorMaintenance( IsSupersolvableGroup,
IsGroup and IsSupersolvableGroup, IsObject, IsGroup );
InstallTrueMethod( IsSupersolvableGroup, IsNilpotentGroup );
#############################################################################
##
#P IsMonomialGroup( <G> )
##
## <#GAPDoc Label="IsMonomialGroup">
## <ManSection>
## <Prop Name="IsMonomialGroup" Arg='G'/>
##
## <Description>
## A finite group is <E>monomial</E> if every irreducible complex character is
## induced from a linear character of a subgroup.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsMonomialGroup", IsGroup );
InstallFactorMaintenance( IsMonomialGroup,
IsGroup and IsMonomialGroup, IsObject, IsGroup );
InstallTrueMethod( IsMonomialGroup, IsSupersolvableGroup and IsFinite );
#############################################################################
##
#P IsSolvableGroup( <G> )
##
## <#GAPDoc Label="IsSolvableGroup">
## <ManSection>
## <Prop Name="IsSolvableGroup" Arg='G'/>
##
## <Description>
## A group is <E>solvable</E> if the derived series
## (see <Ref Func="DerivedSeriesOfGroup"/> for a definition)
## reaches the trivial subgroup in a finite number of steps.
## <P/>
## For finite groups this is the same as being polycyclic
## (see <Ref Func="IsPolycyclicGroup"/>),
## and each polycyclic group is solvable,
## but there are infinite solvable groups that are not polycyclic.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsSolvableGroup", IsGroup );
InstallSubsetMaintenance( IsSolvableGroup,
IsGroup and IsSolvableGroup, IsGroup );
InstallFactorMaintenance( IsSolvableGroup,
IsGroup and IsSolvableGroup, IsObject, IsGroup );
## For finite groups, supersolvability implies monomiality, and this implies
## solvability.
## But monomiality is defined only for finite groups, for the general case
## we need the direct implication from supersolvability to solvability.
InstallTrueMethod( IsSolvableGroup, IsMonomialGroup );
InstallTrueMethod( IsSolvableGroup, IsSupersolvableGroup );
#############################################################################
##
#P IsPolycyclicGroup( <G> )
##
## <#GAPDoc Label="IsPolycyclicGroup">
## <ManSection>
## <Prop Name="IsPolycyclicGroup" Arg='G'/>
##
## <Description>
## A group is polycyclic if it has a subnormal series with cyclic factors.
## For finite groups this is the same as if the group is solvable
## (see <Ref Func="IsSolvableGroup"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsPolycyclicGroup", IsGroup );
InstallTrueMethod( IsSolvableGroup, IsPolycyclicGroup );
InstallTrueMethod( IsPolycyclicGroup, IsSolvableGroup and IsFinite );
InstallTrueMethod( IsPolycyclicGroup,
IsNilpotentGroup and IsFinitelyGeneratedGroup );
#############################################################################
##
#A AbelianInvariants( <G> )
##
## <#GAPDoc Label="AbelianInvariants:grp">
## <ManSection>
## <Attr Name="AbelianInvariants" Arg='G'/>
##
## <Description>
## <Index Subkey="for groups" Key="AbelianInvariants">
## <C>AbelianInvariants</C></Index>
## returns the abelian invariants (also sometimes called primary
## decomposition) of the commutator factor group of the
## group <A>G</A>. These are given as a list of prime-powers or zeroes and
## describe the structure of <M><A>G</A>/<A>G</A>'</M> as a direct product
## of cyclic groups of prime power (or infinite) order.
## <P/>
## (See <Ref Func="IndependentGeneratorsOfAbelianGroup"/> to obtain actual
## generators).
## <Example><![CDATA[
## gap> g:=Group((1,2,3,4),(1,2),(5,6));;
## gap> AbelianInvariants(g);
## [ 2, 2 ]
## gap> h:=FreeGroup(2);;h:=h/[h.1^3];;
## gap> AbelianInvariants(h);
## [ 0, 3 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "AbelianInvariants", IsGroup );
#############################################################################
##
#A IsInfiniteAbelianizationGroup( <G> )
##
## <#GAPDoc Label="IsInfiniteAbelianizationGroup:grp">
## <ManSection>
## <Attr Name="IsInfiniteAbelianizationGroup" Arg='G'/>
##
## <Description>
## <Index Subkey="for groups" Key="IsInfiniteAbelianizationGroup">
## <C>IsInfiniteAbelianizationGroup</C></Index>
## returns true if the commutator factor group <M><A>G</A>/<A>G</A>'</M> is
## infinite. This might be done without computing the full structure of the
## commutator factor group.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "IsInfiniteAbelianizationGroup", IsGroup );
#############################################################################
##
#A AsGroup( <D> ) . . . . . . . . . . . . . collection <D>, viewed as group
##
## <#GAPDoc Label="AsGroup">
## <ManSection>
## <Attr Name="AsGroup" Arg='D'/>
##
## <Description>
## if the elements of the collection <A>D</A> form a group the command returns
## this group, otherwise it returns <K>fail</K>.
## <Example><![CDATA[
## gap> AsGroup([(1,2)]);
## fail
## gap> AsGroup([(),(1,2)]);
## Group([ (1,2) ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "AsGroup", IsCollection );
#############################################################################
##
#A ChiefSeries( <G> )
##
## <#GAPDoc Label="ChiefSeries">
## <ManSection>
## <Attr Name="ChiefSeries" Arg='G'/>
##
## <Description>
## is a series of normal subgroups of <A>G</A> which cannot be refined
## further.
## That is there is no normal subgroup <M>N</M> of <A>G</A> with
## <M>U_i > N > U_{{i+1}}</M>.
## This attribute returns <E>one</E> chief series (of potentially many
## possibilities).
## <Example><![CDATA[
## gap> g:=Group((1,2,3,4),(1,2));;
## gap> ChiefSeries(g);
## [ Group([ (1,2,3,4), (1,2) ]),
## Group([ (2,4,3), (1,4)(2,3), (1,3)(2,4) ]),
## Group([ (1,4)(2,3), (1,3)(2,4) ]), Group(()) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "ChiefSeries", IsGroup );
#############################################################################
##
#O ChiefSeriesUnderAction( <H>, <G> )
##
## <#GAPDoc Label="ChiefSeriesUnderAction">
## <ManSection>
## <Oper Name="ChiefSeriesUnderAction" Arg='H, G'/>
##
## <Description>
## returns a series of normal subgroups of <A>G</A> which are invariant under
## <A>H</A> such that the series cannot be refined any further.
## <A>G</A> must be a subgroup of <A>H</A>.
## This attribute returns <E>one</E> such series (of potentially many
## possibilities).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ChiefSeriesUnderAction", [ IsGroup, IsGroup ] );
#############################################################################
##
#O ChiefSeriesThrough( <G>, <l> )
##
## <#GAPDoc Label="ChiefSeriesThrough">
## <ManSection>
## <Oper Name="ChiefSeriesThrough" Arg='G, l'/>
##
## <Description>
## is a chief series of the group <A>G</A> going through
## the normal subgroups in the list <A>l</A>, which must be a list of normal
## subgroups of <A>G</A> contained in each other, sorted by descending size.
## This attribute returns <E>one</E>
## chief series (of potentially many possibilities).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ChiefSeriesThrough", [ IsGroup, IsList ] );
#############################################################################
##
#A CommutatorFactorGroup( <G> )
##
## <#GAPDoc Label="CommutatorFactorGroup">
## <ManSection>
## <Attr Name="CommutatorFactorGroup" Arg='G'/>
##
## <Description>
## computes the commutator factor group <M><A>G</A>/<A>G</A>'</M> of the group <A>G</A>.
## <Example><![CDATA[
## gap> CommutatorFactorGroup(g);
## Group([ f1 ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "CommutatorFactorGroup", IsGroup );
#############################################################################
##
#A CompositionSeries( <G> )
##
## <#GAPDoc Label="CompositionSeries">
## <ManSection>
## <Attr Name="CompositionSeries" Arg='G'/>
##
## <Description>
## A composition series is a subnormal series which cannot be refined.
## This attribute returns <E>one</E> composition series (of potentially many
## possibilities).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "CompositionSeries", IsGroup );
#T and for module?
#############################################################################
##
#F DisplayCompositionSeries( <G> )
##
## <#GAPDoc Label="DisplayCompositionSeries">
## <ManSection>
## <Func Name="DisplayCompositionSeries" Arg='G'/>
##
## <Description>
## Displays a composition series of <A>G</A> in a nice way, identifying the
## simple factors.
## <Example><![CDATA[
## gap> CompositionSeries(g);
## [ Group([ (3,4), (2,4,3), (1,4)(2,3), (1,3)(2,4) ]),
## Group([ (2,4,3), (1,4)(2,3), (1,3)(2,4) ]),
## Group([ (1,4)(2,3), (1,3)(2,4) ]), Group([ (1,3)(2,4) ]), Group(())
## ]
## gap> DisplayCompositionSeries(Group((1,2,3,4,5,6,7),(1,2)));
## G (2 gens, size 5040)
## | Z(2)
## S (5 gens, size 2520)
## | A(7)
## 1 (0 gens, size 1)
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "DisplayCompositionSeries" );
#############################################################################
##
#A ConjugacyClasses( <G> )
##
## <#GAPDoc Label="ConjugacyClasses:grp">
## <ManSection>
## <Attr Name="ConjugacyClasses" Arg='G' Label="attribute"/>
##
## <Description>
## returns the conjugacy classes of elements of <A>G</A> as a list of
## class objects of <A>G</A>
## (see <Ref Func="ConjugacyClass"/> for details).
## It is guaranteed that the class of the
## identity is in the first position, the further arrangement depends on
## the method chosen (and might be different for equal but not identical
## groups).
## <P/>
## For very small groups (of size up to 500) the classes will be computed
## by the conjugation action of <A>G</A> on itself
## (see <Ref Func="ConjugacyClassesByOrbits"/>).
## This can be deliberately switched off using the <Q><C>noaction</C></Q>
## option shown below.
## <P/>
## For solvable groups, the default method to compute the classes is by
## homomorphic lift
## (see section <Ref Sect="Conjugacy Classes in Solvable Groups"/>).
## <P/>
## For other groups the method of <Cite Key="HulpkeClasses"/> is employed.
## <P/>
## <Ref Attr="ConjugacyClasses" Label="attribute"/> supports the following
## options that can be used to modify this strategy:
## <List>
## <Mark><C>random</C></Mark>
## <Item>
## The classes are computed by random search.
## See <Ref Func="ConjugacyClassesByRandomSearch"/> below.
## </Item>
## <Mark><C>action</C></Mark>
## <Item>
## The classes are computed by action of <A>G</A> on itself.
## See <Ref Func="ConjugacyClassesByOrbits"/> below.
## </Item>
## <Mark><C>noaction</C></Mark>
## <Item>
## Even for small groups
## <Ref Func="ConjugacyClassesByOrbits"/>
## is not used as a default. This can be useful if the elements of the
## group use a lot of memory.
## </Item>
## </List>
## <Example><![CDATA[
## gap> g:=SymmetricGroup(4);;
## gap> cl:=ConjugacyClasses(g);
## [ ()^G, (1,2)^G, (1,2)(3,4)^G, (1,2,3)^G, (1,2,3,4)^G ]
## gap> Representative(cl[3]);Centralizer(cl[3]);
## (1,2)(3,4)
## Group([ (1,2), (1,3)(2,4), (3,4) ])
## gap> Size(Centralizer(cl[5]));
## 4
## gap> Size(cl[2]);
## 6
## ]]></Example>
## <P/>
## In general, you will not need to have to influence the method, but simply
## call <Ref Func="ConjugacyClasses" Label="attribute"/>
## –&GAP; will try to select a suitable method on its own.
## The method specifications are provided here mainly for expert use.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "ConjugacyClasses", IsGroup );
#############################################################################
##
#A ConjugacyClassesMaximalSubgroups( <G> )
##
## <#GAPDoc Label="ConjugacyClassesMaximalSubgroups">
## <ManSection>
## <Attr Name="ConjugacyClassesMaximalSubgroups" Arg='G'/>
##
## <Description>
## returns the conjugacy classes of maximal subgroups of <A>G</A>.
## Representatives of the classes can be computed directly by
## <Ref Func="MaximalSubgroupClassReps"/>.
## <Example><![CDATA[
## gap> ConjugacyClassesMaximalSubgroups(g);
## [ AlternatingGroup( [ 1 .. 4 ] )^G, Group( [ (1,2,3), (1,2) ] )^G,
## Group( [ (1,2), (3,4), (1,3)(2,4) ] )^G ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "ConjugacyClassesMaximalSubgroups", IsGroup );
#############################################################################
##
#A MaximalSubgroups( <G> )
##
## <#GAPDoc Label="MaximalSubgroups">
## <ManSection>
## <Attr Name="MaximalSubgroups" Arg='G'/>
##
## <Description>
## returns a list of all maximal subgroups of <A>G</A>. This may take up much
## space, therefore the command should be avoided if possible. See
## <Ref Func="ConjugacyClassesMaximalSubgroups"/>.
## <Example><![CDATA[
## gap> MaximalSubgroups(Group((1,2,3),(1,2)));
## [ Group([ (1,2,3) ]), Group([ (2,3) ]), Group([ (1,2) ]),
## Group([ (1,3) ]) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "MaximalSubgroups", IsGroup );
#############################################################################
##
#A MaximalSubgroupClassReps( <G> )
##
## <#GAPDoc Label="MaximalSubgroupClassReps">
## <ManSection>
## <Attr Name="MaximalSubgroupClassReps" Arg='G'/>
##
## <Description>
## returns a list of conjugacy representatives of the maximal subgroups
## of <A>G</A>.
## <Example><![CDATA[
## gap> MaximalSubgroupClassReps(g);
## [ Alt( [ 1 .. 4 ] ), Group([ (1,2,3), (1,2) ]),
## Group([ (1,2), (3,4), (1,3)(2,4) ]) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute("MaximalSubgroupClassReps",IsGroup);
#############################################################################
##
#A PerfectResiduum( <G> )
##
## <#GAPDoc Label="PerfectResiduum">
## <ManSection>
## <Attr Name="PerfectResiduum" Arg='G'/>
##
## <Description>
## is the smallest normal subgroup of <A>G</A> that has a solvable factor group.
## <Example><![CDATA[
## gap> PerfectResiduum(Group((1,2,3,4,5),(1,2)));
## Group([ (1,3,2), (2,4,3), (1,3)(4,5) ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "PerfectResiduum", IsGroup );
#############################################################################
##
#A RepresentativesPerfectSubgroups( <G> )
#A RepresentativesSimpleSubgroups( <G> )
