/usr/share/gap/lib/grpchain.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 | #############################################################################
##
#W grpchain.gi GAP Library Gene Cooperman
#W and Scott Murray
##
##
#Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1999 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## Requires: transversal, rss (for ChainSubgroup only)
## Exports: Group _mutable_ attribute ChainSubgroup. This stores the
## next group down in the chain (ie. the structure is recursive)
## The ChainSubgroup should have an attribute Transversal, as
## described in transversal.[gd,gi]
## StrongGens(grp), returns in format:
## rec(level:=LEVEL, gens:=GENS, gensinv:=GENSINV, Group:=GROUP,
## lastOldGens:=OLD)
## and GENS and GENSINV are lists of lists of generators,
## and LEVEL is index of list for this level.
## OLD is a list recording the last generator that had been
## applied to all old points.
## Defines: Size, Random, IN, Enumerator, Iterator for ChainSubgroup
## Exports: TransversalOfChainSubgroup, CompleteChain, ExtendedSubgroup,
## Sift, SiftOneLevel, ChainSubgroupByXXX
##
## Note on strong generators: The data type for strong generators
## (currently a record) should be considered a work in progress.
## The current data type makes gptransv dependent on grpchain,
## which should not be the case. Also the current data type is inductive
## while all our other structures are recursive -- this is necessary for
## efficiency, although it should probably be hidden from the user to
## retain the desired level of flexibility in the code. In particular,
## this means that creating mixed chains (with different kinds of
## transversal), may have unpredictable results.
##
##
## For debugging only:
##
NthChainSubgroup := function(G,n)
if n = 0 then return G;
elif HasChainSubgroup(G) then
return NthChainSubgroup(ChainSubgroup(G),n-1);
else Error("no chain subgroup");
fi;
end;
NthSchreierTransversalOfChainSubgroup := function(G,n)
return TransversalOfChainSubgroup(NthChainSubgroup(G,n-1));
end;
NthFundamentalOrbit := function(arg)
local G, n;
G := arg[1]; if Length(arg)>1 then n := arg[2]; else n := 1; fi;
return TransversalOfChainSubgroup(NthChainSubgroup(G,n-1))!.HashTable!.KeyArray;
end;
NthSiftOneLevel := function(G,g,n)
if n = 1 then return SiftOneLevel(G,g);
elif HasChainSubgroup(G) then
return NthSiftOneLevel(ChainSubgroup(G),SiftOneLevel(G,g),n-1);
else Error("no chain subgroup");
fi;
end;
## Returns list of pairs [transvsersalElt, groupInChain]
## where elt is in group
SiftedWord := function(grp, elt)
local word, elt2;
word := [];
while HasChainSubgroup(grp) do
elt2 := TransversalElt(Transversal(ChainSubgroup(grp)),elt);
if elt*elt2^(-1) <> SiftOneLevel(grp,elt) then Error("bad sift"); fi;
Add( word, [ elt2, grp ] );
grp := ChainSubgroup(grp);
elt := elt * elt2^(-1);
od;
Add(word,[elt,grp]);
return word;
end ;
## gdc - this is slow for something like NiceObj(GL(10,2))
## and it still doesn't complete everything.
## BECAUSE IT DOES Extending complete stabilizer chain subgroup
CompleteChain := function( G )
local size, oldSize, origG;
origG := G;
size := SizeOfChainOfGroup(G);
repeat
G := origG;
oldSize := size;
while HasChainSubgroup(G) do
if IsTransvBySchreierTree(TransversalOfChainSubgroup(G)) then
SetGeneratingSetIsComplete(G, true);
CompleteSchreierTransversal(TransversalOfChainSubgroup( G ) );
fi;
G := ChainSubgroup(G);
od;
size := SizeOfChainOfGroup(origG);
Info( InfoChain, 2, "Completing chain from size ", oldSize,
" to size ", size);
until oldSize = size;
end;
#############################################################################
#############################################################################
##
## General group utilities done via chains
##
#############################################################################
#############################################################################
#############################################################################
##
#M ChainSubgroup( <G> )
##
InstallMethod( ChainSubgroup, "for chain type groups", true,
[ IsGroup and IsChainTypeGroup and HasChainSubgroup ], NICE_FLAGS,
G -> G!.ChainSubgroup );
InstallMethod( ChainSubgroup, "for chain type groups", true,
[ IsGroup and IsChainTypeGroup ], NICE_FLAGS,
function( G )
if IsTrivial( G ) then
SetIsTrivial( G, true );
Error( "Cannot compute chain subgroup of trivial group" );
