/usr/share/gap/lib/grpfp.gd is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 | #############################################################################
##
#W grpfp.gd GAP library Volkmar Felsch
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declarations for finitely presented groups
## (fp groups).
##
#############################################################################
##
#V CosetTableDefaultLimit
##
## <#GAPDoc Label="CosetTableDefaultLimit">
## <ManSection>
## <Var Name="CosetTableDefaultLimit"/>
##
## <Description>
## is the default number of cosets with which any coset table is
## initialized before doing a coset enumeration.
## <P/>
## The function performing this coset enumeration will automatically extend
## the table whenever necessary (as long as the number of cosets does not
## exceed the value of <Ref Var="CosetTableDefaultMaxLimit"/>),
## but this is an expensive operation. Thus, if you change the value of
## <Ref Var="CosetTableDefaultLimit"/>, you should set it to a number of
## cosets that you expect to be sufficient for your subsequent
## coset enumerations.
## On the other hand, if you make it too large, your job will unnecessarily
## waste a lot of space.
## <P/>
## The default value of <Ref Var="CosetTableDefaultLimit"/> is <M>1000</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
CosetTableDefaultLimit := 1000;
#############################################################################
##
#V CosetTableDefaultMaxLimit
##
## <#GAPDoc Label="CosetTableDefaultMaxLimit">
## <ManSection>
## <Var Name="CosetTableDefaultMaxLimit"/>
##
## <Description>
## is the default limit for the number of cosets allowed in a coset
## enumeration.
## <P/>
## A coset enumeration will not finish if the subgroup does not have finite
## index, and even if it has it may take many more intermediate cosets than
## the actual index of the subgroup is. To avoid a coset enumeration
## <Q>running away</Q> therefore &GAP; has a <Q>safety stop</Q> built in.
## This is controlled by the global variable
## <Ref Var="CosetTableDefaultMaxLimit"/>.
## <P/>
## If this number of cosets is reached, &GAP; will issue an error message
## and prompt the user to either continue the calculation or to stop it.
## The default value is <M>4096000</M>.
## <P/>
## See also the description of the options to
## <Ref Func="CosetTableFromGensAndRels"/>.
## <P/>
## <Log><![CDATA[
## gap> f := FreeGroup( "a", "b" );;
## gap> u := Subgroup( f, [ f.2 ] );
## Group([ b ])
## gap> Index( f, u );
## Error, the coset enumeration has defined more than 4096000 cosets
## called from
## TCENUM.CosetTableFromGensAndRels( fgens, grels, fsgens ) called from
## CosetTableFromGensAndRels( fgens, grels, fsgens ) called from
## TryCosetTableInWholeGroup( H ) called from
## CosetTableInWholeGroup( H ) called from
## IndexInWholeGroup( H ) called from
## ...
## Entering break read-eval-print loop ...
## type 'return;' if you want to continue with a new limit of 8192000 cosets,
## type 'quit;' if you want to quit the coset enumeration,
## type 'maxlimit := 0; return;' in order to continue without a limit
## brk> quit;
## ]]></Log>
## <P/>
## At this point, a <K>break</K>-loop
## (see Section <Ref Sect="Break Loops"/>) has been entered.
## The line beginning <C>Error</C> tells you why this occurred.
## The next seven lines occur if <Ref Func="OnBreak"/> has its default value
## <Ref Func="Where"/>.
## They explain, in this case,
## how &GAP; came to be doing a coset enumeration.
## Then you are given a number of options of how to escape the
## <K>break</K>-loop:
## you can either continue the calculation with a larger
## number of permitted cosets, stop the calculation if you don't
## expect the enumeration to finish (like in the example above), or continue
## without a limit on the number of cosets. (Choosing the first option will,
## of course, land you back in a <K>break</K>-loop. Try it!)
## <P/>
## Setting <Ref Var="CosetTableDefaultMaxLimit"/>
## (or the <C>max</C> option value, for any function that invokes a coset
## enumeration) to <Ref Var="infinity"/> (or to <M>0</M>) will force all
## coset enumerations to continue until
## they either get a result or exhaust the whole available space.
## For example, each of the following two inputs
## <P/>
## <Listing><![CDATA[
## gap> CosetTableDefaultMaxLimit := 0;;
## gap> Index( f, u );
## ]]></Listing>
## <P/>
## or
## <P/>
## <Listing><![CDATA[
## gap> Index( f, u : max := 0 );
## ]]></Listing>
## <P/>
## have essentially the same effect as choosing the third option
## (typing: <C>maxlimit := 0; return;</C>) at the <C>brk></C> prompt above
## (instead of <C>quit;</C>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
CosetTableDefaultMaxLimit := 2^12*1000;
#############################################################################
##
#V CosetTableStandard
##
## <#GAPDoc Label="CosetTableStandard">
## <ManSection>
## <Var Name="CosetTableStandard"/>
##
## <Description>
## specifies the definition of a <E>standard coset table</E>. It is used
## whenever coset tables or augmented coset tables are created. Its value
## may be <C>"lenlex"</C> or <C>"semilenlex"</C>.
## If it is <C>"lenlex"</C> coset tables will be standardized using
## all their columns as defined in Charles Sims' book
## (this is the new default standard of &GAP;). If it is <C>"semilenlex"</C>
## they will be standardized using only their generator columns (this was
## the original &GAP; standard).
## The default value of <Ref Var="CosetTableStandard"/> is <C>"lenlex"</C>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
CosetTableStandard := "lenlex";
#############################################################################
##
#V InfoFpGroup
##
## <#GAPDoc Label="InfoFpGroup">
## <ManSection>
## <InfoClass Name="InfoFpGroup"/>
##
## <Description>
## The info class for functions dealing with finitely presented groups is
## <Ref InfoClass="InfoFpGroup"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareInfoClass( "InfoFpGroup" );
#############################################################################
##
#C IsSubgroupFgGroup( <H> )
