/usr/share/gap/lib/grplatt.gd is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 | #############################################################################
##
#W grplatt.gd GAP library Martin Schönert,
#W Alexander Hulpke
##
##
#Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains declarations for subgroup latices
##
#############################################################################
##
#V InfoLattice Information
##
## <#GAPDoc Label="InfoLattice">
## <ManSection>
## <InfoClass Name="InfoLattice"/>
##
## <Description>
## is the information class used by the cyclic extension methods for
## subgroup lattice calculations.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareInfoClass("InfoLattice");
#############################################################################
##
#R IsConjugacyClassSubgroupsRep( <obj> )
#R IsConjugacyClassSubgroupsByStabilizerRep( <obj> )
##
## <#GAPDoc Label="IsConjugacyClassSubgroupsRep">
## <ManSection>
## <Filt Name="IsConjugacyClassSubgroupsRep" Arg='obj'
## Type='Representation'/>
## <Filt Name="IsConjugacyClassSubgroupsByStabilizerRep" Arg='obj'
## Type='Representation'/>
##
## <Description>
## Is the representation &GAP; uses for conjugacy classes of subgroups.
## It can be used to check whether an object is a class of subgroups.
## The second representation
## <Ref Func="IsConjugacyClassSubgroupsByStabilizerRep"/> in
## addition is an external orbit by stabilizer and will compute its
## elements via a transversal of the stabilizer.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareRepresentation("IsConjugacyClassSubgroupsRep",
IsExternalOrbit,[]);
DeclareRepresentation("IsConjugacyClassSubgroupsByStabilizerRep",
IsConjugacyClassSubgroupsRep and IsExternalOrbitByStabilizerRep,[]);
#############################################################################
##
#O ConjugacyClassSubgroups( <G>, <U> )
##
## <#GAPDoc Label="ConjugacyClassSubgroups">
## <ManSection>
## <Oper Name="ConjugacyClassSubgroups" Arg='G, U'/>
##
## <Description>
## generates the conjugacy class of subgroups of <A>G</A> with
## representative <A>U</A>.
## This class is an external set,
## so functions such as <Ref Attr="Representative"/>,
## (which returns <A>U</A>),
## <Ref Func="ActingDomain"/> (which returns <A>G</A>),
## <Ref Func="StabilizerOfExternalSet"/> (which returns the normalizer of
## <A>U</A>), and <Ref Func="AsList"/> work for it.
## <P/>
## (The use of the <C>[]</C>
## list access to select elements of the class is considered obsolescent
## and will be removed in future versions.
## Use <Ref Func="ClassElementLattice"/> instead.)
## <P/>
## <Example><![CDATA[
## gap> g:=Group((1,2,3,4),(1,2));;IsNaturalSymmetricGroup(g);;
## gap> cl:=ConjugacyClassSubgroups(g,Subgroup(g,[(1,2)]));
## Group( [ (1,2) ] )^G
## gap> Size(cl);
## 6
## gap> ClassElementLattice(cl,4);
## Group([ (2,3) ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("ConjugacyClassSubgroups", [IsGroup,IsGroup]);
#############################################################################
##
#O ClassElementLattice(<C>,<n>)
##
## <#GAPDoc Label="ClassElementLattice">
## <ManSection>
## <Oper Name="ClassElementLattice" Arg='C, n'/>
##
## <Description>
## For a class <A>C</A> of subgroups, obtained by a lattice computation,
## this operation returns the <A>n</A>-th conjugate subgroup in the class.
## <P/>
## <E>Because of other methods installed, calling <Ref Func="AsList"/> with
## <A>C</A> can give a different arrangement of the class elements!</E>
## <P/>
## The &GAP; package <Package>XGAP</Package> permits a graphical display of
## the lattice of subgroups in a nice way.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("ClassElementLattice", [IsExternalOrbit,IsPosInt]);
#############################################################################
##
#R IsLatticeSubgroupsRep(<obj>)