# Else test IsAbelian(). It's cheap.
elif IsFFEMatrixGroup(G)
and (IsAbelian(G)
or (HasIsNilpotentGroup(G) and IsNilpotentGroup(G))
or HasNilpotentClassTwoElement(G)) then
MakeHomChain(G);
else
# Print("Warning: Monte-Carlo algorithm; chain may be incomplete\n");
RandomSchreierSims( G );
fi;
return G!.ChainSubgroup;
end );
InstallMethod( ChainSubgroup, "for chain type groups", true,
[ IsGroup and IsFFEMatrixGroup and IsChainTypeGroup ], NICE_FLAGS+1,
function(G)
if IsTrivial(G) then
SetIsTrivial(G,true);
SetSize(G,1);
Error("Group is trivial. It has no ChainSubgroup.");
fi;
if HasIsCyclic(G) and IsCyclic(G) and
not HasSize(G) and Length(GeneratorsOfGroup(G)) = 1 then
# GAP can leave this out. We need this info.
SetIsCyclicWithSize( G, GeneratorsOfGroup(G)[1],
Order(GeneratorsOfGroup(G)[1]) );
MakeHomChain(G);
fi;
if IsAbelian(G) then
MakeHomChain(G);
CompleteChain(G);
# These are the two base cases:
if not HasChainSubgroup(G) # and maybe we're in base case
and ( (IsCyclic(G) and IsPGroup(G))
or IsQuotientToAdditiveGroup(G) ) then
return TrivialSubgroup(G);
else return ChainSubgroup(G);
fi;
elif (HasIsNilpotentGroup(G) and IsNilpotentGroup(G))
or CanFindNilpotentClassTwoElement(G) then
return MakeHomChain(G); CompleteChain(G);
# elif IsSolvable(G) then return MakeHomChain(G); CompleteChain(G);
else TryNextMethod();
fi;
end );
#############################################################################
##
#M IN( <g>, <G> )
##
InstallMethod( IN, "for chain type group", true,
[ IsMultiplicativeElementWithInverse, IsGroup and IsChainTypeGroup ],
NICE_FLAGS,
function( g, G )
if IsTrivial(G) then return IsOne(g); fi;
if not HasChainSubgroup( G ) then
Info( InfoChain, 2, "Creating chain subgroup" );
ChainSubgroup( G );
fi;
Info( InfoChain, 2, "Sifting to test membership" );
return Sift( G, g ) = One( G );
end );
#############################################################################
##
#M Size( <G> )
##
InstallMethod( Size, "for chain type group", true,
[ IsGroup and IsChainTypeGroup and IsTrivial ],
NICE_FLAGS+10, # + 10 for matrix groups
G -> 1 );
InstallMethod( Size, "for chain type group", true,
[ IsGroup and IsChainTypeGroup ], NICE_FLAGS+10, # + 10 for matrix groups
function( G )
# Note that in GAP4r1, IsTrivial() calls Size(). Don't use IsTrivial()
if not HasIsTrivial(G) or IsTrivial(G) then
if IsTrivial(G) then
SetIsTrivial(G,true);
return Size(G);
else SetIsTrivial(G,false);
fi;
fi;
if not HasChainSubgroup( G ) then
Info( InfoChain, 2, "Creating chain subgroup" );
ChainSubgroup( G );
fi;
return Size( TransversalOfChainSubgroup( G ) )
* Size( ChainSubgroup( G ) );
end );
#############################################################################
##
#M Random( <G> )
##
InstallMethod( Random, "for chain type group", true,
[ IsGroup and IsChainTypeGroup ], NICE_FLAGS,
function( G )
if not HasChainSubgroup( G ) then
Info( InfoChain, 2, "Creating chain subgroup" );
ChainSubgroup( G );
fi;
return Random( TransversalOfChainSubgroup( G ) ) *
Random( ChainSubgroup( G ) );
end );
InstallMethod( Random, "for trivial chain type group", true,
[ IsGroup and IsChainTypeGroup and IsTrivial ], NICE_FLAGS,