##
## <ManSection>
## <Filt Name="IsSubgroupFgGroup" Arg='H' Type='Category'/>
##
## <Description>
## This category (intended for future extensions) represents (subgroups of)
## a finitely generated group, whose elements are represented as words in
## the generators. However we do not necessarily have a set or relators.
## </Description>
## </ManSection>
##
DeclareCategory( "IsSubgroupFgGroup", IsGroup );
#############################################################################
##
#C IsSubgroupFpGroup( <H> )
##
## <#GAPDoc Label="IsSubgroupFpGroup">
## <ManSection>
## <Filt Name="IsSubgroupFpGroup" Arg='H' Type='Category'/>
##
## <Description>
## returns <K>true</K> if <A>H</A> is a finitely presented group
## or a subgroup of a finitely presented group.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsSubgroupFpGroup", IsSubgroupFgGroup );
# implications for the full family
InstallTrueMethod(CanEasilyTestMembership, IsSubgroupFgGroup and IsWholeFamily);
#############################################################################
##
#F IsFpGroup(<G>)
##
## <#GAPDoc Label="IsFpGroup">
## <ManSection>
## <Func Name="IsFpGroup" Arg='G'/>
##
## <Description>
## is a synonym for
## <C>IsSubgroupFpGroup(<A>G</A>) and IsGroupOfFamily(<A>G</A>)</C>.
## <P/>
## Free groups are a special case of finitely presented groups,
## namely finitely presented groups with no relators.
## <P/>
## Another special case are groups given by polycyclic presentations.
## &GAP; uses a special representation for these groups which is created
## in a different way.
## See chapter <Ref Chap="Pc Groups"/> for details.
## <Example><![CDATA[
## gap> g:=FreeGroup(2);
## <free group on the generators [ f1, f2 ]>
## gap> IsFpGroup(g);
## true
## gap> h:=CyclicGroup(2);
## <pc group of size 2 with 1 generators>
## gap> IsFpGroup(h);
## false
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "IsFpGroup", IsSubgroupFpGroup and IsGroupOfFamily );
#############################################################################
##
#C IsElementOfFpGroup
##
## <ManSection>
## <Filt Name="IsElementOfFpGroup" Arg='obj' Type='Category'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareCategory( "IsElementOfFpGroup",
IsMultiplicativeElementWithInverse and IsAssociativeElement );
#############################################################################
##
#C IsElementOfFpGroupCollection
##
## <ManSection>
## <Filt Name="IsElementOfFpGroupCollection" Arg='obj' Type='Category'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareCategoryCollections( "IsElementOfFpGroup" );
#############################################################################
##
#m IsSubgroupFpGroup
##
InstallTrueMethod(IsSubgroupFpGroup,IsGroup and IsElementOfFpGroupCollection);
## free groups also are to be fp
InstallTrueMethod(IsSubgroupFpGroup,IsGroup and IsAssocWordCollection);
#############################################################################
##
#M IsGeneratorsOfMagmaWithInverses( <fpelmscoll> )
##
InstallTrueMethod( IsGeneratorsOfMagmaWithInverses,
IsElementOfFpGroupCollection );
#############################################################################
##
#C IsElementOfFpGroupFamily
##
## <ManSection>
## <Filt Name="IsElementOfFpGroupFamily" Arg='obj' Type='Category'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareCategoryFamily( "IsElementOfFpGroup" );
#############################################################################
##
#A FpElmEqualityMethod(<fam>)
##
## <ManSection>
## <Attr Name="FpElmEqualityMethod" Arg='fam'/>
##
## <Description>
## If <A>fam</A> is the elements family of a finitely presented group this
## attribute returns a function <C>equal(<A>left</A>, <A>right</A>)</C> that will be
## used to compare elements in <A>fam</A>.
## </Description>
## </ManSection>
##
DeclareAttribute( "FpElmEqualityMethod",IsElementOfFpGroupFamily);
#############################################################################
##
#A FpElmComparisonMethod(<fam>)
##
## <#GAPDoc Label="FpElmComparisonMethod">
## <ManSection>
## <Attr Name="FpElmComparisonMethod" Arg='fam'/>
##
## <Description>
## If <A>fam</A> is the elements family of a finitely presented group this
## attribute returns a function <C>smaller(<A>left</A>, <A>right</A>)</C>
## that will be used to compare elements in <A>fam</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "FpElmComparisonMethod",IsElementOfFpGroupFamily);
#############################################################################
##
#F SetReducedMultiplication(<f>)
#F SetReducedMultiplication(<e>)
#F SetReducedMultiplication(<fam>)
##
## <#GAPDoc Label="SetReducedMultiplication">
## <ManSection>
## <Func Name="SetReducedMultiplication" Arg='obj'/>
##
## <Description>
## For an FpGroup <A>obj</A>, an element <A>obj</A> of it or the family
## <A>obj</A> of its elements,
## this function will force immediate reduction when multiplying, keeping
## words short at extra cost per multiplication.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("SetReducedMultiplication");
#############################################################################
##
#A FpElementNFFunction(<fam>)