##
## <#GAPDoc Label="RepresentativesPerfectSubgroups">
## <ManSection>
## <Attr Name="RepresentativesPerfectSubgroups" Arg='G'/>
## <Attr Name="RepresentativesSimpleSubgroups" Arg='G'/>
##
## <Description>
## returns a list of conjugacy representatives of perfect (respectively
## simple) subgroups of <A>G</A>.
## This uses the library of perfect groups
## (see <Ref Func="PerfectGroup" Label="for group order (and index)"/>),
## thus it will issue an error if the library is insufficient to determine
## all perfect subgroups.
## <Example><![CDATA[
## gap> m11:=TransitiveGroup(11,6);
## M(11)
## gap> r:=RepresentativesPerfectSubgroups(m11);
## [ Group([ (2,3,4)(5,6,8)(7,11,9), (3,11)(4,5)(6,10)(7,8) ]),
## Group([ (1,2,3)(5,9,6)(7,8,11), (3,11)(4,5)(6,10)(7,8) ]),
## Group([ (2,3,4,11,6)(5,7,10,8,9), (3,11)(4,5)(6,10)(7,8) ]),
## Group([ (1,2,3)(4,6,11)(7,9,10), (3,11)(4,5)(6,10)(7,8) ]), M(11),
## Group(()) ]
## gap> List(r,Size);
## [ 60, 60, 360, 660, 7920, 1 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "RepresentativesPerfectSubgroups", IsGroup );
DeclareAttribute( "RepresentativesSimpleSubgroups", IsGroup );
#############################################################################
##
#A ConjugacyClassesPerfectSubgroups( <G> )
##
## <#GAPDoc Label="ConjugacyClassesPerfectSubgroups">
## <ManSection>
## <Attr Name="ConjugacyClassesPerfectSubgroups" Arg='G'/>
##
## <Description>
## returns a list of the conjugacy classes of perfect subgroups of <A>G</A>.
## (see <Ref Func="RepresentativesPerfectSubgroups"/>.)
## <Example><![CDATA[
## gap> ConjugacyClassesPerfectSubgroups(m11);
## [ Group( [ ( 2, 3, 4)( 5, 6, 8)( 7,11, 9),
## ( 3,11)( 4, 5)( 6,10)( 7, 8) ] )^G,
## Group( [ ( 1, 2, 3)( 5, 9, 6)( 7, 8,11),
## ( 3,11)( 4, 5)( 6,10)( 7, 8) ] )^G,
## Group( [ ( 2, 3, 4,11, 6)( 5, 7,10, 8, 9),
## ( 3,11)( 4, 5)( 6,10)( 7, 8) ] )^G,
## Group( [ ( 1, 2, 3)( 4, 6,11)( 7, 9,10),
## ( 3,11)( 4, 5)( 6,10)( 7, 8) ] )^G, M(11)^G, Group( () )^G ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "ConjugacyClassesPerfectSubgroups", IsGroup );
#############################################################################
##
#A ConjugacyClassesSubgroups( <G> )
##
## <#GAPDoc Label="ConjugacyClassesSubgroups">
## <ManSection>
## <Attr Name="ConjugacyClassesSubgroups" Arg='G'/>
##
## <Description>
## This attribute returns a list of all conjugacy classes of subgroups of
## the group <A>G</A>.
## It also is applicable for lattices of subgroups (see <Ref Func="LatticeSubgroups"/>).
## The order in which the classes are listed depends on the method chosen by
## &GAP;.
## For each class of subgroups, a representative can be accessed using
## <Ref Attr="Representative"/>.
## <Example><![CDATA[
## gap> ConjugacyClassesSubgroups(g);
## [ Group( () )^G, Group( [ (1,3)(2,4) ] )^G, Group( [ (3,4) ] )^G,
## Group( [ (2,4,3) ] )^G, Group( [ (1,4)(2,3), (1,3)(2,4) ] )^G,
## Group( [ (3,4), (1,2)(3,4) ] )^G,
## Group( [ (1,3,2,4), (1,2)(3,4) ] )^G, Group( [ (3,4), (2,4,3) ] )^G,
## Group( [ (1,4)(2,3), (1,3)(2,4), (3,4) ] )^G,
## Group( [ (1,4)(2,3), (1,3)(2,4), (2,4,3) ] )^G,
## Group( [ (1,4)(2,3), (1,3)(2,4), (2,4,3), (3,4) ] )^G ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "ConjugacyClassesSubgroups", IsGroup );
#############################################################################
##
#A LatticeSubgroups( <G> )
##
## <#GAPDoc Label="LatticeSubgroups">
## <ManSection>
## <Attr Name="LatticeSubgroups" Arg='G'/>
##
## <Description>
## computes the lattice of subgroups of the group <A>G</A>. This lattice has
## the conjugacy classes of subgroups as attribute
## <Ref Func="ConjugacyClassesSubgroups"/> and
## permits one to test maximality/minimality relations.
## <Example><![CDATA[
## gap> g:=SymmetricGroup(4);;
## gap> l:=LatticeSubgroups(g);
## <subgroup lattice of Sym( [ 1 .. 4 ] ), 11 classes, 30 subgroups>
## gap> ConjugacyClassesSubgroups(l);
## [ Group( () )^G, Group( [ (1,3)(2,4) ] )^G, Group( [ (3,4) ] )^G,
## Group( [ (2,4,3) ] )^G, Group( [ (1,4)(2,3), (1,3)(2,4) ] )^G,
## Group( [ (3,4), (1,2)(3,4) ] )^G,
## Group( [ (1,3,2,4), (1,2)(3,4) ] )^G, Group( [ (3,4), (2,4,3) ] )^G,
## Group( [ (1,4)(2,3), (1,3)(2,4), (3,4) ] )^G,
## Group( [ (1,4)(2,3), (1,3)(2,4), (2,4,3) ] )^G,
## Group( [ (1,4)(2,3), (1,3)(2,4), (2,4,3), (3,4) ] )^G ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "LatticeSubgroups", IsGroup );
#############################################################################
##
#A DerivedLength( <G> )
##
## <#GAPDoc Label="DerivedLength">
## <ManSection>
## <Attr Name="DerivedLength" Arg='G'/>
##
## <Description>
## The derived length of a group is the number of steps in the derived
## series. (As there is always the group, it is the series length minus 1.)
## <Example><![CDATA[
## gap> List(DerivedSeriesOfGroup(g),Size);
## [ 24, 12, 4, 1 ]
## gap> DerivedLength(g);
## 3
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "DerivedLength", IsGroup );
#############################################################################
##
#A HirschLength( <G> )
##
## <ManSection>
## <Attr Name="HirschLength" Arg='G'/>
##
## <Description>
## Suppose that <A>G</A> is polycyclic-by-finite; that is, there exists a
## polycyclic normal subgroup N in <A>G</A> with [G : N] finite. Then the Hirsch
## length of <A>G</A> is the number of infinite cyclic factors in a polycyclic
## series of N. This is an invariant of <A>G</A>.
## </Description>
## </ManSection>
##
DeclareAttribute( "HirschLength", IsGroup );
InstallIsomorphismMaintenance( HirschLength,
IsGroup and HasHirschLength,
IsGroup );
#############################################################################
##
#A DerivedSeriesOfGroup( <G> )
##
## <#GAPDoc Label="DerivedSeriesOfGroup">
## <ManSection>
## <Attr Name="DerivedSeriesOfGroup" Arg='G'/>
##
## <Description>
## The derived series of a group is obtained by <M>U_{{i+1}} = U_i'</M>.
## It stops if <M>U_i</M> is perfect.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "DerivedSeriesOfGroup", IsGroup );
#############################################################################
##
#A DerivedSubgroup( <G> )
##
## <#GAPDoc Label="DerivedSubgroup">
## <ManSection>
## <Attr Name="DerivedSubgroup" Arg='G'/>
##
## <Description>
## The derived subgroup <M><A>G</A>'</M> of <A>G</A> is the subgroup
## generated by all commutators of pairs of elements of <A>G</A>.
## It is normal in <A>G</A> and the factor group <M><A>G</A>/<A>G</A>'</M>
## is the largest abelian factor group of <A>G</A>.
## <Example><![CDATA[
## gap> g:=Group((1,2,3,4),(1,2));;
## gap> DerivedSubgroup(g);
## Group([ (1,3,2), (1,4,3) ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "DerivedSubgroup", IsGroup );
#############################################################################
##
#A MaximalAbelianQuotient( <G> ) . . . . Max abelian quotient
##
## <#GAPDoc Label="MaximalAbelianQuotient">
## <ManSection>
## <Attr Name="MaximalAbelianQuotient" Arg='G'/>
##
## <Description>
## returns an epimorphism from <A>G</A> onto the maximal abelian quotient of
## <A>G</A>.
## The kernel of this epimorphism is the derived subgroup of <A>G</A>,
## see <Ref Func="DerivedSubgroup"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "MaximalAbelianQuotient",IsGroup);
#############################################################################
##
#A CommutatorLength( <G> )
##
## <#GAPDoc Label="CommutatorLength">
## <ManSection>
## <Attr Name="CommutatorLength" Arg='G'/>
##
## <Description>
## returns the minimal number <M>n</M> such that each element
## in the derived subgroup (see <Ref Func="DerivedSubgroup"/>) of the
## group <A>G</A> can be written as a product of (at most) <M>n</M>
## commutators of elements in <A>G</A>.
## <Example><![CDATA[
## gap> CommutatorLength( g );
## 1
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "CommutatorLength", IsGroup );
#############################################################################
##
#A DimensionsLoewyFactors( <G> )
##
## <#GAPDoc Label="DimensionsLoewyFactors">
## <ManSection>
## <Attr Name="DimensionsLoewyFactors" Arg='G'/>
##
## <Description>
## This operation computes the dimensions of the factors of the Loewy
## series of <A>G</A>.
## (See <Cite Key="Hup82" Where="p. 157"/> for the slightly complicated
## definition of the Loewy Series.)
## <P/>
## The dimensions are computed via the <Ref Func="JenningsSeries"/> without computing
## the Loewy series itself.
## <Example><![CDATA[
## gap> G:= SmallGroup( 3^6, 100 );
## <pc group of size 729 with 6 generators>
## gap> JenningsSeries( G );
## [ <pc group of size 729 with 6 generators>, Group([ f3, f4, f5, f6 ]),
## Group([ f4, f5, f6 ]), Group([ f5, f6 ]), Group([ f5, f6 ]),
## Group([ f5, f6 ]), Group([ f6 ]), Group([ f6 ]), Group([ f6 ]),
## Group([ <identity> of ... ]) ]
## gap> DimensionsLoewyFactors(G);
## [ 1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26,
## 27, 27, 27, 27, 27, 27, 27, 27, 27, 26, 25, 23, 22, 20, 19, 17, 16,
## 14, 13, 11, 10, 8, 7, 5, 4, 2, 1 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "DimensionsLoewyFactors", IsGroup );
#############################################################################
##
#A ElementaryAbelianSeries( <G> )
#A ElementaryAbelianSeriesLargeSteps( <G> )
#A ElementaryAbelianSeries( [<G>,<NT1>,<NT2>,...] )
##
## <#GAPDoc Label="ElementaryAbelianSeries">
## <ManSection>
## <Heading>ElementaryAbelianSeries</Heading>
## <Attr Name="ElementaryAbelianSeries" Arg='G' Label="for a group"/>
## <Attr Name="ElementaryAbelianSeriesLargeSteps" Arg='G'/>
## <Attr Name="ElementaryAbelianSeries" Arg='list' Label="for a list"/>
##
## <Description>
## returns a series of normal subgroups of <M>G</M> such that all factors are
## elementary abelian. If the group is not solvable (and thus no such series
## exists) it returns <K>fail</K>.
## <P/>
## The variant <Ref Func="ElementaryAbelianSeriesLargeSteps"/> tries to make
## the steps in this series large (by eliminating intermediate subgroups if
## possible) at a small additional cost.
## <P/>
## In the third variant, an elementary abelian series through the given
## series of normal subgroups in the list <A>list</A> is constructed.
## <Example><![CDATA[
## gap> List(ElementaryAbelianSeries(g),Size);
## [ 24, 12, 4, 1 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "ElementaryAbelianSeries", IsGroup );
DeclareAttribute( "ElementaryAbelianSeriesLargeSteps", IsGroup );
#############################################################################
##
#A Exponent( <G> )
##
## <#GAPDoc Label="Exponent">
## <ManSection>
## <Attr Name="Exponent" Arg='G'/>
##
## <Description>
## The exponent <M>e</M> of a group <A>G</A> is the lcm of the orders of its
## elements, that is, <M>e</M> is the smallest integer such that
## <M>g^e = 1</M> for all <M>g \in <A>G</A></M>.
## <Example><![CDATA[
## gap> Exponent(g);
## 12
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "Exponent", IsGroup );
InstallIsomorphismMaintenance( Exponent, IsGroup and HasExponent, IsGroup );
#############################################################################
##
#A FittingSubgroup( <G> )
##
## <#GAPDoc Label="FittingSubgroup">
## <ManSection>
## <Attr Name="FittingSubgroup" Arg='G'/>
##
## <Description>
## The Fitting subgroup of a group <A>G</A> is its largest nilpotent normal
## subgroup.
## <Example><![CDATA[
## gap> FittingSubgroup(g);
## Group([ (1,2)(3,4), (1,4)(2,3) ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "FittingSubgroup", IsGroup );
#############################################################################
##
#A PrefrattiniSubgroup( <G> )
##
## <#GAPDoc Label="PrefrattiniSubgroup">
## <ManSection>
## <Attr Name="PrefrattiniSubgroup" Arg='G'/>
##
## <Description>
## returns a Prefrattini subgroup of the finite solvable group <A>G</A>.
## <P/>
## A factor <M>M/N</M> of <A>G</A> is called a Frattini factor if
## <M>M/N</M> is contained in the Frattini subgroup of <M><A>G</A>/N</M>.
## A subgroup <M>P</M> is a Prefrattini subgroup of <A>G</A> if <M>P</M>
## covers each Frattini chief factor of <A>G</A>, and if for each maximal
## subgroup of <A>G</A> there exists a conjugate maximal subgroup, which
## contains <M>P</M>.
## In a finite solvable group <A>G</A> the Prefrattini subgroups
## form a characteristic conjugacy class of subgroups and the intersection
## of all these subgroups is the Frattini subgroup of <A>G</A>.
## <Example><![CDATA[
## gap> G := SmallGroup( 60, 7 );
## <pc group of size 60 with 4 generators>
## gap> P := PrefrattiniSubgroup(G);
## Group([ f2 ])
## gap> Size(P);
## 2
## gap> IsNilpotent(P);
## true
## gap> Core(G,P);
## Group([ ])
## gap> FrattiniSubgroup(G);
## Group([ ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "PrefrattiniSubgroup", IsGroup );
#############################################################################
##
#A FrattiniSubgroup( <G> )