function( G )
return One( G );
end );
#############################################################################
##
#M Enumerator( <G> )
##
InstallMethod( Enumerator, "for chain type group", true,
[ IsGroup and IsChainTypeGroup ], NICE_FLAGS,
function( G )
local newG;
if not HasIsTrivial( G ) then
SetIsTrivial( G, IsTrivial(G) );
if IsTrivial( G ) then return Enumerator(G); fi;
fi;
if not HasChainSubgroup( G ) then
Info( InfoChain, 2, "Creating chain subgroup" );
ChainSubgroup( G );
fi;
if IsTransvByTrivSubgrp( TransversalOfChainSubgroup( G ) ) then
TryNextMethod();
return;
newG := Group( GeneratorsOfGroup( G ) );
UseIsomorphismRelation( G, newG );
return Enumerator(newG);
fi;
return ListX( Enumerator( TransversalOfChainSubgroup( G ) ),
Enumerator( ChainSubgroup( G ) ), PROD );
end );
InstallMethod( Enumerator, "for trivial chain type group", true,
[ IsGroup and IsChainTypeGroup and IsTrivial ], NICE_FLAGS,
function( G ) #base of recursion -- probably unnecessary
return [ One( G ) ];
end );
## still to write: Iterator
#############################################################################
#############################################################################
##
## General group with chain utilities
##
#############################################################################
#############################################################################
#############################################################################
##
#M GeneratingSetIsComplete( <G> )
##
InstallMethod( GeneratingSetIsComplete, "for group", true,
[ IsGroup ], 0, G -> false );
#generating sets assumed incomplete unless set to true. Should be
#replaced by verifier.
#############################################################################
##
#M SiftOneLevel( <G>, <g> )
##
InstallMethod( SiftOneLevel, "for group with chain and element", true,
[ IsGroup and HasChainSubgroup, IsAssociativeElement ], 0,
function( G, g )
if HasTransversal( ChainSubgroup( G ) ) then
Info( InfoChain, 3, "Sifting ", g );
return SiftOneLevel( TransversalOfChainSubgroup( G ), g );
else
return fail;
fi;
end );
#############################################################################
##
#M Sift( <G>, <g> )
##
InstallMethod( Sift, "for group with chain and element", true,
[ IsGroup and HasChainSubgroup, IsAssociativeElement ], 0,
function( G, g )
local s;
s := SiftOneLevel( G, g );
if s = fail then # base case for incomplete chain
return g;
fi;
return Sift( ChainSubgroup( G ), s );
end );
InstallMethod( Sift, "for group without chain and element", true,
[ IsGroup, IsAssociativeElement ], 0,
function( G, g ) #base case of recursion
return g;
end );
#############################################################################
##
#F SizeOfChainOfGroup( <> )
##
## If chain stops at non-trivial subgroup with HasSize() false,
## this will assume subgroup is trivial. This is useful,
## for programs that construct a chain, and wish to test the
## "current size" to see if the chain is complete.
##
InstallGlobalFunction( SizeOfChainOfGroup,
function( G )
if not HasChainSubgroup( G ) then # base case
if HasSize(G) then
return Size(G);