##
## <ManSection>
## <Attr Name="FpElementNFFunction" Arg='fam'/>
##
## <Description>
## If <A>fam</A> is the elements family of a finitely presented group this
## attribute returns a function <A>f</A>, which, when applied to the
## <b>underlying element</b> of an element of <A>fam</A> returns a <b>normal
## form</b> (whose format is not defined and will differ on the method used).
## This normal form can be used (and is used by
## <Ref Func="SetReducedMultiplication"/>) to
## compare elements or to reduce long products.
## </Description>
## </ManSection>
##
DeclareAttribute( "FpElementNFFunction",IsElementOfFpGroupFamily);
# #############################################################################
# ##
# #A FpElmKBRWS(<fam>)
# ##
# ## <ManSection>
# ## <Attr Name="FpElmKBRWS" Arg='fam'/>
# ##
# ## <Description>
# ## If <A>fam</A> is the elements family of a finitely presented group this
# ## attribute returns a list [<A>iso</A>,<A>k</A>,<A>id</A>] where <A>iso</A> is a isomorphism to an
# ## fp monoid, <A>k</A> a confluent rewriting system for the image of <A>iso</A> and
# ## <A>id</A> the element in the free monoid corresponding to the image of the
# ## identity element under <A>iso</A>.
# ## </Description>
# ## </ManSection>
# ##
#DeclareAttribute( "FpElmKBRWS",IsElementOfFpGroupFamily);
#############################################################################
##
#O ElementOfFpGroup( <fam>, <word> )
##
## <#GAPDoc Label="ElementOfFpGroup">
## <ManSection>
## <Oper Name="ElementOfFpGroup" Arg='fam, word'/>
##
## <Description>
## If <A>fam</A> is the elements family of a finitely presented group
## and <A>word</A> is a word in the free generators underlying this
## finitely presented group, this operation creates the element with the
## representative <A>word</A> in the free group.
## <Example><![CDATA[
## gap> ge := ElementOfFpGroup( FamilyObj( g.1 ), f.1*f.2 );
## a*b
## gap> ge in f;
## false
## gap> ge in g;
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ElementOfFpGroup",
[ IsElementOfFpGroupFamily, IsAssocWordWithInverse ] );
#############################################################################
##
#V TCENUM
#V GAPTCENUM
##
## <ManSection>
## <Var Name="TCENUM"/>
## <Var Name="GAPTCENUM"/>
##
## <Description>
## TCENUM is a global record variable whose components contain functions
## used for coset enumeration. By default <C>TCENUM</C> is assigned to
## <C>GAPTCENUM</C>, which contains the coset enumeration functions provided by
## the GAP library.
## </Description>
## </ManSection>
##
BindGlobal("GAPTCENUM",rec(name:="GAP Felsch-type enumerator"));
TCENUM:=GAPTCENUM;
#############################################################################
##
#F CosetTableFromGensAndRels( <fgens>, <grels>, <fsgens> )
##
## <#GAPDoc Label="CosetTableFromGensAndRels">
## <ManSection>
## <Func Name="CosetTableFromGensAndRels" Arg='fgens, grels, fsgens'/>
##
## <Description>
## <Index Key="TCENUM"><C>TCENUM</C></Index>
## <Index Key="GAPTCENUM"><C>GAPTCENUM</C></Index>
## is an internal function which is called by the functions
## <Ref Func="CosetTable"/>, <Ref Func="CosetTableInWholeGroup"/>
## and others.
## It is, in fact, the proper working horse that performs a Todd-Coxeter
## coset enumeration.
## <A>fgens</A> must be a set of free generators and <A>grels</A> a set
## of relators in these generators. <A>fsgens</A> are subgroup generators
## expressed as words in these generators. The function returns a coset
## table with respect to <A>fgens</A>.
## <P/>
## <Ref Func="CosetTableFromGensAndRels"/> will call
## <C>TCENUM.CosetTableFromGensAndRels</C>.
## This makes it possible to replace the built-in coset enumerator with
## another one by assigning <C>TCENUM</C> to another record.
## <P/>
## The library version which is used by default performs a standard Felsch
## strategy coset enumeration. You can call this function explicitly as
## <C>GAPTCENUM.CosetTableFromGensAndRels</C> even if other coset enumerators
## are installed.
## <P/>
## The expected parameters are
## <List>
## <Mark><A>fgens</A></Mark>
## <Item>
## generators of the free group <A>F</A>
## </Item>
## <Mark><A>grels</A></Mark>
## <Item>
## relators as words in <A>F</A>
## </Item>
## <Mark><A>fsgens</A></Mark>
## <Item>
## subgroup generators as words in <A>F</A>.
## </Item>
## </List>
## <P/>
## <Ref Func="CosetTableFromGensAndRels"/> processes two options (see
## chapter <Ref Chap="Options Stack"/>):
## <List>
## <Mark><C>max</C></Mark>
## <Item>
## The limit of the number of cosets to be defined. If the
## enumeration does not finish with this number of cosets, an error is
## raised and the user is asked whether she wants to continue. The
## default value is the value given in the variable
## <C>CosetTableDefaultMaxLimit</C>. (Due to the algorithm the actual
## limit used can be a bit higher than the number given.)
## </Item>
## <Mark><C>silent</C></Mark>
## <Item>
## If set to <K>true</K> the algorithm will not raise the error
## mentioned under option <C>max</C> but silently return <K>fail</K>.
## This can be useful if an enumeration is only wanted unless it becomes
## too big.
## </Item>
## </List>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("CosetTableFromGensAndRels");
#############################################################################
##
#F IndexCosetTab( <table> )
##
## <ManSection>
## <Func Name="IndexCosetTab" Arg='table'/>
##
## <Description>
## this function returns <C>Length(table[1])</C>, but the table might be empty
## for a no-generator group, in which case 1 is returned.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("IndexCosetTab");
#############################################################################
##
#F StandardizeTable( <table>, <standard> )