##
## <#GAPDoc Label="FrattiniSubgroup">
## <ManSection>
## <Attr Name="FrattiniSubgroup" Arg='G'/>
##
## <Description>
## The Frattini subgroup of a group <A>G</A> is the intersection of all
## maximal subgroups of <A>G</A>.
## <Example><![CDATA[
## gap> FrattiniSubgroup(g);
## Group(())
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "FrattiniSubgroup", IsGroup );
#############################################################################
##
#A InvariantForm( <D> )
##
## <ManSection>
## <Attr Name="InvariantForm" Arg='D'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareAttribute( "InvariantForm", IsGroup );
#############################################################################
##
#A JenningsSeries( <G> )
##
## <#GAPDoc Label="JenningsSeries">
## <ManSection>
## <Attr Name="JenningsSeries" Arg='G'/>
##
## <Description>
## For a <M>p</M>-group <A>G</A>, this function returns its Jennings series.
## This series is defined by setting
## <M>G_1 = <A>G</A></M> and for <M>i \geq 0</M>,
## <M>G_{{i+1}} = [G_i,<A>G</A>] G_j^p</M>,
## where <M>j</M> is the smallest integer <M>\geq i/p</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "JenningsSeries", IsGroup );
#############################################################################
##
#A LowerCentralSeriesOfGroup( <G> )
##
## <#GAPDoc Label="LowerCentralSeriesOfGroup">
## <ManSection>
## <Attr Name="LowerCentralSeriesOfGroup" Arg='G'/>
##
## <Description>
## The lower central series of a group <A>G</A> is defined as
## <M>U_{{i+1}}:= [<A>G</A>, U_i]</M>.
## It is a central series of normal subgroups.
## The name derives from the fact that <M>U_i</M> is contained in the
## <M>i</M>-th step subgroup of any central series.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "LowerCentralSeriesOfGroup", IsGroup );
#############################################################################
##
#A NilpotencyClassOfGroup( <G> )
##
## <#GAPDoc Label="NilpotencyClassOfGroup">
## <ManSection>
## <Attr Name="NilpotencyClassOfGroup" Arg='G'/>
##
## <Description>
## The nilpotency class of a nilpotent group <A>G</A> is the number of steps in
## the lower central series of <A>G</A> (see <Ref Func="LowerCentralSeriesOfGroup"/>);
## <P/>
## If <A>G</A> is not nilpotent an error is issued.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "NilpotencyClassOfGroup", IsGroup );
#############################################################################
##
#A MaximalNormalSubgroups( <G> )
##
## <#GAPDoc Label="MaximalNormalSubgroups">
## <ManSection>
## <Attr Name="MaximalNormalSubgroups" Arg='G'/>
##
## <Description>
## is a list containing those proper normal subgroups of the group <A>G</A>
## that are maximal among the proper normal subgroups.
## <Example><![CDATA[
## gap> MaximalNormalSubgroups( g );
## [ Group([ (2,4,3), (1,4)(2,3), (1,3)(2,4) ]) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "MaximalNormalSubgroups", IsGroup );
#############################################################################
##
#A NormalMaximalSubgroups( <G> )
##
## <ManSection>
## <Attr Name="NormalMaximalSubgroups" Arg='G'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareAttribute( "NormalMaximalSubgroups", IsGroup );
#############################################################################
##
#A MinimalNormalSubgroups( <G> )
##
## <#GAPDoc Label="MinimalNormalSubgroups">
## <ManSection>
## <Attr Name="MinimalNormalSubgroups" Arg='G'/>
##
## <Description>
## is a list containing those nontrivial normal subgroups of the group <A>G</A>
## that are minimal among the nontrivial normal subgroups.
## <Example><![CDATA[
## gap> MinimalNormalSubgroups( g );
## [ Group([ (1,4)(2,3), (1,3)(2,4) ]) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "MinimalNormalSubgroups", IsGroup );
#############################################################################
##
#A NormalSubgroups( <G> )
##
## <#GAPDoc Label="NormalSubgroups">
## <ManSection>
## <Attr Name="NormalSubgroups" Arg='G'/>
##
## <Description>
## returns a list of all normal subgroups of <A>G</A>.
## <Example><![CDATA[
## gap> g:=SymmetricGroup(4);;NormalSubgroups(g);
## [ Sym( [ 1 .. 4 ] ), Group([ (2,4,3), (1,4)(2,3), (1,3)(2,4) ]),
## Group([ (1,4)(2,3), (1,3)(2,4) ]), Group(()) ]
## ]]></Example>
## <P/>
## The algorithm for the computation of normal subgroups is described in
## <Cite Key="Hulpke98"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "NormalSubgroups", IsGroup );
#############################################################################
##
#F NormalSubgroupsAbove( <G>, <N>, <avoid> )
##
## <ManSection>
## <Func Name="NormalSubgroupsAbove" Arg='G, N, avoid'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction("NormalSubgroupsAbove");
############################################################################
##
#A NrConjugacyClasses( <G> )
##
## <#GAPDoc Label="NrConjugacyClasses">
## <ManSection>
## <Attr Name="NrConjugacyClasses" Arg='G'/>
##
## <Description>
## returns the number of conjugacy classes of <A>G</A>.
## <Example><![CDATA[
## gap> g:=Group((1,2,3,4),(1,2));;
## gap> NrConjugacyClasses(g);
## 5
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "NrConjugacyClasses", IsGroup );
#############################################################################
##
#O Omega( <G>, <p>[, <n>] )
##
## <#GAPDoc Label="Omega">
## <ManSection>
## <Oper Name="Omega" Arg='G, p[, n]'/>
##
## <Description>
## For a <A>p</A>-group <A>G</A>, one defines
## <M>\Omega_{<A>n</A>}(<A>G</A>) =
## \{ g \in <A>G</A> \mid g^{{<A>p</A>^{<A>n</A>}}} = 1 \}</M>.
## The default value for <A>n</A> is <C>1</C>.
## <P/>
## <E>@At the moment methods exist only for abelian <A>G</A> and <A>n</A>=1.@</E>
## <Example><![CDATA[
## gap> h:=SmallGroup(16,10);
## <pc group of size 16 with 4 generators>
## gap> Omega(h,2);
## Group([ f2, f3, f4 ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "Omega", [ IsGroup, IsPosInt ] );
DeclareOperation( "Omega", [ IsGroup, IsPosInt, IsPosInt ] );
DeclareOperation( "OmegaOp", [ IsGroup, IsPosInt, IsPosInt ] );
DeclareAttribute( "ComputedOmegas", IsGroup, "mutable" );
#############################################################################
##
#F Agemo( <G>, <p>[, <n>] )
##
## <#GAPDoc Label="Agemo">
## <ManSection>
## <Func Name="Agemo" Arg='G, p[, n]'/>
##
## <Description>
## For a <A>p</A>-group <A>G</A>, one defines
## <M>\mho_{<A>n</A>}(G) =
## \langle g^{{<A>p</A>^{<A>n</A>}}} \mid g \in <A>G</A> \rangle</M>.
## The default value for <A>n</A> is <C>1</C>.
## <Example><![CDATA[
## gap> Agemo(h,2);Agemo(h,2,2);
## Group([ f4 ])
## Group([ ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "Agemo" );
DeclareOperation( "AgemoOp", [ IsGroup, IsPosInt, IsPosInt ] );
DeclareAttribute( "ComputedAgemos", IsGroup, "mutable" );
#############################################################################
##
#A RadicalGroup( <G> )
##
## <#GAPDoc Label="RadicalGroup">
## <ManSection>
## <Attr Name="RadicalGroup" Arg='G'/>
##
## <Description>
## is the radical of <A>G</A>, i.e., the largest solvable normal subgroup of <A>G</A>.
## <Example><![CDATA[
## gap> RadicalGroup(SL(2,5));
## <group of 2x2 matrices of size 2 over GF(5)>
## gap> Size(last);
## 2
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "RadicalGroup", IsGroup );
#############################################################################
##
#A RationalClasses( <G> )
##
## <#GAPDoc Label="RationalClasses">
## <ManSection>
## <Attr Name="RationalClasses" Arg='G'/>
##
## <Description>
## returns a list of the rational classes of the group <A>G</A>. (See
## <Ref Func="RationalClass"/>.)
## <Example><![CDATA[
## gap> RationalClasses(DerivedSubgroup(g));
## [ RationalClass( AlternatingGroup( [ 1 .. 4 ] ), () ),
## RationalClass( AlternatingGroup( [ 1 .. 4 ] ), (1,2)(3,4) ),
## RationalClass( AlternatingGroup( [ 1 .. 4 ] ), (1,2,3) ) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "RationalClasses", IsGroup );
#############################################################################
##
#A GeneratorsSmallest( <G> )
##
## <#GAPDoc Label="GeneratorsSmallest">
## <ManSection>
## <Attr Name="GeneratorsSmallest" Arg='G'/>
##
## <Description>
## returns a <Q>smallest</Q> generating set for the group <A>G</A>.
## This is the lexicographically (using &GAP;s order of group elements)
## smallest list <M>l</M> of elements of <A>G</A> such that
## <M>G = \langle l \rangle</M> and
## <M>l_i \not \in \langle l_1, \ldots, l_{{i-1}} \rangle</M>
## (in particular <M>l_1</M> is not the identity element of the group).
## The comparison of two groups via
## lexicographic comparison of their sorted element lists yields the same
## relation as lexicographic comparison of their smallest generating sets.
## <Example><![CDATA[
## gap> g:=SymmetricGroup(4);;
## gap> GeneratorsSmallest(g);
## [ (3,4), (2,3), (1,2) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "GeneratorsSmallest", IsMagma );
#############################################################################
##
#A LargestElementGroup( <G> )
##
## <#GAPDoc Label="LargestElementGroup">
## <ManSection>
## <Attr Name="LargestElementGroup" Arg='G'/>
##
## <Description>
## returns the largest element of <A>G</A> with respect to the ordering <C><</C> of
## the elements family.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "LargestElementGroup", IsGroup );
#############################################################################
##
#A MinimalGeneratingSet( <G> )
##
## <#GAPDoc Label="MinimalGeneratingSet">
## <ManSection>
## <Attr Name="MinimalGeneratingSet" Arg='G'/>
##
## <Description>
## returns a generating set of <A>G</A> of minimal possible length.
## <P/>
## Note that –apart from special cases– currently there are only
## efficient methods known to compute minimal generating sets of finite
## solvable groups and of finitely generated nilpotent groups.
## Hence so far these are the only cases for which methods are available.
## The former case is covered by a method implemented in the &GAP; library,
## while the second case requires the package <Package>Polycyclic</Package>.
## <P/>
## If you do not really need a minimal generating set, but are satisfied
## with getting a reasonably small set of generators, you better use
## <Ref Func="SmallGeneratingSet"/>.
## <P/>
## Information about the minimal generating sets of the finite simple
## groups of order less than <M>10^6</M> can be found in <Cite Key="MY79"/>.
## See also the package <Package>AtlasRep</Package>.
## <Example><![CDATA[
## gap> MinimalGeneratingSet(g);
## [ (2,4,3), (1,4,2,3) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "MinimalGeneratingSet", IsGroup );
#############################################################################
##
#A SmallGeneratingSet(<G>) small generating set (hopefully even irredundant)
##
## <#GAPDoc Label="SmallGeneratingSet">
## <ManSection>
## <Attr Name="SmallGeneratingSet" Arg='G'/>
##
## <Description>
## returns a generating set of <A>G</A> which has few elements. As neither
## irredundancy, nor minimal length is proven it runs much faster than
## <Ref Func="MinimalGeneratingSet"/>.
## It can be used whenever a short generating set is desired which not
## necessarily needs to be optimal.
## <Example><![CDATA[
## gap> SmallGeneratingSet(g);
## [ (1,2,3,4), (1,2) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "SmallGeneratingSet", IsGroup );
#############################################################################
##
#A SupersolvableResiduum( <G> )
##
## <#GAPDoc Label="SupersolvableResiduum">
## <ManSection>
## <Attr Name="SupersolvableResiduum" Arg='G'/>
##
## <Description>
## is the supersolvable residuum of the group <A>G</A>, that is,
## its smallest normal subgroup <M>N</M> such that the factor group
## <M><A>G</A> / N</M> is supersolvable.
## <Example><![CDATA[
## gap> SupersolvableResiduum(g);
## Group([ (1,3)(2,4), (1,4)(2,3) ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "SupersolvableResiduum", IsGroup );
#############################################################################
##
#F SupersolvableResiduumDefault( <G> ) . . . . supersolvable residuum of <G>
##
## <ManSection>
## <Func Name="SupersolvableResiduumDefault" Arg='G'/>
##
## <Description>
## For a group <A>G</A>, <C>SupersolvableResiduumDefault</C> returns a record with the
## following components.
## <List>
## <Mark><C>ssr</C>: </Mark>
## <Item>
## the supersolvable residuum of <A>G</A>, that is,
## the largest normal subgroup <M>N</M> of <A>G</A> such that the factor group
## <M><A>G</A> / N</M> is supersolvable,
## </Item>
## <Mark><C>ds</C>: </Mark>
## <Item>
## a chain of normal subgroups of <A>G</A>,
## descending from <A>G</A> to the supersolvable residuum,
## such that any refinement of this chain is a normal series.
## </Item>
## </List>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "SupersolvableResiduumDefault" );
#############################################################################
##
#A ComplementSystem( <G> )
##
## <#GAPDoc Label="ComplementSystem">
## <ManSection>
## <Attr Name="ComplementSystem" Arg='G'/>
##
## <Description>
## A complement system of a group <A>G</A> is a set of Hall
## <M>p'</M>-subgroups of <A>G</A>,
## where <M>p'</M> runs through the subsets of prime factors of
## <M>|<A>G</A>|</M> that omit exactly one prime.
## Every pair of subgroups from this set commutes as subgroups.
## Complement systems exist only for solvable groups, therefore
## <Ref Func="ComplementSystem"/> returns <K>fail</K> if the group <A>G</A>
## is not solvable.
## <Example><![CDATA[
## gap> ComplementSystem(h);
## [ Group([ f3, f4 ]), Group([ f1, f2, f4 ]), Group([ f1, f2, f3 ]) ]
## gap> List(last,Size);
## [ 15, 20, 12 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "ComplementSystem", IsGroup );
#############################################################################
##
#A SylowSystem( <G> )
##
## <#GAPDoc Label="SylowSystem">
## <ManSection>
## <Attr Name="SylowSystem" Arg='G'/>
##
## <Description>
## A Sylow system of a group <A>G</A> is a set of Sylow subgroups of
## <A>G</A> such that every pair of subgroups from this set commutes as
## subgroups.
## Sylow systems exist only for solvable groups. The operation returns
## <K>fail</K> if the group <A>G</A> is not solvable.
## <Example><![CDATA[
## gap> h:=SmallGroup(60,10);;
## gap> SylowSystem(h);
## [ Group([ f1, f2 ]), Group([ f3 ]), Group([ f4 ]) ]
## gap> List(last,Size);
## [ 4, 3, 5 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "SylowSystem", IsGroup );
#############################################################################
##
#A HallSystem( <G> )