#Gene: BasisOfHomCosetAddMatrixGroup(G) computes Size() of
# additive group more efficiently. A method for Size()
# of additive groups should be based on this. But this
# was added after "feature freeze".
elif IsAdditiveGroup(G) or IsQuotientToAdditiveGroup(G) then
BasisOfHomCosetAddMatrixGroup(G);
if HasSize(G) then return Size(G); else return 1; fi;
else return 1; #Note: may be incorrect for incomplete chains
fi;
fi;
return Size( TransversalOfChainSubgroup( G ) )
* SizeOfChainOfGroup( ChainSubgroup( G ) );
end );
#############################################################################
##
#F ChainStatistics( <G> )
##
InstallGlobalFunction( ChainStatistics, function( G )
local stats, transv;
stats := rec( Size := 1, TransversalSizes := [],
SchreierTreeDepths := [], DepthThreshold := [],
NumberSifted := [], basePoints := [] );
while HasChainSubgroup( G ) do
transv := TransversalOfChainSubgroup( G );
stats.Size := stats.Size * Size( transv );
Add( stats.TransversalSizes, Size( transv ) );
Add( stats.NumberSifted, transv!.NumberSifted );
if IsTransvBySchreierTree( transv ) then
Add( stats.SchreierTreeDepths, SchreierTreeDepth( transv ) );
Add( stats.DepthThreshold, transv!.DepthThreshold );
Add( stats.basePoints, BasePointOfSchreierTransversal( transv ) );
else
Add( stats.SchreierTreeDepths, "not Schr. tree" );
Add( stats.DepthThreshold, "not Schr. tree" );
Add( stats.basePoints, "not Schr. tree" );
fi;
G := ChainSubgroup( G );
od;
return stats;
end );
#############################################################################
##
#F TransversalOfChainSubgroup( <G> )
##
InstallGlobalFunction( TransversalOfChainSubgroup, function( G )
if not HasChainSubgroup( G ) then
Error("Sorry this group does not have a chain subgroup");
fi;
return Transversal( ChainSubgroup( G ) );
end );
#############################################################################
##
#F HasChainHomomorphicImage( <G> )
##
InstallGlobalFunction( HasChainHomomorphicImage,
G -> HasChainSubgroup(G) and
HasTransversal(ChainSubgroup(G)) and
IsBound(TransversalOfChainSubgroup(G)!.Homomorphism) and
HasImagesSource(Homomorphism(TransversalOfChainSubgroup(G))) );
#############################################################################
##
#F ChainHomomorphicImage( <G> )
##
InstallGlobalFunction( ChainHomomorphicImage,
G -> Image(Homomorphism(TransversalOfChainSubgroup(G))) );
#############################################################################
#############################################################################
##
## Stabiliser chain utilities
##
#############################################################################
#############################################################################
#############################################################################
##
#F StrongGens( <G> )
##
## gdc - This should be converted into a method.
## It should then operate on a group or on a IsTransvBySchreierTree
## StrongGens will be a list of lists.
##
InstallGlobalFunction( StrongGens,
function( G )
if not IsBound( G!.strongGens ) then
if IsIdenticalObj( G, Parent(G) ) then
G!.strongGens :=
rec( Group := G, level := 1,
gens := [ List( GeneratorsOfGroup(G) ) ],
gensinv := [ List( GeneratorsOfGroup(G), INV ) ],
lastOldGens := [0] );
else G!.strongGens := StrongGens(Parent(G));
Add( G!.strongGens.gens, [] );
Add( G!.strongGens.gensinv, [] );
G!.strongGens :=
rec( Group := G, level := Length( G!.strongGens.gens),
gens := G!.strongGens.gens,
gensinv := G!.strongGens.gensinv,
lastOldGens := List(G!.strongGens.gens, i->0) );
fi;
fi;
return G!.strongGens;
end );
#############################################################################
##
#F ChainSubgroupByStabiliser( <G>, <basePoint>, <Action> )
##
InstallGlobalFunction( ChainSubgroupByStabiliser,
function( G, basePoint, Action )
local subgp, ss;
Info( InfoChain, 1, "Making stabiliser chain subgroup for basepoint ",
basePoint );
subgp := TrivialSubgroup( G );
ss := SchreierTransversal( basePoint, Action,
# computed from Parent(subgp)
StrongGens(subgp) );
if Length( GeneratorsOfGroup(G) ) > 0 then
ExtendSchreierTransversal( ss, GeneratorsOfGroup( G ) );
fi;
SetTransversal( subgp, ss );
SetChainSubgroup( G, subgp );
return subgp;
end );
#############################################################################
##
#M BaseOfGroup( <G> )
##
InstallMethod( BaseOfGroup, "for group with chain", true,
[ IsGroup and HasChainSubgroup ], 40,
function( G )
return Concatenation(
[ BasePointOfSchreierTransversal( TransversalOfChainSubgroup( G ) ) ],
BaseOfGroup( ChainSubgroup( G ) ) );
end );
InstallMethod( BaseOfGroup, "for trivial group", true,
[ IsTrivial and IsGroup and IsInChain ], 40,
function( G ) #base case of recursion
return [ ];
end );