##
## <#GAPDoc Label="StandardizeTable">
## <ManSection>
## <Func Name="StandardizeTable" Arg='table, standard'/>
##
## <Description>
## standardizes the given coset table <A>table</A>. The second argument is
## optional. It defines the standard to be used, its values may be
## <C>"lenlex"</C> or <C>"semilenlex"</C> specifying the new or the old
## convention, respectively.
## If no value for the parameter <A>standard</A> is provided the
## function will use the global variable <Ref Var="CosetTableStandard"/>
## instead.
## Note that the function alters the given table, it does not create a copy.
## <Example><![CDATA[
## gap> StandardizeTable( tab, "semilenlex" );
## gap> PrintArray( TransposedMat( tab ) );
## [ [ 1, 1, 2, 4 ],
## [ 3, 3, 4, 1 ],
## [ 2, 2, 3, 3 ],
## [ 5, 5, 1, 2 ],
## [ 4, 4, 5, 5 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("StandardizeTable");
#############################################################################
##
#F StandardizeTable2( <table>, <table2>, <standard> )
##
## <ManSection>
## <Func Name="StandardizeTable2" Arg='table, table2, standard'/>
##
## <Description>
## standardizes the augmented coset table given by <A>table</A> and <A>table2</A>.
## The third argument is optional. It defines the standard to be used, its
## values may be <C>"lenlex"</C> or <C>"semilenlex"</C> specifying the new or the old
## convention, respectively. If no value for the parameter <A>standard</A> is
## provided the function will use the global variable <C>CosetTableStandard</C>
## instead. Note that the function alters the given table, it does not
## create a copy.
## <P/>
## Warning: The function alters just the two tables. Any further lists
## involved in the object <E>augmented coset table</E> which refer to these two
## tables will not be updated.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("StandardizeTable2");
#############################################################################
##
#A CosetTableInWholeGroup(< H >)
#O TryCosetTableInWholeGroup(< H >)
##
## <#GAPDoc Label="CosetTableInWholeGroup">
## <ManSection>
## <Attr Name="CosetTableInWholeGroup" Arg='H'/>
## <Oper Name="TryCosetTableInWholeGroup" Arg='H'/>
##
## <Description>
## is equivalent to <C>CosetTable(<A>G</A>,<A>H</A>)</C> where <A>G</A> is
## the (unique) finitely presented group such that <A>H</A> is a subgroup
## of <A>G</A>.
## It overrides a <C>silent</C> option
## (see <Ref Func="CosetTableFromGensAndRels"/>) with <K>false</K>.
## <P/>
## The variant <Ref Func="TryCosetTableInWholeGroup"/> does not override the
## <C>silent</C> option with <K>false</K> in case a coset table is only
## wanted if not too expensive.
## It will store a result that is not <K>fail</K> in the attribute
## <Ref Func="CosetTableInWholeGroup"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "CosetTableInWholeGroup", IsGroup );
DeclareOperation( "TryCosetTableInWholeGroup", [IsGroup] );
InstallTrueMethod(CanEasilyTestMembership,
IsSubgroupFpGroup and HasCosetTableInWholeGroup);
#############################################################################
##
#A CosetTableNormalClosureInWholeGroup(< H >)
##
## <ManSection>
## <Attr Name="CosetTableNormalClosureInWholeGroup" Arg='H'/>
##
## <Description>
## is equivalent to <C>CosetTableNormalClosure(<A>G</A>,<A>H</A>)</C> where <A>G</A> is the
## (unique) finitely presented group such that <A>H</A> is a subgroup of <A>G</A>.
## It overrides a <C>silent</C> option (see <Ref Func="CosetTableFromGensAndRels"/>) with
## <K>false</K>.
## </Description>
## </ManSection>
##
DeclareAttribute( "CosetTableNormalClosureInWholeGroup", IsGroup );
#############################################################################
##
#F TracedCosetFpGroup( <tab>, <word>, <pt> )
##
## <#GAPDoc Label="TracedCosetFpGroup">
## <ManSection>
## <Func Name="TracedCosetFpGroup" Arg='tab, word, pt'/>
##
## <Description>
## Traces the coset number <A>pt</A> under the word <A>word</A> through the
## coset table <A>tab</A>.
## (Note: <A>word</A> must be in the free group, use
## <Ref Func="UnderlyingElement" Label="fp group elements"/> if in doubt.)
## <Example><![CDATA[
## gap> TracedCosetFpGroup(tab,UnderlyingElement(g.1),2);
## 4
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("TracedCosetFpGroup");
#############################################################################
##
#F SubgroupOfWholeGroupByCosetTable( <fpfam>, <tab> )
##
## <#GAPDoc Label="SubgroupOfWholeGroupByCosetTable">
## <ManSection>
## <Func Name="SubgroupOfWholeGroupByCosetTable" Arg='fpfam, tab'/>
##
## <Description>
## takes a family <A>fpfam</A> of an FpGroup and a coset table <A>tab</A>
## and returns the subgroup of <A>fpfam</A><C>!.wholeGroup</C> defined by
## this coset table.
## See also <Ref Func="CosetTableBySubgroup"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("SubgroupOfWholeGroupByCosetTable");
#############################################################################
##
#F SubgroupOfWholeGroupByQuotientSubgroup( <fpfam>, <Q>, <U> )