##
## <ManSection>
## <Filt Name="IsLatticeSubgroupsRep" Arg='obj' Type='Representation'/>
##
## <Description>
## This representation indicates lattices of subgroups.
## </Description>
## </ManSection>
##
DeclareRepresentation("IsLatticeSubgroupsRep",
IsComponentObjectRep and IsAttributeStoringRep,
["group","conjugacyClassesSubgroups"]);
#############################################################################
##
#A Zuppos(<G>) . set of generators for cyclic subgroups of prime power size
##
## <#GAPDoc Label="Zuppos">
## <ManSection>
## <Attr Name="Zuppos" Arg='G'/>
##
## <Description>
## The <E>Zuppos</E> of a group are the cyclic subgroups of prime power order.
## (The name <Q>Zuppo</Q> derives from the German abbreviation for <Q>zyklische
## Untergruppen von Primzahlpotenzordnung</Q>.) This attribute
## gives generators of all such subgroups of a group <A>G</A>. That is all elements
## of <A>G</A> of prime power order up to the equivalence that they generate the
## same cyclic subgroup.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute("Zuppos",IsGroup);
#############################################################################
##
#F LatticeByCyclicExtension( <G>[, <func>[, <noperf>]] )
##
## <#GAPDoc Label="LatticeByCyclicExtension">
## <ManSection>
## <Func Name="LatticeByCyclicExtension" Arg='G[, func[, noperf]]'/>
##
## <Description>
## computes the lattice of <A>G</A> using the cyclic extension algorithm. If the
## function <A>func</A> is given, the algorithm will discard all subgroups not
## fulfilling <A>func</A> (and will also not extend them), returning a partial
## lattice. This can be useful to compute only subgroups with certain
## properties. Note however that this will <E>not</E> necessarily yield all
## subgroups that fulfill <A>func</A>, but the subgroups whose subgroups are used
## for the construction must also fulfill <A>func</A> as well.
## (In fact the filter <A>func</A> will simply discard subgroups in the cyclic
## extension algorithm. Therefore the trivial subgroup will always be
## included.) Also note, that for such a partial lattice
## maximality/minimality inclusion relations cannot be computed.
## (If <A>func</A> is a list of length 2, its first entry is such a
## discarding function, the second a function for discarding zuppos.)
## <P/>
## The cyclic extension algorithm requires the perfect subgroups of <A>G</A>.
## However &GAP; cannot analyze the function <A>func</A> for its implication
## but can only apply it. If it is known that <A>func</A> implies solvability,
## the computation of the perfect subgroups can be avoided by giving a
## third parameter <A>noperf</A> set to <K>true</K>.
## <P/>
## <Example><![CDATA[
## gap> g:=WreathProduct(Group((1,2,3),(1,2)),Group((1,2,3,4)));;
## gap> l:=LatticeByCyclicExtension(g,function(G)
## > return Size(G) in [1,2,3,6];end);
## <subgroup lattice of <permutation group of size 5184 with
## 9 generators>, 47 classes,
## 2628 subgroups, restricted under further condition l!.func>
## ]]></Example>
## <P/>
## The total number of classes in this example is much bigger, as the
## following example shows:
## <Example><![CDATA[
## gap> LatticeSubgroups(g);
## <subgroup lattice of <permutation group of size 5184 with
## 9 generators>, 566 classes, 27134 subgroups>
## ]]></Example> ## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("LatticeByCyclicExtension");
#############################################################################
##
#F LatticeViaRadical(<G>)
##
## <ManSection>
## <Func Name="LatticeViaRadical" Arg='G'/>
##
## <Description>
## computes the lattice of <A>G</A> using the homomorphism principle to lift the
## result from factor groups.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("LatticeViaRadical");
#############################################################################
##
#A MaximalSubgroupsLattice(<lat>)