## gdc - These are experimental.
#############################################################################
##
#M StabChainMutable( <G> )
##
#InstallMethod( StabChainMutable, "Stab chain via chain subgroup", true,
# [ IsPermGroup and IsChainTypeGroup and IsStabChainViaChainSubgroup], 0,
# function(G)
# RandomSchreierSims(G);
# StabChainBaseStrongGenerators(Base(G), StrongGens(G),One(G));
# return StabChain(G);
# end );
#############################################################################
##
#M StabChainOp( <G> )
##
#InstallMethod( StabChainOp, "Stab chain via chain subgroup", true,
# [ IsPermGroup and IsChainTypeGroup and IsStabChainViaChainSubgroup,
# IsRecord], 0,
# function(G,opt) return StabChainMutable(G); end );
#############################################################################
##
#M ExtendedGroup( <G>, <g> )
##
## gdc - These functions should really call ExtendTransversal()
## and let ExtendTransversal() and ExtendTransversalOrbitGenerators()
## be a method for different kinds
## of transversals. For example, given an initial homomorphism transversal
## for a block action, why not extend such a transversal by taking
## the homomorphic image of the element, and then taking a stabilizer
## chain through the action on blocks, first.?
##
InstallMethod( ExtendedGroup, "for group in chain", true,
[ IsGroup and IsInChain, IsAssociativeElement ], 0,
function( G, g )
local newG;
Info( InfoChain, 1, "Extending stabiliser chain subgroup" );
newG := Group( Concatenation( GeneratorsOfGroup( G ), [g] ) );
if HasChainSubgroup( G ) then
SetChainSubgroup( newG , ChainSubgroup( G ) );
if HasTransversal( ChainSubgroup( G ) ) and
IsTransvBySchreierTree( TransversalOfChainSubgroup( newG ) ) then
ExtendSchreierTransversal( TransversalOfChainSubgroup( newG ), [g] );
fi;
fi;
if HasTransversal( G ) then
SetTransversal( newG, Transversal( G ) );
fi;
# Really, want to transfer info from G to newG via SupersetRelation
UseSubsetRelation( newG, G );
return newG;
end );
InstallMethod( ExtendedGroup, "for group in chain", true,
[ IsGroup and IsInChain and GeneratingSetIsComplete,
IsAssociativeElement ], 0,
function( G, g )
Info( InfoChain, 1, "Extending complete stabiliser chain subgroup" );
if HasChainSubgroup( G ) and HasTransversal( ChainSubgroup( G ) ) and
IsTransvBySchreierTree( TransversalOfChainSubgroup( G ) ) then
ExtendSchreierTransversal( TransversalOfChainSubgroup( G ), [g] );
# To make sure strong generators go up the chain,
# in case we want to make a shallower tree.
fi;
return G;
end );
#############################################################################
##
#M OrbitGeneratorsOfGroup( <G> )
##
InstallMethod( OrbitGeneratorsOfGroup, "for groups with chain", true,
[ IsGroup and HasChainSubgroup ], 0,
function( G )
return Union( OrbitGenerators( TransversalOfChainSubgroup( G ) ),
OrbitGeneratorsOfGroup( ChainSubgroup ( G ) ) );
end );
InstallMethod( OrbitGeneratorsOfGroup, "for trivial groups", true,
[ IsGroup and IsTrivial ], 0,
function( G )
return []; # base of recursion
end );
#############################################################################
#############################################################################
##
## Hom coset chains
##
#############################################################################
#############################################################################
#############################################################################
##
#F ChainSubgroupByHomomorphism( <hom> )
##
InstallGlobalFunction( ChainSubgroupByHomomorphism,
function( hom )
local transv, quotient;
Info( InfoChain, 1, "Making homomorphism chain subgroup");
Info( InfoChain, 3, " for ", hom );
transv := HomTransversal( hom );
if HasKernelOfMultiplicativeGeneralMapping( hom ) then
SetGeneratingSetIsComplete( KernelOfMultiplicativeGeneralMapping(hom),
true );
SetTransversal( KernelOfMultiplicativeGeneralMapping(hom), transv );
SetChainSubgroup( Source(hom),
KernelOfMultiplicativeGeneralMapping(hom) );