##
## <#GAPDoc Label="SubgroupOfWholeGroupByQuotientSubgroup">
## <ManSection>
## <Func Name="SubgroupOfWholeGroupByQuotientSubgroup" Arg='fpfam, Q, U'/>
##
## <Description>
## takes a FpGroup family <A>fpfam</A>, a finitely generated group <A>Q</A>
## such that the fp generators of <A>fpfam</A> can be mapped by an
## epimorphism <M>phi</M> onto the <Ref Func="GeneratorsOfGroup"/> value
## of <A>Q</A>, and a subgroup <A>U</A> of <A>Q</A>.
## It returns the subgroup of <A>fpfam</A><C>!.wholeGroup</C> which is
## the full preimage of <A>U</A> under <M>phi</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("SubgroupOfWholeGroupByQuotientSubgroup");
#############################################################################
##
#R IsSubgroupOfWholeGroupByQuotientRep(<G>)
##
## <#GAPDoc Label="IsSubgroupOfWholeGroupByQuotientRep">
## <ManSection>
## <Filt Name="IsSubgroupOfWholeGroupByQuotientRep" Arg='G'
## Type='Representation'/>
##
## <Description>
## is the representation for subgroups of an FpGroup, given by a quotient
## subgroup. The components <A>G</A><C>!.quot</C> and <A>G</A><C>!.sub</C>
## hold quotient, respectively subgroup.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareRepresentation("IsSubgroupOfWholeGroupByQuotientRep",
IsSubgroupFpGroup,["quot","sub"]);
#############################################################################
##
#F DefiningQuotientHomomorphism(<U>)
##
## <#GAPDoc Label="DefiningQuotientHomomorphism">
## <ManSection>
## <Func Name="DefiningQuotientHomomorphism" Arg='U'/>
##
## <Description>
## if <A>U</A> is a subgroup in quotient representation
## (<Ref Func="IsSubgroupOfWholeGroupByQuotientRep"/>),
## this function returns the
## defining homomorphism from the whole group to <A>U</A><C>!.quot</C>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("DefiningQuotientHomomorphism");
#############################################################################
##
#A AsSubgroupOfWholeGroupByQuotient(<U>)
##
## <#GAPDoc Label="AsSubgroupOfWholeGroupByQuotient">
## <ManSection>
## <Attr Name="AsSubgroupOfWholeGroupByQuotient" Arg='U'/>
##
## <Description>
## returns the same subgroup in the representation
## <Ref Func="AsSubgroupOfWholeGroupByQuotient"/>.
## <P/>
## See also <Ref Func="SubgroupOfWholeGroupByCosetTable"/>
## and <Ref Func="CosetTableBySubgroup"/>.
## <P/>
## This technique is used by &GAP; for example to represent the derived
## subgroup, which is obtained from the quotient <M>G/G'</M>.
## <Example><![CDATA[
## gap> f:=FreeGroup(2);;g:=f/[f.1^6,f.2^6,(f.1*f.2)^6];;
## gap> d:=DerivedSubgroup(g);
## Group(<fp, no generators known>)
## gap> Index(g,d);
## 36
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute("AsSubgroupOfWholeGroupByQuotient", IsSubgroupFpGroup);
############################################################################
##
#O LowIndexSubgroupsFpGroupIterator( <G>[, <H>], <index>[, <excluded>] )
#O LowIndexSubgroupsFpGroup( <G>[, <H>], <index>[, <excluded>] )