##
## <#GAPDoc Label="HallSystem">
## <ManSection>
## <Attr Name="HallSystem" Arg='G'/>
##
## <Description>
## returns a list containing one Hall <M>P</M>-subgroup for each set
## <M>P</M> of prime divisors of the order of <A>G</A>.
## Hall systems exist only for solvable groups. The operation returns
## <K>fail</K> if the group <A>G</A> is not solvable.
## <Example><![CDATA[
## gap> HallSystem(h);
## [ Group([ ]), Group([ f1, f2 ]), Group([ f1, f2, f3 ]),
## Group([ f1, f2, f3, f4 ]), Group([ f1, f2, f4 ]), Group([ f3 ]),
## Group([ f3, f4 ]), Group([ f4 ]) ]
## gap> List(last,Size);
## [ 1, 4, 12, 60, 20, 3, 15, 5 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "HallSystem", IsGroup );
#############################################################################
##
#A TrivialSubgroup( <G> ) . . . . . . . . . . trivial subgroup of group <G>
##
## <#GAPDoc Label="TrivialSubgroup">
## <ManSection>
## <Attr Name="TrivialSubgroup" Arg='G'/>
##
## <Description>
## <Example><![CDATA[
## gap> TrivialSubgroup(g);
## Group(())
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonymAttr( "TrivialSubgroup", TrivialSubmagmaWithOne );
#############################################################################
##
#A Socle( <G> ) . . . . . . . . . . . . . . . . . . . . . . . . socle of <G>
##
## <#GAPDoc Label="Socle">
## <ManSection>
## <Attr Name="Socle" Arg='G'/>
##
## <Description>
## The socle of the group <A>G</A> is the subgroup generated by
## all minimal normal subgroups.
## <Example><![CDATA[
## gap> Socle(g);
## Group([ (1,4)(2,3), (1,2)(3,4) ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "Socle", IsGroup );
#############################################################################
##
#A UpperCentralSeriesOfGroup( <G> )
##
## <#GAPDoc Label="UpperCentralSeriesOfGroup">
## <ManSection>
## <Attr Name="UpperCentralSeriesOfGroup" Arg='G'/>
##
## <Description>
## The upper central series of a group <A>G</A> is defined as an ending
## series <M>U_i / U_{{i+1}}:= Z(<A>G</A>/U_{{i+1}})</M>.
## It is a central series of normal subgroups.
## The name derives from the fact that <M>U_i</M> contains every <M>i</M>-th
## step subgroup of a central series.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "UpperCentralSeriesOfGroup", IsGroup );
#############################################################################
##
#O EulerianFunction( <G>, <n> )
##
## <#GAPDoc Label="EulerianFunction">
## <ManSection>
## <Oper Name="EulerianFunction" Arg='G, n'/>
##
## <Description>
## returns the number of <A>n</A>-tuples <M>(g_1, g_2, \ldots, g_n)</M>
## of elements of the group <A>G</A> that generate the whole group <A>G</A>.
## The elements of such an <A>n</A>-tuple need not be different.
## <P/>
## In <Cite Key="Hal36"/>, the notation <M>\phi_{<A>n</A>}(<A>G</A>)</M>
## is used for the value returned by <Ref Func="EulerianFunction"/>,
## and the quotient of <M>\phi_{<A>n</A>}(<A>G</A>)</M> by the order of the
## automorphism group of <A>G</A> is called <M>d_{<A>n</A>}(<A>G</A>)</M>.
## If <A>G</A> is a nonabelian simple group then
## <M>d_{<A>n</A>}(<A>G</A>)</M> is the greatest number <M>d</M> for which
## the direct product of <M>d</M> groups isomorphic with <A>G</A>
## can be generated by <A>n</A> elements.
## <P/>
## If the Library of Tables of Marks
## (see Chapter <Ref Chap="Tables of Marks"/>) covers the group <A>G</A>,
## you may also use <Ref Func="EulerianFunctionByTom"/>.
## <P/>
## <Example><![CDATA[
## gap> EulerianFunction( g, 2 );
## 432
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "EulerianFunction", [ IsGroup, IsPosInt ] );
#############################################################################
##
#F AgemoAbove( <G>, <C>, <p> )
##
## <ManSection>
## <Func Name="AgemoAbove" Arg='G, C, p'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "AgemoAbove" );
#############################################################################
##
#O AsSubgroup( <G>, <U> )
##
## <#GAPDoc Label="AsSubgroup">
## <ManSection>
## <Oper Name="AsSubgroup" Arg='G, U'/>
##
## <Description>
## creates a subgroup of <A>G</A> which contains the same elements as <A>U</A>
## <Example><![CDATA[
## gap> v:=AsSubgroup(g,Group((1,2,3),(1,4)));
## Group([ (1,2,3), (1,4) ])
## gap> Parent(v);
## Group([ (1,2,3,4), (1,2) ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "AsSubgroup", [ IsGroup, IsGroup ] );
#############################################################################
##
#O ClassMultiplicationCoefficient( <G>, <i>, <j>, <k> )
#O ClassMultiplicationCoefficient( <G>, <Ci>, <Cj>, <Ck> )
##
## <ManSection>
## <Oper Name="ClassMultiplicationCoefficient" Arg='G, i, j, k'/>
## <Oper Name="ClassMultiplicationCoefficient" Arg='G, Ci, Cj, Ck'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareOperation( "ClassMultiplicationCoefficient",
[ IsGroup, IsPosInt, IsPosInt, IsPosInt ] );
DeclareOperation( "ClassMultiplicationCoefficient",
[ IsGroup, IsCollection, IsCollection, IsCollection ] );
#############################################################################
##
#F ClosureGroupDefault( <G>, <elm> ) . . . . . closure of group with element
##
## <#GAPDoc Label="ClosureGroupDefault">
## <ManSection>
## <Func Name="ClosureGroupDefault" Arg='G, elm'/>
##
## <Description>
## This functions returns the closure of the group <A>G</A> with the element
## <A>elm</A>.
## If <A>G</A> has the attribute <Ref Func="AsSSortedList"/> then also the
## result has this attribute.
## This is used to implement the default method for
## <Ref Func="Enumerator"/> and <Ref Func="EnumeratorSorted"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "ClosureGroupDefault" );
#############################################################################
##
#O ClosureGroup( <G>, <obj> ) . . . closure of group with element or group
##
## <#GAPDoc Label="ClosureGroup">
## <ManSection>
## <Oper Name="ClosureGroup" Arg='G, obj'/>
##
## <Description>
## creates the group generated by the elements of <A>G</A> and <A>obj</A>.
## <A>obj</A> can be either an element or a collection of elements,
## in particular another group.
## <Example><![CDATA[
## gap> g:=SmallGroup(24,12);;u:=Subgroup(g,[g.3,g.4]);
## Group([ f3, f4 ])
## gap> ClosureGroup(u,g.2);
## Group([ f2, f3, f4 ])
## gap> ClosureGroup(u,[g.1,g.2]);
## Group([ f1, f2, f3, f4 ])
## gap> ClosureGroup(u,Group(g.2*g.1));
## Group([ f1*f2^2, f3, f4 ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ClosureGroup", [ IsGroup, IsObject ] );
#############################################################################
##
#F ClosureGroupAddElm( <G>, <elm> )
#F ClosureGroupCompare( <G>, <elm> )
#F ClosureGroupIntest( <G>, <elm> )
##
## <#GAPDoc Label="ClosureGroupAddElm">
## <ManSection>
## <Func Name="ClosureGroupAddElm" Arg='G, elm'/>
## <Func Name="ClosureGroupCompare" Arg='G, elm'/>
## <Func Name="ClosureGroupIntest" Arg='G, elm'/>
##
## <Description>
## These three functions together with <Ref Func="ClosureGroupDefault"/>
## implement the main methods for <Ref Func="ClosureGroup"/>.
## In the ordering given, they just add <A>elm</A> to the generators, remove
## duplicates and identity elements, and test whether <A>elm</A> is already
## contained in <A>G</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "ClosureGroupAddElm" );
DeclareGlobalFunction( "ClosureGroupCompare" );
DeclareGlobalFunction( "ClosureGroupIntest" );
#############################################################################
##
#F ClosureSubgroup( <G>, <obj> )
#F ClosureSubgroupNC( <G>, <obj> )
##
## <#GAPDoc Label="ClosureSubgroup">
## <ManSection>
## <Func Name="ClosureSubgroup" Arg='G, obj'/>
## <Func Name="ClosureSubgroupNC" Arg='G, obj'/>
##
## <Description>
## For a group <A>G</A> that stores a parent group (see <Ref Sect="Parents"/>),
## <Ref Func="ClosureSubgroup"/> calls <Ref Func="ClosureGroup"/> with the same
## arguments;
## if the result is a subgroup of the parent of <A>G</A> then the parent of <A>G</A>
## is set as parent of the result, otherwise an error is raised.
## The check whether the result is contained in the parent of <A>G</A> is omitted
## by the <C>NC</C> version. As a wrong parent might imply wrong properties this
## version should be used with care.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "ClosureSubgroup" );
DeclareGlobalFunction( "ClosureSubgroupNC" );
#############################################################################
##
#O CommutatorSubgroup( <G>, <H> )
##
## <#GAPDoc Label="CommutatorSubgroup">
## <ManSection>
## <Oper Name="CommutatorSubgroup" Arg='G, H'/>
##
## <Description>
## If <A>G</A> and <A>H</A> are two groups of elements in the same family,
## this operation returns the group generated by all commutators
## <M>[ g, h ] = g^{{-1}} h^{{-1}} g h</M> (see <Ref Func="Comm"/>)
## of elements <M>g \in <A>G</A></M> and
## <M>h \in <A>H</A></M>, that is the group
## <M>\left \langle [ g, h ] \mid g \in <A>G</A>, h \in <A>H</A> \right \rangle</M>.
## <Example><![CDATA[
## gap> CommutatorSubgroup(Group((1,2,3),(1,2)),Group((2,3,4),(3,4)));
## Group([ (1,4)(2,3), (1,3,4) ])
## gap> Size(last);
## 12
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "CommutatorSubgroup", [ IsGroup, IsGroup ] );
#############################################################################
##
#O ConjugateGroup( <G>, <obj> ) . . . . . . conjugate of group <G> by <obj>
##
## <#GAPDoc Label="ConjugateGroup">
## <ManSection>
## <Oper Name="ConjugateGroup" Arg='G, obj'/>
##
## <Description>
## returns the conjugate group of <A>G</A>, obtained by applying the
## conjugating element <A>obj</A>.
## <P/>
## To form a conjugate (group) by any object acting via <C>^</C>,
## one can also use the infix operator <C>^</C>.
## <Example><![CDATA[
## gap> ConjugateGroup(g,(1,5));
## Group([ (2,3,4,5), (2,5) ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ConjugateGroup", [ IsGroup, IsObject ] );
#############################################################################
##
#O ConjugateSubgroup( <G>, <g> )
##
## <#GAPDoc Label="ConjugateSubgroup">
## <ManSection>
## <Oper Name="ConjugateSubgroup" Arg='G, g'/>
##
## <Description>
## For a group <A>G</A> which has a parent group <C>P</C>
## (see <Ref Func="Parent"/>), returns the subgroup of <C>P</C>,
## obtained by conjugating <A>G</A> using the conjugating
## element <A>g</A>.
## <P/>
## If <A>G</A> has no parent group, it just delegates to the
## call to <Ref Oper="ConjugateGroup"/> with the same arguments.
## <P/>
## To form a conjugate (subgroup) by any object acting via <C>^</C>,
## one can also use the infix operator <C>^</C>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ConjugateSubgroup",
[ IsGroup and HasParent, IsMultiplicativeElementWithInverse ] );
#############################################################################
##
#O ConjugateSubgroups( <G>, <U> )
##
## <#GAPDoc Label="ConjugateSubgroups">
## <ManSection>
## <Oper Name="ConjugateSubgroups" Arg='G, U'/>
##
## <Description>
## returns a list of all images of the group <A>U</A> under conjugation action
## by <A>G</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ConjugateSubgroups", [ IsGroup, IsGroup ] );
#############################################################################
##
#O Core( <S>, <U> )
##
## <#GAPDoc Label="Core">
## <ManSection>
## <Oper Name="Core" Arg='S, U'/>
##
## <Description>
## If <A>S</A> and <A>U</A> are groups of elements in the same family, this
## operation
## returns the core of <A>U</A> in <A>S</A>, that is the intersection of all
## <A>S</A>-conjugates of <A>U</A>.
## <Example><![CDATA[
## gap> g:=Group((1,2,3,4),(1,2));;
## gap> Core(g,Subgroup(g,[(1,2,3,4)]));
## Group(())
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
InParentFOA( "Core", IsGroup, IsGroup, DeclareAttribute );
#############################################################################
##
#O CosetTable( <G>, <H> )