# These Use...Relation may be redundant. Don't know if GAP does it.
UseSubsetRelation( Source(hom),
KernelOfMultiplicativeGeneralMapping(hom) );
UseFactorRelation( Source(hom),
KernelOfMultiplicativeGeneralMapping(hom), Image(hom) );
quotient := QuotientGroup( transv );
UseIsomorphismRelation( Image(hom), quotient );
else # else kernel has incomplete generating set
SetChainSubgroup( Source(hom), SubgroupNC(Source(hom), []) );
SetTransversal( ChainSubgroup(Source(hom)), transv );
quotient := QuotientGroup( transv );
fi;
return ChainSubgroup( Source( hom ) );
end );
#############################################################################
##
#F ChainSubgroupByProjectionFunction( <> )
##
InstallGlobalFunction( ChainSubgroupByProjectionFunction,
function( G, kernelSubgp, imgSubgp, projFnc )
local hom;
Info( InfoChain, 1, "Making homomorphism chain subgroup for projection", projFnc );
hom := GroupHomomorphismByFunction( G, imgSubgp, projFnc, g->g );
SetImagesSource( hom, imgSubgp );
if kernelSubgp <> fail then
SetKernelOfMultiplicativeGeneralMapping( hom, kernelSubgp );
fi;
#PERFORMANCE BUG: GAP doesn't know to use projFnc to quickly compute image
# in ImageElm(hom, elt);
# It lost projFnc.
# It prefers to use NiceMonomorphism instead of DirectProductInfo
return ChainSubgroupByHomomorphism( hom );
end );
#############################################################################
##
#F QuotientGroupByChainHomomorphicImage( <quo>[, <quo2>] )
##
## This function creates quotient groups of quotient groups.
##
InstallGlobalFunction( QuotientGroupByChainHomomorphicImage,
function( arg )
local quo, quo2, hom, hom1, hom2, kernel;
quo := arg[1];
if Length(arg) > 1 then quo2 := arg[2]; fi; # Homomorphic image of quo
if not IsHomQuotientGroup(quo) then Error("group must be quotient group"); fi;
if not HasChainHomomorphicImage(quo) and Length(arg) = 1 then
Error("no homomorphic image");
fi;
# compose homomorphisms;
# Note Source(Hom(HomIm(quo)) = Im(Hom(quo)) by construction of quo
# Composition: Needed so GAP won't complain about compatibility.
hom1 := Homomorphism(quo);
if Length(arg) > 1 then
hom2 := Homomorphism(quo2);
else
hom2 := Homomorphism(TransversalOfChainSubgroup(quo));
fi;
hom := GroupHomomorphismByFunction( Source(hom1), Range(hom2),
g->hom2!.fun(hom1!.fun(g)) );
if HasImagesSource( hom2 ) then
SetImagesSource( hom, ImagesSource(hom2) );
fi;
quo := QuotientGroupByHomomorphism( hom );
if HasImagesSource( hom2 )
and HasGeneratorOfCyclicGroup(ImagesSource(hom2)) then
SetGeneratorOfCyclicGroup(quo,
HomCoset(hom,SourceElt(GeneratorOfCyclicGroup(ImagesSource(hom2)))));
fi;
return quo;
end );
#############################################################################
#############################################################################
##
## Direct sum chain utilities
##
#############################################################################
#############################################################################
#############################################################################
##
#F ChainSubgroupByDirectProduct( <proj>, <inj > )
##
InstallGlobalFunction( ChainSubgroupByDirectProduct,
function( proj, inj )
local transv, quotient;
## I probably need more Use commands here
Info( InfoChain, 1, "Making direct sum chain subgroup for projection", proj );
transv := DirProdTransversal( proj, inj );
if HasKernelOfMultiplicativeGeneralMapping( proj ) then
SetGeneratingSetIsComplete( KernelOfMultiplicativeGeneralMapping( proj ), true );
SetTransversal( KernelOfMultiplicativeGeneralMapping( proj ), transv );
SetChainSubgroup( Source( proj ),
KernelOfMultiplicativeGeneralMapping( proj ) );