##
## <#GAPDoc Label="LowIndexSubgroupsFpGroupIterator">
## <ManSection>
## <Oper Name="LowIndexSubgroupsFpGroupIterator"
## Arg='G[, H], index[, excluded]'/>
## <Oper Name="LowIndexSubgroupsFpGroup" Arg='G[, H], index[, excluded]'/>
##
## <Description>
## <Index Subkey="for low index subgroups">iterator</Index>
## These functions compute representatives of the conjugacy classes of
## subgroups of the finitely presented group <A>G</A> that contain the
## subgroup <A>H</A> of <A>G</A> and that have index less than or equal to
## <A>index</A>.
## <P/>
## <Ref Func="LowIndexSubgroupsFpGroupIterator"/> returns an iterator
## (see <Ref Sect="Iterators"/>)
## that can be used to run over these subgroups,
## and <Ref Func="LowIndexSubgroupsFpGroup"/> returns the list of these
## subgroups.
## If one is interested only in one or a few subgroups up to a given index
## then preferably the iterator should be used.
## <P/>
## If the optional argument <A>excluded</A> has been specified, then it is
## expected to be a list of words in the free generators of the underlying
## free group of <A>G</A>, and <Ref Func="LowIndexSubgroupsFpGroup"/>
## returns only those subgroups of index at most <A>index</A> that contain
## <A>H</A>, but do not contain any conjugate of any of the group elements
## defined by these words.
## <P/>
## If not given, <A>H</A> defaults to the trivial subgroup.
## <P/>
## The algorithm used finds the requested subgroups
## by systematically running through a tree of all potential coset tables
## of <A>G</A> of length at most <A>index</A> (where it skips all branches
## of that tree for which it knows in advance that they cannot provide new
## classes of such subgroups).
## The time required to do this depends, of course, on the presentation of
## <A>G</A>, but in general it will grow exponentially with
## the value of <A>index</A>. So you should be careful with the choice of
## <A>index</A>.
## <Example><![CDATA[
## gap> li:=LowIndexSubgroupsFpGroup( g, TrivialSubgroup( g ), 10 );
## [ Group(<fp, no generators known>), Group(<fp, no generators known>),
## Group(<fp, no generators known>), Group(<fp, no generators known>) ]
## ]]></Example>
## <P/>
## By default, the algorithm computes no generating sets for the subgroups.
## This can be enforced with <Ref Func="GeneratorsOfGroup"/>:
## <Example><![CDATA[
## gap> GeneratorsOfGroup(li[2]);
## [ a, b*a*b^-1 ]
## ]]></Example>
## <P/>
## If we are interested just in one (proper) subgroup of index at most
## <M>10</M>, we can use the function that returns an iterator.
## The first subgroup found is the group itself,
## except if a list of excluded elements is entered (see below),
## so we look at the second subgroup.
## <P/>
## <Example><![CDATA[
## gap> iter:= LowIndexSubgroupsFpGroupIterator( g, 10 );;
## gap> s1:= NextIterator( iter );; Index( g, s1 );
## 1
## gap> IsDoneIterator( iter );
## false
## gap> s2:= NextIterator( iter );; s2 = li[2];
## true
## ]]></Example>
## <P/>
## As an example for an application of the optional parameter
## <A>excluded</A>, we
## compute all conjugacy classes of torsion free subgroups of index at most
## <M>24</M> in the group <M>G =
## \langle x,y,z \mid x^2, y^4, z^3, (xy)^3, (yz)^2, (xz)^3 \rangle</M>.
## It is know from theory that each torsion element of this
## group is conjugate to a power of <M>x</M>, <M>y</M>, <M>z</M>, <M>xy</M>,
## <M>xz</M>, or <M>yz</M>.
## (Note that this includes conjugates of <M>y^2</M>.)
## <P/>
## <Example><![CDATA[
## gap> F := FreeGroup( "x", "y", "z" );;
## gap> x := F.1;; y := F.2;; z := F.3;;
## gap> G := F / [ x^2, y^4, z^3, (x*y)^3, (y*z)^2, (x*z)^3 ];;
## gap> torsion := [ x, y, y^2, z, x*y, x*z, y*z ];;
## gap> SetInfoLevel( InfoFpGroup, 2 );
## gap> lis := LowIndexSubgroupsFpGroup(G, TrivialSubgroup(G), 24, torsion);;
## #I LowIndexSubgroupsFpGroup called
## #I class 1 of index 24 and length 8
## #I class 2 of index 24 and length 24
## #I class 3 of index 24 and length 24
## #I class 4 of index 24 and length 24
## #I class 5 of index 24 and length 24
## #I LowIndexSubgroupsFpGroup done. Found 5 classes
## gap> SetInfoLevel( InfoFpGroup, 0 );
## ]]></Example>
## <P/>
## If a particular image group is desired, the operation
## <Ref Func="GQuotients"/>
## (see <Ref Sect="Quotient Methods"/>) can be useful as well.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "LowIndexSubgroupsFpGroupIterator",
[ IsSubgroupFpGroup, IsPosInt ] );
DeclareOperation( "LowIndexSubgroupsFpGroupIterator",
[ IsSubgroupFpGroup, IsSubgroupFpGroup, IsPosInt ] );
DeclareOperation( "LowIndexSubgroupsFpGroupIterator",
[ IsSubgroupFpGroup and IsWholeFamily, IsPosInt, IsList ] );
DeclareOperation( "LowIndexSubgroupsFpGroupIterator",
[ IsSubgroupFpGroup and IsWholeFamily, IsSubgroupFpGroup, IsPosInt,
IsList ] );
DeclareOperation("LowIndexSubgroupsFpGroup",
[IsSubgroupFpGroup,IsSubgroupFpGroup,IsPosInt]);
############################################################################
##
#F MostFrequentGeneratorFpGroup( <G> )
##
## <#GAPDoc Label="MostFrequentGeneratorFpGroup">
## <ManSection>
## <Func Name="MostFrequentGeneratorFpGroup" Arg='G'/>
##
## <Description>
## is an internal function which is used in some applications of coset
## table methods. It returns the first of those generators of the given
## finitely presented group <A>G</A> which occur most frequently in the
## relators.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("MostFrequentGeneratorFpGroup");
#############################################################################
##
#A FreeGeneratorsOfFpGroup( <G> )
#O FreeGeneratorsOfWholeGroup( <U> )
##
## <#GAPDoc Label="FreeGeneratorsOfFpGroup">
## <ManSection>
## <Attr Name="FreeGeneratorsOfFpGroup" Arg='G'/>
## <Oper Name="FreeGeneratorsOfWholeGroup" Arg='U'/>
##
## <Description>
## <Ref Func="FreeGeneratorsOfFpGroup"/> returns the underlying free
## generators corresponding to the generators of the finitely presented
## group <A>G</A> which must be a full FpGroup.
## <P/>
## <Ref Func="FreeGeneratorsOfWholeGroup"/> also works for subgroups of an
## FpGroup and returns the free generators of the full group that defines
## the family.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "FreeGeneratorsOfFpGroup",
IsSubgroupFpGroup and IsGroupOfFamily );
DeclareOperation( "FreeGeneratorsOfWholeGroup",
[IsSubgroupFpGroup] );
############################################################################
##
#A RelatorsOfFpGroup(<G>)
##
## <#GAPDoc Label="RelatorsOfFpGroup">
## <ManSection>
## <Attr Name="RelatorsOfFpGroup" Arg='G'/>
##
## <Description>
## returns the relators of the finitely presented group <A>G</A> as words
## in the free generators provided by the
## <Ref Func="FreeGeneratorsOfFpGroup"/> value of <A>G</A>.
## <Example><![CDATA[
## gap> f := FreeGroup( "a", "b" );;
## gap> g := f / [ f.1^5, f.2^2, f.1^f.2*f.1 ];
## <fp group on the generators [ a, b ]>
## gap> Size( g );
## 10
## gap> FreeGroupOfFpGroup( g ) = f;
## true
## gap> FreeGeneratorsOfFpGroup( g );
## [ a, b ]
## gap> RelatorsOfFpGroup( g );
## [ a^5, b^2, b^-1*a*b*a ]
## ]]></Example>
## <P/>
## Note that these attributes are only available for the <E>full</E>
## finitely presented group.
## It is possible (for example by using <Ref Func="Subgroup"/>) to
## construct a subgroup of index <M>1</M> which is not identical to the
## whole group.
## The latter one can be obtained in this situation via
## <Ref Func="Parent"/>.
## <P/>
## Elements of a finitely presented group are not words, but are represented
## using a word from the free group as representative. The following two
## commands obtain this representative, respectively create an element in the
## finitely presented group.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute("RelatorsOfFpGroup",IsSubgroupFpGroup and IsGroupOfFamily);
#############################################################################
##
#A FreeGroupOfFpGroup(<G>)