##
## <#GAPDoc Label="CosetTable">
## <ManSection>
## <Oper Name="CosetTable" Arg='G, H'/>
##
## <Description>
## returns the coset table of the finitely presented group <A>G</A>
## on the cosets of the subgroup <A>H</A>.
## <P/>
## Basically a coset table is the permutation representation of the finitely
## presented group on the cosets of a subgroup (which need not be faithful
## if the subgroup has a nontrivial core). Most of the set theoretic and
## group functions use the regular representation of <A>G</A>,
## i.e., the coset table of <A>G</A> over the trivial subgroup.
## <P/>
## The coset table is returned as a list of lists. For each generator of
## <A>G</A> and its inverse the table contains a generator list. A generator
## list is simply a list of integers.
## If <M>l</M> is the generator list for the generator <M>g</M> and if
## <M>l[i] = j</M> then generator <M>g</M> takes the coset
## <M>i</M> to the coset <M>j</M> by multiplication from the right.
## Thus the permutation representation of <A>G</A> on the cosets of <A>H</A>
## is obtained by applying <Ref Func="PermList"/> to each generator list.
## <P/>
## The coset table is standard (see below).
## <P/>
## For finitely presented groups, a coset table is computed by a
## Todd-Coxeter coset enumeration.
## Note that you may influence the performance of that enumeration by
## changing the values of the global variables
## <Ref Var="CosetTableDefaultLimit"/> and
## <Ref Var="CosetTableDefaultMaxLimit"/> described below and that the
## options described under <Ref Func="CosetTableFromGensAndRels"/> are
## recognized.
## <P/>
## <Example><![CDATA[
## gap> tab := CosetTable(g, Subgroup(g, [ g.1, g.2*g.1*g.2*g.1*g.2^-1 ]));
## [ [ 1, 4, 5, 2, 3 ], [ 1, 4, 5, 2, 3 ], [ 2, 3, 1, 4, 5 ],
## [ 3, 1, 2, 4, 5 ] ]
## gap> List( last, PermList );
## [ (2,4)(3,5), (2,4)(3,5), (1,2,3), (1,3,2) ]
## gap> PrintArray( TransposedMat( tab ) );
## [ [ 1, 1, 2, 3 ],
## [ 4, 4, 3, 1 ],
## [ 5, 5, 1, 2 ],
## [ 2, 2, 4, 4 ],
## [ 3, 3, 5, 5 ] ]
## ]]></Example>
## <P/>
## The last printout in the preceding example provides the coset table in
## the form in which it is usually used in hand calculations:
## The rows correspond to the cosets, the columns correspond to the
## generators and their inverses in the ordering
## <M>g_1, g_1^{{-1}}, g_2, g_2^{{-1}}</M>.
## (See section <Ref Sect="Standardization of coset tables"/>
## for a description on the way the numbers are assigned.)
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "CosetTable", [ IsGroup, IsGroup ] );
#############################################################################
##
#O CosetTableNormalClosure( <G>, <H> )
##
## <ManSection>
## <Oper Name="CosetTableNormalClosure" Arg='G, H'/>
##
## <Description>
## returns the coset table of the finitely presented group <A>G</A> on the cosets
## of the normal closure of the subgroup <A>H</A>.
## </Description>
## </ManSection>
##
DeclareOperation( "CosetTableNormalClosure", [ IsGroup, IsGroup ] );
#############################################################################
##
#F FactorGroup( <G>, <N> )
#O FactorGroupNC( <G>, <N> )
##
## <#GAPDoc Label="FactorGroup">
## <ManSection>
## <Func Name="FactorGroup" Arg='G, N'/>
## <Oper Name="FactorGroupNC" Arg='G, N'/>
##
## <Description>
## returns the image of the <C>NaturalHomomorphismByNormalSubgroup(<A>G</A>,<A>N</A>)</C>.
## The homomorphism will be stored in the attribute
## <C>NaturalHomomorphism</C> of the result.
## The <C>NC</C> version does not test whether <A>N</A> is normal in <A>G</A>.
## <Example><![CDATA[
## gap> g:=Group((1,2,3,4),(1,2));;n:=Subgroup(g,[(1,2)(3,4),(1,3)(2,4)]);;
## gap> hom:=NaturalHomomorphismByNormalSubgroup(g,n);
## [ (1,2,3,4), (1,2) ] -> [ f1*f2, f1 ]
## gap> Size(ImagesSource(hom));
## 6
## gap> FactorGroup(g,n);
## Group([ f1, f2 ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "FactorGroup" );
DeclareOperation( "FactorGroupNC", [ IsGroup, IsGroup ] );
#############################################################################
##
#A NaturalHomomorphism(<F>)
##
## <#GAPDoc Label="NaturalHomomorphism">
## <ManSection>
## <Attr Name="NaturalHomomorphism" Arg='F'/>
##
## <Description>
## For a group <A>F</A> obtained via <C>FactorGroup</C>, this attribute
## holds the natural homomorphism onto <A>F</A>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "NaturalHomomorphism", IsGroup );
#############################################################################
##
#O Index( <G>, <U> )
#O IndexNC( <G>, <U> )
##
## <#GAPDoc Label="Index">
## <ManSection>
## <Heading>Index (&GAP; operation)</Heading>
## <Oper Name="Index" Arg='G, U' Label="for a group and its subgroup"/>
## <Oper Name="IndexNC" Arg='G, U' Label="for a group and its subgroup"/>
##
## <Description>
## For a subgroup <A>U</A> of the group <A>G</A>,
## <Ref Func="Index" Label="for a group and its subgroup"/> returns the index
## <M>[<A>G</A>:<A>U</A>] = |<A>G</A>| / |<A>U</A>|</M>
## of <A>U</A> in <A>G</A>.
## The <C>NC</C> version does not test whether <A>U</A> is contained in
## <A>G</A>.
## <Example><![CDATA[
## gap> Index(g,u);
## 4
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
InParentFOA( "Index", IsGroup, IsGroup, DeclareAttribute );
DeclareOperation( "IndexNC", [ IsGroup, IsGroup ] );
#############################################################################
##
#A IndexInWholeGroup( <G> )
##
## <#GAPDoc Label="IndexInWholeGroup">
## <ManSection>
## <Attr Name="IndexInWholeGroup" Arg='G'/>
##
## <Description>
## If the family of elements of <A>G</A> itself forms a group <A>P</A>, this
## attribute returns the index of <A>G</A> in <A>P</A>. It is used
## primarily for free groups or finitely presented groups.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "IndexInWholeGroup", IsGroup );
#############################################################################
##
#A IndependentGeneratorsOfAbelianGroup( <A> )
##
## <#GAPDoc Label="IndependentGeneratorsOfAbelianGroup">
## <ManSection>
## <Attr Name="IndependentGeneratorsOfAbelianGroup" Arg='A'/>
##
## <Description>
## returns a list of generators <M>a_1, a_2, \ldots</M> of prime power order
## or infinite order of the abelian group <A>A</A> such that <A>A</A> is the
## direct product of the cyclic groups generated by the <M>a_i</M>.
## The list of orders of the returned generators must match the result of
## <Ref Func="AbelianInvariants"/> (taking into account that zero
## and <Ref Var="infinity"/> are identified).
## <Example><![CDATA[
## gap> g:=AbelianGroup(IsPermGroup,[15,14,22,78]);;
## gap> List(IndependentGeneratorsOfAbelianGroup(g),Order);
## [ 2, 2, 2, 3, 3, 5, 7, 11, 13 ]
## gap> AbelianInvariants(g);
## [ 2, 2, 2, 3, 3, 5, 7, 11, 13 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "IndependentGeneratorsOfAbelianGroup",
IsGroup and IsAbelian );
#############################################################################
##
#O IndependentGeneratorExponents( <G>, <g> )
##
## <#GAPDoc Label="IndependentGeneratorExponents">
## <ManSection>
## <Oper Name="IndependentGeneratorExponents" Arg='G, g'/>
##
## <Description>
## For an abelian group <A>G</A>,
## with <Ref Func="IndependentGeneratorsOfAbelianGroup"/> value the
## list <M>[ a_1, \ldots, a_n ]</M>,
## this operation returns the exponent vector
## <M>[ e_1, \ldots, e_n ]</M> to represent
## <M><A>g</A> = \prod_i a_i^{{e_i}}</M>.
## <Example><![CDATA[
## gap> g := AbelianGroup([16,9,625]);;
## gap> gens := IndependentGeneratorsOfAbelianGroup(g);;
## gap> List(gens, Order);
## [ 9, 16, 625 ]
## gap> AbelianInvariants(g);
## [ 9, 16, 625 ]
## gap> r:=gens[1]^4*gens[2]^12*gens[3]^128;;
## gap> IndependentGeneratorExponents(g,r);
## [ 4, 12, 128 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "IndependentGeneratorExponents",
[IsGroup and IsAbelian,IsMultiplicativeElementWithInverse] );
#############################################################################
##
#O IsConjugate( <G>, <x>, <y> )
#O IsConjugate( <G>, <U>, <V> )
##
## <#GAPDoc Label="IsConjugate">
## <ManSection>
## <Heading>IsConjugate</Heading>
## <Oper Name="IsConjugate" Arg='G, x, y'
## Label="for a group and two elements"/>
## <Oper Name="IsConjugate" Arg='G, U, V'
## Label="for a group and two groups"/>
##
## <Description>
## tests whether the elements <A>x</A> and <A>y</A>
## or the subgroups <A>U</A> and <A>V</A> are
## conjugate under the action of <A>G</A>.
## (They do not need to be <E>contained in</E> <A>G</A>.)
## This command is only a shortcut to <Ref Func="RepresentativeAction"/>.
## <Example><![CDATA[
## gap> IsConjugate(g,Group((1,2,3,4),(1,3)),Group((1,3,2,4),(1,2)));
## true
## ]]></Example>
## <P/>
## <Ref Func="RepresentativeAction"/> can be used to
## obtain conjugating elements.
## <Example><![CDATA[
## gap> RepresentativeAction(g,(1,2),(3,4));
## (1,3)(2,4)
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "IsConjugate", [ IsGroup, IsObject, IsObject ] );
#############################################################################
##
#O IsNormal( <G>, <U> )
##
## <#GAPDoc Label="IsNormal">
## <ManSection>
## <Oper Name="IsNormal" Arg='G, U'/>
##
## <Description>
## returns <K>true</K> if the group <A>G</A> normalizes the group <A>U</A>
## and <K>false</K> otherwise.
## <P/>
## A group <A>G</A> <E>normalizes</E> a group <A>U</A> if and only if for every <M>g \in <A>G</A></M>
## and <M>u \in <A>U</A></M> the element <M>u^g</M> is a member of <A>U</A>.
## Note that <A>U</A> need not be a subgroup of <A>G</A>.
## <Example><![CDATA[
## gap> IsNormal(g,u);
## false
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
InParentFOA( "IsNormal", IsGroup, IsGroup, DeclareProperty );
#############################################################################
##
#O IsCharacteristicSubgroup(<G>,<N>)
##
## <#GAPDoc Label="IsCharacteristicSubgroup">
## <ManSection>
## <Oper Name="IsCharacteristicSubgroup" Arg='G,N'/>
##
## <Description>
## tests whether <A>N</A> is invariant under all automorphisms of <A>G</A>.
## <Example><![CDATA[
## gap> IsCharacteristicSubgroup(g,u);
## false
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "IsCharacteristicSubgroup", [IsGroup,IsGroup] );
#############################################################################
##
#F IsPNilpotent( <G>, <p> )
##
## <#GAPDoc Label="IsPNilpotent">
## <ManSection>
## <Func Name="IsPNilpotent" Arg='G, p'/>
##
## <Description>
## A group is <M>p</M>-nilpotent if it possesses a normal <M>p</M>-complement.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
KeyDependentOperation( "IsPNilpotent", IsGroup, IsPosInt, "prime" );
#############################################################################
##
#F IsPSolvable( <G>, <p> )
##
## <#GAPDoc Label="IsPSolvable">
## <ManSection>
## <Func Name="IsPSolvable" Arg='G, p'/>
##
## <Description>
## A finite group is <M>p</M>-solvable if every chief factor either has
## order not divisible by <M>p</M>, or is solvable.
## <P/>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
KeyDependentOperation( "IsPSolvable", IsGroup, IsPosInt, "prime" );
#############################################################################
##
#F IsSubgroup( <G>, <U> )
##
## <#GAPDoc Label="IsSubgroup">
## <ManSection>
## <Func Name="IsSubgroup" Arg='G, U'/>
##
## <Description>
## <C>IsSubgroup</C> returns <K>true</K> if <A>U</A> is a group that is a subset of the
## domain <A>G</A>.
## This is actually checked by calling <C>IsGroup( <A>U</A> )</C> and
## <C>IsSubset( <A>G</A>, <A>U</A> )</C>;
## note that special methods for <Ref Func="IsSubset"/> are available
## that test only generators of <A>U</A> if <A>G</A> is closed under the group
## operations.
## So in most cases,
## for example whenever one knows already that <A>U</A> is a group,
## it is better to call only <Ref Func="IsSubset"/>.
## <Example><![CDATA[
## gap> IsSubgroup(g,u);
## true
## gap> v:=Group((1,2,3),(1,2));
## Group([ (1,2,3), (1,2) ])
## gap> u=v;
## true
## gap> IsSubgroup(g,v);
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "IsSubgroup" );
#############################################################################
##
#O IsSubnormal( <G>, <U> )
##
## <#GAPDoc Label="IsSubnormal">
## <ManSection>
## <Oper Name="IsSubnormal" Arg='G, U'/>
##
## <Description>
## A subgroup <A>U</A> of the group <A>G</A> is subnormal if it is contained in a
## subnormal series of <A>G</A>.
## <Example><![CDATA[
## gap> IsSubnormal(g,Group((1,2,3)));
## false
## gap> IsSubnormal(g,Group((1,2)(3,4)));
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "IsSubnormal", [ IsGroup, IsGroup ] );
#############################################################################
##
#O NormalClosure( <G>, <U> )
##
## <#GAPDoc Label="NormalClosure">
## <ManSection>
## <Oper Name="NormalClosure" Arg='G, U'/>
##
## <Description>
## The normal closure of <A>U</A> in <A>G</A> is the smallest normal subgroup
## of the closure of <A>G</A> and <A>U</A> which contains <A>U</A>.
## <Example><![CDATA[
## gap> NormalClosure(g,Subgroup(g,[(1,2,3)]));
## Group([ (1,2,3), (1,3,4) ])
## gap> NormalClosure(g,Group((3,4,5)));
## Group([ (3,4,5), (1,5,4), (1,2,5) ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
InParentFOA( "NormalClosure", IsGroup, IsGroup, DeclareAttribute );
#############################################################################
##
#O NormalIntersection( <G>, <U> )
##
## <#GAPDoc Label="NormalIntersection">
## <ManSection>
## <Oper Name="NormalIntersection" Arg='G, U'/>
##
## <Description>
## computes the intersection of <A>G</A> and <A>U</A>, assuming that <A>G</A> is normalized
## by <A>U</A>. This works faster than <C>Intersection</C>, but will not produce the
## intersection if <A>G</A> is not normalized by <A>U</A>.
## <Example><![CDATA[
## gap> NormalIntersection(Group((1,2)(3,4),(1,3)(2,4)),Group((1,2,3,4)));
## Group([ (1,3)(2,4) ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "NormalIntersection", [ IsGroup, IsGroup ] );
#############################################################################
##
#O Normalizer( <G>, <U> )
#O Normalizer( <G>, <g> )
##
## <#GAPDoc Label="Normalizer">
## <ManSection>
## <Heading>Normalizer</Heading>
## <Oper Name="Normalizer" Arg='G, U' Label="for two groups"/>
## <Oper Name="Normalizer" Arg='G, g'
## Label="for a group and a group element"/>
##
## <Description>
## For two groups <A>G</A>, <A>U</A>,
## <Ref Func="Normalizer" Label="for two groups"/> computes the
## normalizer <M>N_{<A>G</A>}(<A>U</A>)</M>,
## that is, the stabilizer of <A>U</A>
## under the conjugation action of <A>G</A>.
## <P/>
## For a group <A>G</A> and a group element <A>g</A>,
## <Ref Func="Normalizer" Label="for a group and a group element"/>
## computes <M>N_{<A>G</A>}(\langle <A>g</A> \rangle)</M>.
## <P/>
## <Example><![CDATA[
## gap> Normalizer(g,Subgroup(g,[(1,2,3)]));
## Group([ (1,2,3), (2,3) ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
InParentFOA( "Normalizer", IsGroup, IsObject, DeclareAttribute );
#############################################################################
##
#O CentralizerModulo(<G>,<N>,<elm>) full preimage of C_(G/N)(elm.N)