# These Use...Relation may be redundant. Don't know if GAP does it.
UseSubsetRelation( Source( proj ),
KernelOfMultiplicativeGeneralMapping( proj ) );
UseFactorRelation( Source( proj ),
KernelOfMultiplicativeGeneralMapping( proj ), Image( proj ) );
elif HasImagesSource( inj ) then
SetGeneratingSetIsComplete( Image( inj ), true );
SetTransversal( Image( inj ), transv );
SetChainSubgroup( Source( proj ), Image( inj ) );
# These Use...Relation may be redundant. Don't know if GAP does it.
UseSubsetRelation( Source( proj ), Image( inj ) );
else # else kernel has incomplete generating set
SetChainSubgroup( Source( proj ), SubgroupNC(Source( proj ), []) );
SetTransversal( ChainSubgroup(Source( proj )), transv );
fi;
return ChainSubgroup( Source( proj ) );
end );
#############################################################################
##
#F ChainSubgroupByPSubgroupOfAbelian( <G>, <p> )
##
InstallGlobalFunction( ChainSubgroupByPSubgroupOfAbelian,
function( G, p )
local PPart, imgGroup, kerGroup, proj, inj;
PPart := function( g )
local o;
o := Order(g);
while o mod p = 0 do o := o/p; od;
return g ^ o;
end;
imgGroup := Group( List( GeneratorsOfGroup( G ), PPart ) );
kerGroup := Group( List( GeneratorsOfGroup( G ), g -> g * PPart(g)^(-1) ) );
proj := GroupHomomorphismByFunction( G, imgGroup, x -> PPart( x ) );
SetImagesSource( proj, imgGroup );
SetKernelOfMultiplicativeGeneralMapping( proj, kerGroup );
inj := GroupHomomorphismByFunction( imgGroup, G, x -> x );
SetImagesSource( proj, imgGroup );
SetKernelOfMultiplicativeGeneralMapping( inj, TrivialSubgroup( imgGroup ) );
return ChainSubgroupByDirectProduct( proj, inj );
end );
#############################################################################
#############################################################################
##
## Trivial subgroup chain utilities
##
#############################################################################
#############################################################################
#############################################################################
##
#F ChainSubgroupByTrivialSubgroup( <G> )
##
InstallGlobalFunction( ChainSubgroupByTrivialSubgroup,
function( G )
local triv;
Info( InfoChain, 1, "Making trivial chain subgroup" );
triv := TrivialSubgroup( G );
SetChainSubgroup( G, triv );
SetTransversal( triv, TransversalByTrivial( G ) );
SetGeneratingSetIsComplete( triv, true );
return triv;
end );
#############################################################################
#############################################################################
##
## Sift function chain utilities
##
#############################################################################
#############################################################################
#############################################################################
##
#F ChainSubgroupBySiftFunction( <G>, <subgroup>, <siftFnc> )
##
InstallGlobalFunction( ChainSubgroupBySiftFunction,
function( G, subgroup, siftFnc )
Info( InfoChain, 1, "Making sift function subgroup" );
SetChainSubgroup( G, subgroup );
SetTransversal( subgroup,
TransversalBySiftFunction( G, subgroup, siftFnc ) );
if HasSize(G) and HasSize(subgroup) then
Transversal(subgroup)!.Size := Size(G)/Size(subgroup);
fi;
# gdc - If you set this false, you can't set it true later.
# SetGeneratingSetIsComplete( subgroup, false );
return subgroup;
end );
#E
|