##
## <#GAPDoc Label="FreeGroupOfFpGroup">
## <ManSection>
## <Attr Name="FreeGroupOfFpGroup" Arg='G'/>
##
## <Description>
## returns the underlying free group for the finitely presented group
## <A>G</A>.
## This is the group generated by the free generators provided by the
## <Ref Func="FreeGeneratorsOfFpGroup"/> value of <A>G</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute("FreeGroupOfFpGroup",IsSubgroupFpGroup and IsGroupOfFamily);
#############################################################################
##
#A IndicesInvolutaryGenerators( <G> )
##
## <#GAPDoc Label="IndicesInvolutaryGenerators">
## <ManSection>
## <Attr Name="IndicesInvolutaryGenerators" Arg='G'/>
##
## <Description>
## returns the indices of those generators of the finitely presented group
## <A>G</A> which are known to be involutions. This knowledge is used by
## internal functions to improve the performance of coset enumerations.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute("IndicesInvolutaryGenerators",
IsSubgroupFpGroup and IsGroupOfFamily);
############################################################################
##
#F RelatorRepresentatives(<rels>)
##
## <ManSection>
## <Func Name="RelatorRepresentatives" Arg='rels'/>
##
## <Description>
## returns a set of relators, that contains for each relator in the list
## <A>rels</A> its minimal cyclical permutation (which is automatically
## cyclically reduced).
## </Description>
## </ManSection>
##
DeclareGlobalFunction("RelatorRepresentatives");
#############################################################################
##
#F RelsSortedByStartGen( <gens>, <rels>, <table> )
##
## <ManSection>
## <Func Name="RelsSortedByStartGen" Arg='gens, rels, table'/>
##
## <Description>
## is a subroutine of the Felsch Todd-Coxeter and the Reduced
## Reidemeister-Schreier routines. It returns a list which for each
## generator or inverse generator in <A>gens</A> contains a list of all
## cyclically reduced relators, starting with that element, which can be
## obtained by conjugating or inverting the given relators <A>rels</A>. The
## relators are represented as lists of the coset table columns from the
## table <A>table</A> corresponding to the generators and, in addition, as lists
## of the respective column numbers.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("RelsSortedByStartGen");
#############################################################################
##
#A IsomorphismPermGroupOrFailFpGroup( <G> [,<max>] )
##
## <ManSection>
## <Attr Name="IsomorphismPermGroupOrFailFpGroup" Arg='G [,max]'/>
##
## <Description>
## returns an isomorphism <M>\varphi</M> from the fp group <A>G</A> onto
## a permutation group <A>P</A> which is isomorphic to <A>G</A>, if one can be found
## with reasonable effort and of reasonable degree. The function
## returns <K>fail</K> otherwise.
## <P/>
## The optional argument <C>max</C> can be used to override the default maximal
## size of a coset table used (and thus the maximal degree of the resulting
## permutation).
## </Description>
## </ManSection>
##
DeclareGlobalFunction("IsomorphismPermGroupOrFailFpGroup");
#############################################################################
##
#F SubgroupGeneratorsCosetTable(<freegens>,<fprels>,<table>)
##
## <ManSection>
## <Func Name="SubgroupGeneratorsCosetTable" Arg='freegens,fprels,table'/>
##
## <Description>
## determinates subgroup generators for the subgroup given by the coset
## table <A>table</A> from the free generators <A>freegens</A>,
## the relators <A>fprels</A> (as words in <A>freegens</A>).
## It returns words in <A>freegens</A>.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "SubgroupGeneratorsCosetTable" );
#############################################################################
##
#F LiftFactorFpHom(<hom>,<G>,<M>,<N>,<dec>)
##
## <ManSection>
## <Func Name="LiftFactorFpHom" Arg='hom,G,M,N,dec'/>
##
## <Description>
## Let <A>hom</A> be an epimorphism from a group <A>G</A> to a finitely presented
## group <A>F</A> with kernel <A>M</A> and <M>M/N</M> a chief factor.
## If <M>M/N</M> is abelian, then <A>dec</A> is a modulo pcgs. Otherwise <A>dec</A> is a
## homomorphism from <A>M</A> onto a finitely presented group, with kernel <A>N</A>.
## This function
## constructs a new fp group <A>F2</A> isomorphic to <M>G/N</M> and returns an
## epimorphism from <A>G</A> onto <A>F2</A>.
## <P/>
## No test of the arguments is performed.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "LiftFactorFpHom" );
DeclareGlobalFunction( "IsomorphismFpGroupByChiefSeriesFactor" );
#############################################################################
##
#F ComplementFactorFpHom(<hom>,<G>,<M>,<N>,<C>,<Ggens>,<Cgens>)
##
## <ManSection>
## <Func Name="ComplementFactorFpHom" Arg='hom,G,M,N,C,Ggens,Cgens'/>
##
## <Description>
## Let <A>hom</A> be an epimorphism from a group <A>G</A> to a finitely presented
## group <A>F</A> with kernel <A>M</A> and <M>M/N</M> be elementary abelian and <M>C/N</M> a
## complement to <A>M</A> in <M>G/N</M>. The set <A>Cgens</A> is a set of generators of
## <A>C</A> modulo <A>N</A>, <A>Ggens</A> are corresponding representatives in <A>G</A>.
## This function constructs a new epimorphism from <A>C</A> onto <A>F</A>.
## <P/>
## No test of the arguments is performed.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "ComplementFactorFpHom" );
#############################################################################
##
#F FactorGroupFpGroupByRels( <G>, <elts> )
##
## <#GAPDoc Label="FactorGroupFpGroupByRels">
## <ManSection>
## <Func Name="FactorGroupFpGroupByRels" Arg='G, elts'/>
##
## <Description>
## returns the factor group <A>G</A>/<M>N</M> of <A>G</A> by
## the normal closure <M>N</M> of <A>elts</A>
## where <A>elts</A> is expected to be a list of elements of <A>G</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "FactorGroupFpGroupByRels" );
#############################################################################
##
#F ExcludedOrders( <fpgrp>[,<ords>] )
#A StoredExcludedOrders( <fpgrp> )