##
## <#GAPDoc Label="CentralizerModulo">
## <ManSection>
## <Oper Name="CentralizerModulo" Arg='G, N, elm'/>
##
## <Description>
## Computes the full preimage of the centralizer
## <M>C_{{<A>G</A>/<A>N</A>}}(<A>elm</A> \cdot <A>N</A>)</M> in <A>G</A>
## (without necessarily constructing the factor group).
## <Example><![CDATA[
## gap> CentralizerModulo(g,n,(1,2));
## Group([ (3,4), (1,3)(2,4), (1,4)(2,3) ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("CentralizerModulo", [IsGroup,IsGroup,IsObject]);
#############################################################################
##
#F PCentralSeries( <G>, <p> )
##
## <#GAPDoc Label="PCentralSeries">
## <ManSection>
## <Func Name="PCentralSeries" Arg='G, p'/>
##
## <Description>
## The <A>p</A>-central series of <A>G</A> is defined by
## <M>U_1:= <A>G</A></M>,
## <M>U_i:= [<A>G</A>, U_{{i-1}}] U_{{i-1}}^{<A>p</A>}</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
KeyDependentOperation( "PCentralSeries", IsGroup, IsPosInt, "prime" );
#############################################################################
##
#F PRump( <G>, <p> )
##
## <#GAPDoc Label="PRump">
## <ManSection>
## <Func Name="PRump" Arg='G, p'/>
##
## <Description>
## For a prime <M>p</M>, the <E><A>p</A>-rump</E> of a group <A>G</A> is
## the subgroup <M><A>G</A>' <A>G</A>^{<A>p</A>}</M>.
## <P/>
## <E>@example missing!@</E>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
KeyDependentOperation( "PRump", IsGroup, IsPosInt, "prime" );
#############################################################################
##
#F PCore( <G>, <p> )
##
## <#GAPDoc Label="PCore">
## <ManSection>
## <Func Name="PCore" Arg='G, p'/>
##
## <Description>
## <Index Key="Op(G)" Subkey="see PCore"><C>PCore</C></Index>
## The <E><A>p</A>-core</E> of <A>G</A> is the largest normal
## <A>p</A>-subgroup of <A>G</A>.
## It is the core of a Sylow <A>p</A> subgroup of <A>G</A>,
## see <Ref Func="Core"/>.
## <Example><![CDATA[
## gap> PCore(g,2);
## Group([ (1,4)(2,3), (1,2)(3,4) ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
KeyDependentOperation( "PCore", IsGroup, IsPosInt, "prime" );
#############################################################################
##
#O SubnormalSeries( <G>, <U> )
##
## <#GAPDoc Label="SubnormalSeries">
## <ManSection>
## <Oper Name="SubnormalSeries" Arg='G, U'/>
##
## <Description>
## If <A>U</A> is a subgroup of <A>G</A> this operation returns a subnormal
## series that descends from <A>G</A> to a subnormal subgroup
## <M>V \geq </M><A>U</A>. If <A>U</A> is subnormal, <M>V =</M> <A>U</A>.
## <Example><![CDATA[
## gap> s:=SubnormalSeries(g,Group((1,2)(3,4)));
## [ Group([ (1,2,3,4), (1,2) ]), Group([ (1,2)(3,4), (1,3)(2,4) ]),
## Group([ (1,2)(3,4) ]) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
InParentFOA( "SubnormalSeries", IsGroup, IsGroup, DeclareAttribute );
#############################################################################
##
#F SylowSubgroup( <G>, <p> )
##
## <#GAPDoc Label="SylowSubgroup">
## <ManSection>
## <Func Name="SylowSubgroup" Arg='G, p'/>
##
## <Description>
## returns a Sylow <A>p</A> subgroup of the finite group <A>G</A>.
## This is a <A>p</A>-subgroup of <A>G</A> whose index in <A>G</A> is
## coprime to <A>p</A>.
## <Ref Func="SylowSubgroup"/> computes Sylow subgroups via the operation
## <C>SylowSubgroupOp</C>.
## <Example><![CDATA[
## gap> g:=SymmetricGroup(4);;
## gap> SylowSubgroup(g,2);
## Group([ (1,2), (3,4), (1,3)(2,4) ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
KeyDependentOperation( "SylowSubgroup", IsGroup, IsPosInt, "prime" );
#############################################################################
##
#F SylowComplement( <G>, <p> )
##
## <#GAPDoc Label="SylowComplement">
## <ManSection>
## <Func Name="SylowComplement" Arg='G, p'/>
##
## <Description>
## returns a Sylow <A>p</A>-complement of the finite group <A>G</A>.
## This is a subgroup <M>U</M> of order coprime to <A>p</A> such that the
## index <M>[<A>G</A>:U]</M> is a <A>p</A>-power.
## <P/>
## At the moment methods exist only if <A>G</A> is solvable and &GAP; will
## issue an error if <A>G</A> is not solvable.
## <P/>
## <Example><![CDATA[
## gap> SylowComplement(g,3);
## Group([ (1,2), (3,4), (1,3)(2,4) ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
KeyDependentOperation( "SylowComplement", IsGroup, IsPosInt, "prime" );
#############################################################################
##
#F HallSubgroup( <G>, <P> )
##
## <#GAPDoc Label="HallSubgroup">
## <ManSection>
## <Func Name="HallSubgroup" Arg='G, P'/>
##
## <Description>
## computes a <A>P</A>-Hall subgroup for a set <A>P</A> of primes.
## This is a subgroup the order of which is only divisible by primes in
## <A>P</A> and whose index is coprime to all primes in <A>P</A>. Such a
## subgroup is unique up to conjugacy if <A>G</A> is solvable.
## The function computes Hall subgroups via the operation
## <C>HallSubgroupOp</C>.
## <P/>
## If <A>G</A> is solvable this function always returns a subgroup. If
## <A>G</A> is not solvable this function might return a subgroup (if it is
## unique up to conjugacy), a list of subgroups (which are representatives of
## the conjugacy classes in case there are several such classes) or <K>fail</K>
## if no such subgroup exists.
## <Example><![CDATA[
## gap> h:=SmallGroup(60,10);;
## gap> u:=HallSubgroup(h,[2,3]);
## Group([ f1, f2, f3 ])
## gap> Size(u);
## 12
## gap> h:=PSL(3,5);;
## gap> HallSubgroup(h,[2,3]);
## [ <permutation group of size 96 with 6 generators>,
## <permutation group of size 96 with 6 generators> ]
## gap> HallSubgroup(h,[3,31]);
## Group(
## [ (2,18,11)(3,20,7)(4,19,9)(5,21,8)(6,17,10)(12,29,22)(13,27,26)(14,
## 31,23)(15,30,24)(16,28,25), (1,6,18,3,16,10,9,28,8,21,2,30,26,20,
## 5,7,12,23,22,11,25,13,14,31,15,17,4,24,29,27,19) ])
## gap> HallSubgroup(h,[5,31]);
## fail
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
KeyDependentOperation( "HallSubgroup", IsGroup, IsList, ReturnTrue );
#############################################################################
##
#O NrConjugacyClassesInSupergroup( <U>, <G> )
##
## <ManSection>
## <Oper Name="NrConjugacyClassesInSupergroup" Arg='U, G'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareOperation( "NrConjugacyClassesInSupergroup", [ IsGroup, IsGroup ] );
#############################################################################
##
#O Factorization( <G>, <elm> )
##
## <#GAPDoc Label="Factorization">
## <ManSection>
## <Oper Name="Factorization" Arg='G, elm'/>
##
## <Description>
## returns a factorization of <A>elm</A> as word in the generators of the
## group <A>G</A> given in the attribute <Ref Func="GeneratorsOfGroup"/>.
## The attribute <Ref Func="EpimorphismFromFreeGroup"/> of <A>G</A>
## will contain a map from the group <A>G</A> to the free group
## in which the word is expressed.
## The attribute <Ref Attr="MappingGeneratorsImages"/> of this map gives a
## list of generators and corresponding letters.
## <P/>
## The algorithm used computes all elements of the group to ensure a short
## word is found. Therefore this function should <E>not</E> be used when the
## group <A>G</A> has more than a few thousand elements.
## Because of this, one should not call this function within algorithms,
## but use homomorphisms instead.
## <Example><![CDATA[
## gap> G:=SymmetricGroup( 6 );;
## gap> r:=(3,4);; s:=(1,2,3,4,5,6);;
## gap> # create subgroup to force the system to use the generators r and s:
## gap> H:= Subgroup(G, [ r, s ] );
## Group([ (3,4), (1,2,3,4,5,6) ])
## gap> Factorization( H, (1,2,3) );
## (x2*x1)^2*x2^-2
## gap> s*r*s*r*s^-2;
## (1,2,3)
## gap> MappingGeneratorsImages(EpimorphismFromFreeGroup(H));
## [ [ x1, x2 ], [ (3,4), (1,2,3,4,5,6) ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "Factorization",
[ IsGroup, IsMultiplicativeElementWithInverse ] );
#############################################################################
##
#O GroupByGenerators( <gens> ) . . . . . . . . . . . . . group by generators
#O GroupByGenerators( <gens>, <id> ) . . . . . . . . . . group by generators
##
## <#GAPDoc Label="GroupByGenerators">
## <ManSection>
## <Oper Name="GroupByGenerators" Arg='gens'/>
## <Oper Name="GroupByGenerators" Arg='gens, id'
## Label="with explicitly specified identity element"/>
##
## <Description>
## <Ref Oper="GroupByGenerators"/> returns the group <M>G</M> generated by the list <A>gens</A>.
## If a second argument <A>id</A> is present then this is stored as the identity
## element of the group.
## <P/>
## The value of the attribute <Ref Attr="GeneratorsOfGroup"/> of <M>G</M> need not be equal
## to <A>gens</A>.
## <Ref Oper="GroupByGenerators"/> is the underlying operation called by <Ref Func="Group" Label="for several generators"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "GroupByGenerators", [ IsCollection ] );
DeclareOperation( "GroupByGenerators",
[ IsCollection, IsMultiplicativeElementWithInverse ] );
#############################################################################
##
#O GroupWithGenerators( <gens>[, <id>] ) . . . . group with given generators
##
## <#GAPDoc Label="GroupWithGenerators">
## <ManSection>
## <Oper Name="GroupWithGenerators" Arg='gens[, id]'/>
##
## <Description>
## <Ref Oper="GroupWithGenerators"/> returns the group <M>G</M> generated by
## the list <A>gens</A>.
## If a second argument <A>id</A> is present then this is stored as the
## identity element of the group.
## The value of the attribute <Ref Attr="GeneratorsOfGroup"/> of <M>G</M>
## is equal to <A>gens</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "GroupWithGenerators", [ IsCollection ] );
DeclareOperation( "GroupWithGenerators",
[ IsCollection, IsMultiplicativeElementWithInverse ] );
#############################################################################
##
#F Group( <gen>, ... )
#F Group( <gens>[, <id>] )
##
## <#GAPDoc Label="Group">
## <ManSection>
## <Func Name="Group" Arg='gen, ...' Label="for several generators"/>
## <Func Name="Group" Arg='gens[, id]'
## Label="for a list of generators (and an identity element)"/>
##
## <Description>
## <C>Group( <A>gen</A>, ... )</C> is the group generated by the arguments
## <A>gen</A>, ...
## <P/>
## If the only argument <A>gens</A> is a list that is not a matrix then
## <C>Group( <A>gens</A> )</C> is the group generated by the elements of
## that list.
## <P/>
## If there are two arguments, a list <A>gens</A> and an element <A>id</A>,
## then <C>Group( <A>gens</A>, <A>id</A> )</C> is the group generated by the
## elements of <A>gens</A>, with identity <A>id</A>.
## <P/>
## Note that the value of the attribute <Ref Func="GeneratorsOfGroup"/>
## need not be equal to the list <A>gens</A> of generators entered as
## argument.
## Use <Ref Func="GroupWithGenerators"/> if you want to be
## sure that the argument <A>gens</A> is stored as value of
## <Ref Attr="GeneratorsOfGroup"/>.
## <Example><![CDATA[
## gap> g:=Group((1,2,3,4),(1,2));
## Group([ (1,2,3,4), (1,2) ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "Group" );
#############################################################################
##
#F Subgroup( <G>, <gens> ) . . . . . . . subgroup of <G> generated by <gens>
#F SubgroupNC( <G>, <gens> )
#F Subgroup( <G> )
##
## <#GAPDoc Label="Subgroup">
## <ManSection>
## <Func Name="Subgroup" Arg='G, gens'/>
## <Func Name="SubgroupNC" Arg='G, gens'/>
## <Func Name="Subgroup" Arg='G' Label="for a group"/>
##
## <Description>
## creates the subgroup <A>U</A> of <A>G</A> generated by <A>gens</A>.
## The <Ref Func="Parent"/> value of <A>U</A> will be <A>G</A>.
## The <C>NC</C> version does not check, whether the elements in <A>gens</A>
## actually lie in <A>G</A>.
## <P/>
## The unary version of <Ref Func="Subgroup" Label="for a group"/>
## creates a (shell) subgroup that does not even
## know generators but can be used to collect information about a
## particular subgroup over time.
## <Example><![CDATA[
## gap> u:=Subgroup(g,[(1,2,3),(1,2)]);
## Group([ (1,2,3), (1,2) ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "Subgroup", SubmagmaWithInverses );
DeclareSynonym( "SubgroupNC", SubmagmaWithInversesNC );
#############################################################################
##
#F SubgroupByProperty( <G>, <prop> )
##
## <#GAPDoc Label="SubgroupByProperty">
## <ManSection>
## <Func Name="SubgroupByProperty" Arg='G, prop'/>
##
## <Description>
## creates a subgroup of <A>G</A> consisting of those elements fulfilling
## <A>prop</A> (which is a tester function).
## No test is done whether the property actually defines a subgroup.
## <P/>
## Note that currently very little functionality beyond an element test
## exists for groups created this way.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "SubgroupByProperty" );
#############################################################################
##
#A ElementTestFunction( <G> )
##
## <ManSection>
## <Attr Name="ElementTestFunction" Arg='G'/>
##
## <Description>
## This attribute contains a function that provides an element test for the
## group <A>G</A>.
## </Description>
## </ManSection>
##
DeclareAttribute( "ElementTestFunction", IsGroup );
#############################################################################
##
#F SubgroupShell( <G> )
##
## <#GAPDoc Label="SubgroupShell">
## <ManSection>
## <Func Name="SubgroupShell" Arg='G'/>
##
## <Description>
## creates a subgroup of <A>G</A> which at this point is not yet specified
## further (but will be later, for example by assigning a generating set).
## <Example><![CDATA[
## gap> u:=SubgroupByProperty(g,i->3^i=3);
## <subgrp of Group([ (1,2,3,4), (1,2) ]) by property>
## gap> (1,3) in u; (1,4) in u; (1,5) in u;
## false
## true
## false
## gap> GeneratorsOfGroup(u);
## [ (1,2), (1,4,2) ]
## gap> u:=SubgroupShell(g);
## <group>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "SubgroupShell" );
#############################################################################
##
#C IsRightTransversal( <obj> )
##
## <ManSection>
## <Filt Name="IsRightTransversal" Arg='obj' Type='Category'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareCategory("IsRightTransversal",IsCollection);
DeclareCategoryCollections("IsRightTransversal");
#############################################################################
##
#O RightTransversal( <G>, <U> )