##
## <ManSection>
## <Func Name="ExcludedOrders" Arg='fpgrp[,ords]'/>
## <Attr Name="StoredExcludedOrders" Arg='fpgrp'/>
##
## <Description>
## for a (full) finitely presented group <A>fpgrp</A> this attribute returns
## a list of orders, corresponding to <Ref Func="GeneratorsOfGroup"/>,
## for which the presentation collapses.
## (That is, the group becomes trivial when a relator <M>g_i^o</M> is
## added.) If given, the list <A>ords</A> contains a set of
## orders corresponding to the generators which are explicitly to be
## tested.
## (The mutable attribute <Ref Func="StoredExcludedOrders"/> is used to
## store results.)
## </Description>
## </ManSection>
##
DeclareGlobalFunction("ExcludedOrders");
DeclareAttribute( "StoredExcludedOrders",IsSubgroupFpGroup,"mutable");
#############################################################################
##
#F NewmanInfinityCriterion(<G>,<p>)
##
## <#GAPDoc Label="NewmanInfinityCriterion">
## <ManSection>
## <Func Name="NewmanInfinityCriterion" Arg='G, p'/>
##
## <Description>
## Let <A>G</A> be a finitely presented group and <A>p</A> a prime that
## divides the order of the commutator factor group of <A>G</A>.
## This function applies an infinity criterion due to M. F. Newman
## <Cite Key="New90"/> to <A>G</A>.
## (See <Cite Key="Joh97" Where="chapter 16"/> for a more explicit
## description.)
## It returns <K>true</K>
## if the criterion succeeds in proving that <A>G</A> is infinite and
## <K>fail</K> otherwise.
## <P/>
## Note that the criterion uses the number of generators and
## relations in the presentation of <A>G</A>.
## Reduction of the presentation via Tietze transformations
## (<Ref Func="IsomorphismSimplifiedFpGroup"/>) therefore might
## produce an isomorphic group, for which the criterion will work better.
## <Example><![CDATA[
## gap> g:=FibonacciGroup(2,9);
## <fp group on the generators [ f1, f2, f3, f4, f5, f6, f7, f8, f9 ]>
## gap> hom:=EpimorphismNilpotentQuotient(g,2);;
## gap> k:=Kernel(hom);;
## gap> Index(g,k);
## 152
## gap> AbelianInvariants(k);
## [ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ]
## gap> NewmanInfinityCriterion(Kernel(hom),5);
## true
## ]]></Example>
## <P/>
## This proves that the subgroup <C>k</C>
## (and thus the whole group <C>g</C>) is infinite.
## (This is the original example from <Cite Key="New90"/>.)
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("NewmanInfinityCriterion");
#############################################################################
##
#F FibonacciGroup(<r>,<n>)
#F FibonacciGroup(<n>)
##
## <ManSection>
## <Func Name="FibonacciGroup" Arg='r,n'/>
## <Func Name="FibonacciGroup" Arg='n'/>
##
## <Description>
## This function returns the <E>Fibonacci group</E> with parameters <A>r</A>, <A>n</A>.
## This is a finitely presented group with <A>n</A> generators <M>x_i</M> and <A>n</A>
## relators <M>x_i\cdot\cdots\cdot x_{r+i-1}/x_{r+i}</M> (with indices reduced
## modulo <A>n</A>).
## <P/>
## If <A>r</A> is omitted, it defaults to 2.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("FibonacciGroup");
#############################################################################
##
#A FPFaithHom(<fam>)
##
## <ManSection>
## <Attr Name="FPFaithHom" Arg='fam'/>
##
## <Description>
## For the elements family <A>fam</A> of a finite fp group <A>G</A> this returns an
## isomorphism to a permutation
## or a pc group isomorphic to <A>G</A>.
## </Description>
## </ManSection>
##
DeclareAttribute("FPFaithHom",IsFamily);
#############################################################################
##
#F ParseRelators(<gens>,<rels>)
##
## <#GAPDoc Label="ParseRelators">
## <ManSection>
## <Func Name="ParseRelators" Arg='gens, rels'/>
##
## <Description>
## Will translate a list of relations as given in print, e.g.
## <M>x y^2 = (x y^3 x)^2 xy = yzx</M> into relators.
## <A>gens</A> must be a list of generators of a free group,
## each being displayed by a single letter.
## <A>rels</A> is a string that lists a sequence of equalities.
## These must be written in the letters which are the names of
## the generators in <A>gens</A>.
## Change of upper/lower case is interpreted to indicate inverses.
## <P/>
## <Example><![CDATA[
## gap> f:=FreeGroup("x","y","z");;
## gap> AssignGeneratorVariables(f);
## #I Assigned the global variables [ x, y, z ]
## gap> r:=ParseRelators([x,y,z],
## > "x^2 = y^5 = z^3 = (xyxyxy^4)^2 = (xz)^2 = (y^2z)^2 = 1");
## [ x^2, y^5, z^3, (x*z)^2, (y^2*z)^2, ((x*y)^3*y^3)^2 ]
## gap> g:=f/r;
## <fp group on the generators [ x, y, z ]>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("ParseRelators");
#############################################################################
##
#F StringFactorizationWord(<w>)
##
## <#GAPDoc Label="StringFactorizationWord">
## <ManSection>
## <Func Name="StringFactorizationWord" Arg='w'/>
##
## <Description>
## returns a string that expresses a given word <A>w</A> in compact form
## written as a string. Inverses are expressed by changing the upper/lower
## case of the generators, recurring expressions are written as products.
## <Example><![CDATA[
## gap> StringFactorizationWord(z^-1*x*y*y*y*x*x*y*y*y*x*y^-1*x);
## "Z(xy3x)2Yx"
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("StringFactorizationWord");
#############################################################################
##
#E
|