##
## <#GAPDoc Label="RightTransversal">
## <ManSection>
## <Oper Name="RightTransversal" Arg='G, U'/>
##
## <Description>
## A right transversal <M>t</M> is a list of representatives for the set
## <M><A>U</A> \setminus <A>G</A></M> of right
## cosets (consisting of cosets <M>Ug</M>) of <M>U</M> in <M>G</M>.
## <P/>
## The object returned by <Ref Func="RightTransversal"/> is not a
## plain list, but an object that behaves like an immutable list of length
## <M>[<A>G</A>:<A>U</A>]</M>,
## except if <A>U</A> is the trivial subgroup of <A>G</A>
## in which case <Ref Func="RightTransversal"/> may return the
## sorted plain list of coset representatives.
## <P/>
## The operation <Ref Func="PositionCanonical"/>,
## called for a transversal <M>t</M>
## and an element <M>g</M> of <A>G</A>, will return the position of the
## representative in <M>t</M> that lies in the same coset of <A>U</A> as the
## element <M>g</M> does.
## (In comparison, <Ref Func="Position"/> will return <K>fail</K> if the
## element is not equal to the representative.)
## Functions that implement group actions such as
## <Ref Func="Action" Label="for a group, an action domain, etc."/> or
## <Ref Func="Permutation" Label="for a group, an action domain, etc."/>
## (see Chapter <Ref Chap="Group Actions"/>)
## use <Ref Func="PositionCanonical"/>, therefore it is possible to
## <Q>act</Q> on a right transversal to implement the action on the cosets.
## This is often much more efficient than acting on cosets.
## <Example><![CDATA[
## gap> g:=Group((1,2,3,4),(1,2));;
## gap> u:=Subgroup(g,[(1,2,3),(1,2)]);;
## gap> rt:=RightTransversal(g,u);
## RightTransversal(Group([ (1,2,3,4), (1,2) ]),Group([ (1,2,3), (1,2) ]))
## gap> Length(rt);
## 4
## gap> Position(rt,(1,2,3));
## fail
## ]]></Example>
## <P/>
## Note that the elements of a right transversal are not necessarily
## <Q>canonical</Q> in the sense of
## <Ref Func="CanonicalRightCosetElement"/>, but we may compute a list of
## canonical coset representatives by calling that function.
## (See also <Ref Func="PositionCanonical"/>.)
## <P/>
## <Example><![CDATA[
## gap> List(RightTransversal(g,u),i->CanonicalRightCosetElement(u,i));
## [ (), (2,3,4), (1,2,3,4), (3,4) ]
## gap> PositionCanonical(rt,(1,2,3));
## 1
## gap> rt[1];
## ()
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
InParentFOA( "RightTransversal", IsGroup, IsGroup, DeclareAttribute );
#############################################################################
##
#O IntermediateSubgroups( <G>, <U> )
##
## <#GAPDoc Label="IntermediateSubgroups">
## <ManSection>
## <Oper Name="IntermediateSubgroups" Arg='G, U'/>
##
## <Description>
## returns a list of all subgroups of <A>G</A> that properly contain
## <A>U</A>; that is all subgroups between <A>G</A> and <A>U</A>.
## It returns a record with a component <C>subgroups</C>, which is a list of
## these subgroups, as well as a component <C>inclusions</C>,
## which lists all maximality inclusions among these subgroups.
## A maximality inclusion is given as a list <M>[i, j]</M> indicating that
## the subgroup number <M>i</M> is a maximal subgroup of the subgroup number
## <M>j</M>,
## the numbers <M>0</M> and <M>1 +</M> <C>Length(subgroups)</C> are used to
## denote <A>U</A> and <A>G</A>, respectively.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "IntermediateSubgroups", [IsGroup, IsGroup] );
#############################################################################
##
#A IsomorphismTypeInfoFiniteSimpleGroup( <G> )
##
## <#GAPDoc Label="IsomorphismTypeInfoFiniteSimpleGroup">
## <ManSection>
## <Heading>IsomorphismTypeInfoFiniteSimpleGroup</Heading>
## <Attr Name="IsomorphismTypeInfoFiniteSimpleGroup" Arg='G'
## Label="for a group"/>
## <Attr Name="IsomorphismTypeInfoFiniteSimpleGroup" Arg='n'
## Label="for a group order"/>
##
## <Description>
## For a finite simple group <A>G</A>,
## <Ref Func="IsomorphismTypeInfoFiniteSimpleGroup" Label="for a group"/>
## returns a record with the components <C>series</C>, <C>name</C>
## and possibly <C>parameter</C>,
## describing the isomorphism type of <A>G</A>.
## The component <C>name</C> is a string that gives name(s) for <A>G</A>,
## and <C>series</C> is a string that describes the following series.
## <P/>
## (If different characterizations of <A>G</A> are possible
## only one is given by <C>series</C> and <C>parameter</C>,
## while <C>name</C> may give several names.)
## <List>
## <Mark><C>"A"</C></Mark>
## <Item>
## Alternating groups, <C>parameter</C> gives the natural degree.
## </Item>
## <Mark><C>"L"</C></Mark>
## <Item>
## Linear groups (Chevalley type <M>A</M>),
## <C>parameter</C> is a list <M>[ n, q ]</M> that indicates
## <M>L(n,q)</M>.
## </Item>
## <Mark><C>"2A"</C></Mark>
## <Item>
## Twisted Chevalley type <M>{}^2A</M>,
## <C>parameter</C> is a list <M>[ n, q ]</M> that indicates
## <M>{}^2A(n,q)</M>.
## </Item>
## <Mark><C>"B"</C></Mark>
## <Item>
## Chevalley type <M>B</M>,
## <C>parameter</C> is a list <M>[n, q ]</M> that indicates
## <M>B(n,q)</M>.
## </Item>
## <Mark><C>"2B"</C></Mark>
## <Item>
## Twisted Chevalley type <M>{}^2B</M>,
## <C>parameter</C> is a value <M>q</M> that indicates <M>{}^2B(2,q)</M>.
## </Item>
## <Mark><C>"C"</C></Mark>
## <Item>
## Chevalley type <M>C</M>,
## <C>parameter</C> is a list <M>[ n, q ]</M> that indicates
## <M>C(n,q)</M>.
## </Item>
## <Mark><C>"D"</C></Mark>
## <Item>
## Chevalley type <M>D</M>,
## <C>parameter</C> is a list <M>[ n, q ]</M> that indicates
## <M>D(n,q)</M>.
## </Item>
## <Mark><C>"2D"</C></Mark>
## <Item>
## Twisted Chevalley type <M>{}^2D</M>,
## <C>parameter</C> is a list <M>[ n, q ]</M> that indicates
## <M>{}^2D(n,q)</M>.
## </Item>
## <Mark><C>"3D"</C></Mark>
## <Item>
## Twisted Chevalley type <M>{}^3D</M>,
## <C>parameter</C> is a value <M>q</M> that indicates <M>{}^3D(4,q)</M>.
## </Item>
## <Mark><C>"E"</C></Mark>
## <Item>
## Exceptional Chevalley type <M>E</M>,
## <C>parameter</C> is a list <M>[ n, q ]</M> that indicates
## <M>E_n(q)</M>.
## The value of <A>n</A> is 6, 7, or 8.
## </Item>
## <Mark><C>"2E"</C></Mark>
## <Item>
## Twisted exceptional Chevalley type <M>E_6</M>,
## <C>parameter</C> is a value <M>q</M> that indicates <M>{}^2E_6(q)</M>.
## </Item>
## <Mark><C>"F"</C></Mark>
## <Item>
## Exceptional Chevalley type <M>F</M>,
## <C>parameter</C> is a value <M>q</M> that indicates <M>F(4,q)</M>.
## </Item>
## <Mark><C>"2F"</C></Mark>
## <Item>
## Twisted exceptional Chevalley type <M>{}^2F</M> (Ree groups),
## <C>parameter</C> is a value <M>q</M> that indicates <M>{}^2F(4,q)</M>.
## </Item>
## <Mark><C>"G"</C></Mark>
## <Item>
## Exceptional Chevalley type <M>G</M>,
## <C>parameter</C> is a value <M>q</M> that indicates <M>G(2,q)</M>.
## </Item>
## <Mark><C>"2G"</C></Mark>
## <Item>
## Twisted exceptional Chevalley type <M>{}^2G</M> (Ree groups),
## <C>parameter</C> is a value <M>q</M> that indicates <M>{}^2G(2,q)</M>.
## </Item>
## <Mark><C>"Spor"</C></Mark>
## <Item>
## Sporadic simple groups, <C>name</C> gives the name.
## </Item>
## <Mark><C>"Z"</C></Mark>
## <Item>
## Cyclic groups of prime size, <C>parameter</C> gives the size.
## </Item>
## </List>
## <P/>
## An equal sign in the name denotes different naming schemes for the same
## group, a tilde sign abstract isomorphisms between groups constructed
## in a different way.
## <P/>
## <Example><![CDATA[
## gap> IsomorphismTypeInfoFiniteSimpleGroup(
## > Group((4,5)(6,7),(1,2,4)(3,5,6)));
## rec(
## name := "A(1,7) = L(2,7) ~ B(1,7) = O(3,7) ~ C(1,7) = S(2,7) ~ 2A(1,\
## 7) = U(2,7) ~ A(2,2) = L(3,2)", parameter := [ 2, 7 ], series := "L" )
## ]]></Example>
## <P/>
## For a positive integer <A>n</A>,
## <Ref Func="IsomorphismTypeInfoFiniteSimpleGroup" Label="for a group order"/>
## returns <K>fail</K> if <A>n</A> is not the order of a finite simple
## group, and a record as described for the case of a group <A>G</A>
## otherwise.
## If more than one simple group of order <A>n</A> exists then the result
## record contains only the <C>name</C> component, a string that lists the
## two possible isomorphism types of simple groups of this order.
## <P/>
## <Example><![CDATA[
## gap> IsomorphismTypeInfoFiniteSimpleGroup( 5 );
## rec( name := "Z(5)", parameter := 5, series := "Z" )
## gap> IsomorphismTypeInfoFiniteSimpleGroup( 6 );
## fail
## gap> IsomorphismTypeInfoFiniteSimpleGroup(Size(SymplecticGroup(6,3))/2);
## rec(
## name := "cannot decide from size alone between B(3,3) = O(7,3) and C\
## (3,3) = S(6,3)", parameter := [ 3, 3 ] )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "IsomorphismTypeInfoFiniteSimpleGroup", IsGroup );
DeclareAttribute( "IsomorphismTypeInfoFiniteSimpleGroup", IsPosInt );
#############################################################################
##
#F SmallSimpleGroup( <order>[, <i>] )
##
## <#GAPDoc Label="SmallSimpleGroup">
## <ManSection>
## <Func Name="SmallSimpleGroup" Arg='order[, i]'/>
## <Returns>
## The <A>i</A>th simple group of order <A>order</A> in the stored list,
## given in a small-degree permutation representation, or <Ref Var="fail"/>
## if no such simple group exists.
## </Returns>
## <Description>
## If <A>i</A> is not given, it defaults to 1.
## Currently, all simple groups of order less than <M>10^6</M> are
## available via this function.
## <Example>
## gap> SmallSimpleGroup(60);
## A5
## gap> SmallSimpleGroup(20160,1);
## A8
## gap> SmallSimpleGroup(20160,2);
## PSL(3,4)
## </Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "SmallSimpleGroup" );
#############################################################################
##
#F AllSmallNonabelianSimpleGroups( <orders> )
##
## <#GAPDoc Label="AllSmallNonabelianSimpleGroups">
## <ManSection>
## <Func Name="AllSmallNonabelianSimpleGroups" Arg='orders'/>
## <Returns>
## A list of all nonabelian simple groups whose order lies in the range
## <A>orders</A>.
## </Returns>
## <Description>
## The groups are given in small-degree permutation representations.
## The returned list is sorted by ascending group order.
## Currently, all simple groups of order less than <M>10^6</M> are
## available via this function.
## <Example>
## gap> List(AllSmallNonabelianSimpleGroups([1..1000000]),
## > StructureDescription);
## [ "A5", "PSL(3,2)", "A6", "PSL(2,8)", "PSL(2,11)", "PSL(2,13)",
## "PSL(2,17)", "A7", "PSL(2,19)", "PSL(2,16)", "PSL(3,3)",
## "PSU(3,3)", "PSL(2,23)", "PSL(2,25)", "M11", "PSL(2,27)",
## "PSL(2,29)", "PSL(2,31)", "A8", "PSL(3,4)", "PSL(2,37)", "O(5,3)",
## "Sz(8)", "PSL(2,32)", "PSL(2,41)", "PSL(2,43)", "PSL(2,47)",
## "PSL(2,49)", "PSU(3,4)", "PSL(2,53)", "M12", "PSL(2,59)",
## "PSL(2,61)", "PSU(3,5)", "PSL(2,67)", "J1", "PSL(2,71)", "A9",
## "PSL(2,73)", "PSL(2,79)", "PSL(2,64)", "PSL(2,81)", "PSL(2,83)",
## "PSL(2,89)", "PSL(3,5)", "M22", "PSL(2,97)", "PSL(2,101)",
## "PSL(2,103)", "HJ", "PSL(2,107)", "PSL(2,109)", "PSL(2,113)",
## "PSL(2,121)", "PSL(2,125)", "O(5,4)" ]
## </Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "AllSmallNonabelianSimpleGroups" );
#############################################################################
##
#A IsomorphismPcGroup( <G> )
##
## <#GAPDoc Label="IsomorphismPcGroup">
## <ManSection>
## <Attr Name="IsomorphismPcGroup" Arg='G'/>
##
## <Description>
## <Index Subkey="pc group">isomorphic</Index>
## returns an isomorphism from <A>G</A> onto an isomorphic pc group.
## The series chosen for this pc representation depends on
## the method chosen.
## <A>G</A> must be a polycyclic group of any kind, for example a solvable
## permutation group.
## <Example><![CDATA[
## gap> G := Group( (1,2,3), (3,4,1) );;
## gap> iso := IsomorphismPcGroup( G );
## Pcgs([ (2,4,3), (1,2)(3,4), (1,3)(2,4) ]) -> [ f1, f2, f3 ]
## gap> H := Image( iso );
## Group([ f1, f2, f3 ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "IsomorphismPcGroup", IsGroup );
#############################################################################
##
#A IsomorphismSpecialPcGroup( <G> )
##
## <#GAPDoc Label="IsomorphismSpecialPcGroup">
## <ManSection>
## <Attr Name="IsomorphismSpecialPcGroup" Arg='G'/>
##
## <Description>
## returns an isomorphism from <A>G</A> onto an isomorphic pc group
## whose family pcgs is a special pcgs.
## (This can be beneficial to the runtime of calculations.)
## <A>G</A> may be a polycyclic group of any kind, for example a solvable
## permutation group.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "IsomorphismSpecialPcGroup", IsGroup );
#############################################################################
##
#A IsomorphismPermGroup( <G> )
##
## <#GAPDoc Label="IsomorphismPermGroup">
## <ManSection>
## <Attr Name="IsomorphismPermGroup" Arg='G'/>
##
## <Description>
## returns an isomorphism from the group <A>G</A> onto a permutation group
## which is isomorphic to <A>G</A>.
## The method will select a suitable permutation representation.
## <Example><![CDATA[
## gap> g:=SmallGroup(24,12);
## <pc group of size 24 with 4 generators>
## gap> iso:=IsomorphismPermGroup(g);
## <action isomorphism>
## gap> Image(iso,g.3*g.4);
## (1,12)(2,16)(3,19)(4,5)(6,22)(7,8)(9,23)(10,11)(13,24)(14,15)(17,
## 18)(20,21)
## ]]></Example>
## <P/>
## In many cases the permutation representation constructed by
## <Ref Func="IsomorphismPermGroup"/> is regular.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute("IsomorphismPermGroup",IsGroup);
#############################################################################
##
#A IsomorphismFpGroup( <G> )
##
## <#GAPDoc Label="IsomorphismFpGroup">
## <ManSection>
## <Attr Name="IsomorphismFpGroup" Arg='G'/>
##
## <Description>
## returns an isomorphism from the given finite group <A>G</A> to a finitely
## presented group isomorphic to <A>G</A>.
## The function first <E>chooses a set of generators of <A>G</A></E>
## and then computes a presentation in terms of these generators.
## <Example><![CDATA[
## gap> g := Group( (2,3,4,5), (1,2,5) );;
## gap> iso := IsomorphismFpGroup( g );
## [ (4,5), (1,2,3,4,5), (1,3,2,4,5) ] -> [ F1, F2, F3 ]
## gap> fp := Image( iso );
## <fp group on the generators [ F1, F2, F3 ]>
## gap> RelatorsOfFpGroup( fp );
## [ F1^2, F1^-1*F2*F1*F2^-1*F3*F2^-2, F1^-1*F3*F1*F2*F3^-1*F2*F3*F2^-1,
## F2^5*F3^-5, F2^5*(F3^-1*F2^-1)^2, (F2^-2*F3^2)^2 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "IsomorphismFpGroup", IsGroup );
#############################################################################
##
#A IsomorphismFpGroupByGenerators( <G>,<gens>[,<string>] )
#A IsomorphismFpGroupByGeneratorsNC( <G>,<gens>,<string> )
##
## <#GAPDoc Label="IsomorphismFpGroupByGenerators">
## <ManSection>
## <Attr Name="IsomorphismFpGroupByGenerators" Arg='G,gens[,string]'/>
## <Attr Name="IsomorphismFpGroupByGeneratorsNC" Arg='G,gens,string'/>
##
## <Description>
## returns an isomorphism from a finite group <A>G</A>
## to a finitely presented group <A>F</A> isomorphic to <A>G</A>.
## The generators of <A>F</A> correspond to the
## <E>generators of <A>G</A> given in the list <A>gens</A></E>.
# If <A>string</A> is given it is used to name the generators of the
## finitely presented group.
## <P/>
## The <C>NC</C> version will avoid testing whether the elements in
## <A>gens</A> generate <A>G</A>.
## <Example><![CDATA[
## gap> SetInfoLevel( InfoFpGroup, 1 );
## gap> iso := IsomorphismFpGroupByGenerators( g, [ (1,2), (1,2,3,4,5) ] );
## #I the image group has 2 gens and 5 rels of total length 39
## [ (1,2), (1,2,3,4,5) ] -> [ F1, F2 ]
## gap> fp := Image( iso );
## <fp group of size 120 on the generators [ F1, F2 ]>
## gap> RelatorsOfFpGroup( fp );
## [ F1^2, F2^5, (F2^-1*F1)^4, (F2^-1*F1*F2*F1)^3, (F2^2*F1*F2^-2*F1)^2 ]
## ]]></Example>
## <P/>
## The main task of the function
## <Ref Func="IsomorphismFpGroupByGenerators"/> is to find a presentation of
## <A>G</A> in the provided generators <A>gens</A>.
## In the case of a permutation group <A>G</A> it does this by first
## constructing a stabilizer chain of <A>G</A> and then it works through
## that chain from the bottom to the top, recursively computing a
## presentation for each of the involved stabilizers.
## The method used is essentially an implementation of John Cannon's
## multi-stage relations-finding algorithm as described in
## <Cite Key="Neu82"/> (see also <Cite Key="Can73"/> for a more graph
## theoretical description).
## Moreover, it makes heavy use of Tietze transformations in each stage to
## avoid an explosion of the total length of the relators.
## <P/>
## Note that because of the random methods involved in the construction of
## the stabilizer chain the resulting presentations of <A>G</A> will in
## general be different for repeated calls with the same arguments.
## <P/>
## <Example><![CDATA[
## gap> M12 := MathieuGroup( 12 );
## Group([ (1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6),
## (1,12)(2,11)(3,6)(4,8)(5,9)(7,10) ])
## gap> gens := GeneratorsOfGroup( M12 );;
## gap> iso := IsomorphismFpGroupByGenerators( M12, gens );;
## #I the image group has 3 gens and 23 rels of total length 628
## gap> iso := IsomorphismFpGroupByGenerators( M12, gens );;
## #I the image group has 3 gens and 23 rels of total length 569
## ]]></Example>
## <P/>
## Also in the case of a permutation group <A>G</A>, the function
## <Ref Func="IsomorphismFpGroupByGenerators"/> supports the option
## <C>method</C> that can be used to modify the strategy.
## The option <C>method</C> may take the following values.
## <P/>
## <List>
## <Mark><C>method := "regular"</C></Mark>
## <Item>
## This may be specified for groups of small size, up to <M>10^5</M> say.
## It implies that the function first constructs a regular representation
## <A>R</A> of <A>G</A> and then a presentation of <A>R</A>.
## In general, this presentation will be much more concise than the
## default one, but the price is the time needed for the construction of
## <A>R</A>.
## </Item>
## <Mark><C>method := [ "regular", bound ]</C></Mark>
## <Item>
## This is a refinement of the previous possibility.
## In this case, <C>bound</C> should be an integer, and if so the method
## <C>"regular"</C> as described above is applied to the largest
## stabilizer in the stabilizer chain of <A>G</A> whose size does not
## exceed the given bound and then the multi-stage algorithm is used to
## work through the chain from that subgroup to the top.
## </Item>
## <Mark><C>method := "fast"</C></Mark>
## <Item>
## This chooses an alternative method which essentially is a kind of
## multi-stage algorithm for a stabilizer chain of <A>G</A> but does not
## make any attempt do reduce the number of relators as it is done in
## Cannon's algorithm or to reduce their total length.
## Hence it is often much faster than the default method, but the total
## length of the resulting presentation may be huge.
## </Item>
## <Mark><C>method := "default"</C></Mark>
## <Item>
## This simply means that the default method shall be used, which is the
## case if the option <C>method</C> is not given a value.
## </Item>
## </List>
## <P/>
## <Example><![CDATA[
## gap> iso := IsomorphismFpGroupByGenerators( M12, gens :
## > method := "regular" );;
## #I the image group has 3 gens and 11 rels of total length 92
## gap> iso := IsomorphismFpGroupByGenerators( M12, gens :
## > method := "fast" );;
## #I the image group has 3 gens and 162 rels of total length 3737
## ]]></Example>
## <P/>
## Though the option <C>method := "regular"</C> is only checked in the case
## of a permutation group it also affects the performance and the results of
## the function <Ref Func="IsomorphismFpGroupByGenerators"/> for other
## groups, e. g. for matrix groups.
## This happens because, for these groups, the function first calls the
## function <Ref Func="NiceMonomorphism"/> to get a bijective action
## homomorphism from <A>G</A> to a suitable permutation group,
## <M>P</M> say, and then, recursively, calls itself for the group <M>P</M>
## so that now the option becomes relevant.
## <P/>
## <Example><![CDATA[
## gap> G := ImfMatrixGroup( 5, 1, 3 );
## ImfMatrixGroup(5,1,3)
## gap> gens := GeneratorsOfGroup( G );
## [ [ [ -1, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0 ], [ 0, 0, 0, 1, 0 ],
## [ -1, -1, -1, -1, 2 ], [ -1, 0, 0, 0, 1 ] ],
## [ [ 0, 1, 0, 0, 0 ], [ 0, 0, 1, 0, 0 ], [ 0, 0, 0, 1, 0 ],
## [ 1, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 1 ] ] ]
## gap> iso := IsomorphismFpGroupByGenerators( G, gens );;
## #I the image group has 2 gens and 9 rels of total length 94
## gap> iso := IsomorphismFpGroupByGenerators( G, gens :
## > method := "regular");;
## #I the image group has 2 gens and 6 rels of total length 56
## gap> SetInfoLevel( InfoFpGroup, 0 );
## gap> iso;
## <composed isomorphism:[ [ [ -1, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0 ], [ 0, \
## 0, 0, 1, 0 ], [ -1, -1, -1, -1, 2 ], [ -1, 0, 0, 0, 1 ] ], [ [ 0, 1, 0\
## , 0, 0 ], [ 0, 0, 1, 0, 0 ], [ 0, 0, 0, 1, 0 ], [ 1, 0, 0, 0, 0 ], [ 0\
## , 0, 0, 0, 1 ] ] ]->[ F1, F2 ]>
## gap> ConstituentsCompositionMapping(iso);
## [ <action isomorphism>,
## [ (2,3)(4,6,10,17,7,12)(5,8,13,19,26,24)(9,15,23,35,31,43)(14,21,
## 32)(16,25,38)(18,27,39,33,45,57)(20,30,36,48,28,40)(22,34,44,
## 55,66,74)(29,41,51,61,60,47)(37,49,54,52,46,58)(42,53,65)(50,
## 62,63,72,56,67)(59,69,77,78,64,73)(68,71,75)(76,79),
## (1,2,4,7)(3,5,9,16)(6,11,18,28)(8,14,22,30)(12,13,20,31)(15,24,
## 37,50)(17,26,38,45)(19,29,42,27)(21,33,46,35)(23,36,25,39)(32,
## 44,56,40)(34,47,59,70)(41,52,64,72)(43,54,65,66)(48,60)(49,61,
## 71,55)(51,63,53,57)(58,68,76,62)(67,75,74,77)(73,78,80,79)
## ] -> [ F1, F2 ] ]
## ]]></Example>
## <P/>
## Since &GAP; cannot decompose elements of a matrix group into generators,
## the resulting isomorphism is stored as a composition of a (faithful)
## permutation action on vectors and a homomorphism from the permutation image
## to the finitely presented group. In such a situation the constituent
## mappings can be obtained via <Ref Func="ConstituentsCompositionMapping"/>
## as separate &GAP; objects.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("IsomorphismFpGroupByGenerators");
DeclareOperation( "IsomorphismFpGroupByGeneratorsNC",
[ IsGroup, IsList, IsString ] );
DeclareOperation(
"IsomorphismFpGroupBySubnormalSeries", [IsGroup, IsList, IsString] );
DeclareOperation(
"IsomorphismFpGroupByCompositionSeries", [IsGroup, IsString] );
DeclareOperation(
"IsomorphismFpGroupByChiefSeries", [IsGroup, IsString] );
DeclareGlobalFunction( "IsomorphismFpGroupByPcgs" );
#############################################################################
##
#A PrimePowerComponents( <g> )
##
## <ManSection>
## <Attr Name="PrimePowerComponents" Arg='g'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareAttribute( "PrimePowerComponents", IsMultiplicativeElement );
#############################################################################
##
#O PrimePowerComponent( <g>, <p> )
##
## <ManSection>
## <Oper Name="PrimePowerComponent" Arg='g, p'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareOperation( "PrimePowerComponent",
[ IsMultiplicativeElement, IsPosInt ] );
#############################################################################
##
#O PowerMapOfGroup( <G>, <n>, <ccl> )
##
## <ManSection>
## <Oper Name="PowerMapOfGroup" Arg='G, n, ccl'/>
##
## <Description>
## is a list of positions,
## at position <M>i</M> the position of the conjugacy class containing
## the <A>n</A>-th powers of the elements in the <M>i</M>-th class
## of the list <A>ccl</A> of conjugacy classes.
## </Description>
## </ManSection>
##
DeclareOperation( "PowerMapOfGroup", [ IsGroup, IsInt, IsHomogeneousList ] );
#############################################################################
##
#F PowerMapOfGroupWithInvariants( <G>, <n>, <ccl>, <invariants> )
##
## <ManSection>
## <Func Name="PowerMapOfGroupWithInvariants" Arg='G, n, ccl, invariants'/>
##
## <Description>
## is a list of integers, at position <M>i</M> the position of the conjugacy
## class containimg the <A>n</A>-th powers of elements in class <M>i</M>
## of <A>ccl</A>.
## The list <A>invariants</A> contains all invariants besides element order
## that shall be used before membership tests.
## <P/>
## Element orders are tested first in any case since they may allow a
## decision without forming the <A>n</A>-th powers of elements.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "PowerMapOfGroupWithInvariants" );
#############################################################################
##
#O HasAbelianFactorGroup( <G>, <N> )
##
## <#GAPDoc Label="HasAbelianFactorGroup">
## <ManSection>
## <Oper Name="HasAbelianFactorGroup" Arg='G, N'/>
##
## <Description>
## tests whether <A>G</A> <M>/</M> <A>N</A> is abelian
## (without explicitly constructing the factor group).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("HasAbelianFactorGroup");
#############################################################################
##
#O HasSolvableFactorGroup( <G>, <N> )
##
## <#GAPDoc Label="HasSolvableFactorGroup">
## <ManSection>
## <Oper Name="HasSolvableFactorGroup" Arg='G, N'/>
##
## <Description>
## tests whether <A>G</A> <M>/</M> <A>N</A> is solvable
## (without explicitly constructing the factor group).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("HasSolvableFactorGroup");
#############################################################################
##
#O HasElementaryAbelianFactorGroup( <G>, <N> )
##
## <#GAPDoc Label="HasElementaryAbelianFactorGroup">
## <ManSection>
## <Oper Name="HasElementaryAbelianFactorGroup" Arg='G, N'/>
##
## <Description>
## tests whether <A>G</A> <M>/</M> <A>N</A> is elementary abelian
## (without explicitly constructing the factor group).
## <Example><![CDATA[
## gap> HasAbelianFactorGroup(g,n);
## false
## gap> HasAbelianFactorGroup(DerivedSubgroup(g),n);
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("HasElementaryAbelianFactorGroup");
#############################################################################
##
#F IsGroupOfFamily(<G>)
##
## <ManSection>
## <Func Name="IsGroupOfFamily" Arg='G'/>
##
## <Description>
## This filter indicates that the group <A>G</A> is the group
## which is stored in the family <A>fam</A> of its elements
## as <C><A>fam</A>!.wholeGroup</C>.
## </Description>
## </ManSection>
##
DeclareFilter("IsGroupOfFamily");
#############################################################################
##
#F Group_PseudoRandom(<G>)
##
## <ManSection>
## <Func Name="Group_PseudoRandom" Arg='G'/>
##
## <Description>
## Computes a pseudo-random element of <A>G</A> by product replacement.
## (This is installed as a method for <C>PseudoRandom</C>
## under the condition that generators are known.)
## </Description>
## </ManSection>
##
DeclareGlobalFunction("Group_PseudoRandom");
#############################################################################
##
#E
|