##
## <#GAPDoc Label="MaximalSubgroupsLattice">
## <ManSection>
## <Attr Name="MaximalSubgroupsLattice" Arg='lat'/>
##
## <Description>
## For a lattice <A>lat</A> of subgroups this attribute contains the maximal
## subgroup relations among the subgroups of the lattice.
## It is a list corresponding to the <Ref Func="ConjugacyClassesSubgroups"/>
## value of the lattice, each entry giving a list of the maximal subgroups
## of the representative of this class.
## Every maximal subgroup is indicated by a list of the form <M>[ c, n ]</M>
## which means that the <M>n</M>-th subgroup in class number <M>c</M> is a
## maximal subgroup of the representative.
## <P/>
## The number <M>n</M> corresponds to access via
## <Ref Func="ClassElementLattice"/>
## and <E>not</E> necessarily the <Ref Func="AsList"/> arrangement!
## See also <Ref Func="MinimalSupergroupsLattice"/>.
## <Example><![CDATA[
## gap> MaximalSubgroupsLattice(l);
## [ [ ], [ [ 1, 1 ] ], [ [ 1, 1 ] ], [ [ 1, 1 ] ],
## [ [ 2, 1 ], [ 2, 2 ], [ 2, 3 ] ], [ [ 3, 1 ], [ 3, 6 ], [ 2, 3 ] ],
## [ [ 2, 3 ] ], [ [ 4, 1 ], [ 3, 1 ], [ 3, 2 ], [ 3, 3 ] ],
## [ [ 7, 1 ], [ 6, 1 ], [ 5, 1 ] ],
## [ [ 5, 1 ], [ 4, 1 ], [ 4, 2 ], [ 4, 3 ], [ 4, 4 ] ],
## [ [ 10, 1 ], [ 9, 1 ], [ 9, 2 ], [ 9, 3 ], [ 8, 1 ], [ 8, 2 ],
## [ 8, 3 ], [ 8, 4 ] ] ]
## gap> last[6];
## [ [ 3, 1 ], [ 3, 6 ], [ 2, 3 ] ]
## gap> u1:=Representative(ConjugacyClassesSubgroups(l)[6]);
## Group([ (3,4), (1,2)(3,4) ])
## gap> u2:=ClassElementLattice(ConjugacyClassesSubgroups(l)[3],1);;
## gap> u3:=ClassElementLattice(ConjugacyClassesSubgroups(l)[3],6);;
## gap> u4:=ClassElementLattice(ConjugacyClassesSubgroups(l)[2],3);;
## gap> IsSubgroup(u1,u2);IsSubgroup(u1,u3);IsSubgroup(u1,u4);
## true
## true
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute("MaximalSubgroupsLattice",IsLatticeSubgroupsRep);
#############################################################################
##
#A MinimalSupergroupsLattice(<lat>)
##
## <#GAPDoc Label="MinimalSupergroupsLattice">
## <ManSection>
## <Attr Name="MinimalSupergroupsLattice" Arg='lat'/>
##
## <Description>
## For a lattice <A>lat</A> of subgroups this attribute contains the minimal
## supergroup relations among the subgroups of the lattice.
## It is a list corresponding to the <Ref Func="ConjugacyClassesSubgroups"/>
## value of the lattice, each entry giving a list of the minimal supergroups
## of the representative of this class.
## Every minimal supergroup is indicated by a list of the form
## <M>[ c, n ]</M>, which means that the <M>n</M>-th subgroup in class
## number <M>c</M> is a minimal supergroup of the representative.
## <P/>
## The number <M>n</M> corresponds to access via
## <Ref Func="ClassElementLattice"/>
## and <E>not</E> necessarily the <Ref Func="AsList"/> arrangement!
## See also <Ref Func="MaximalSubgroupsLattice"/>.
## <Example><![CDATA[
## gap> MinimalSupergroupsLattice(l);
## [ [ [ 2, 1 ], [ 2, 2 ], [ 2, 3 ], [ 3, 1 ], [ 3, 2 ], [ 3, 3 ],
## [ 3, 4 ], [ 3, 5 ], [ 3, 6 ], [ 4, 1 ], [ 4, 2 ], [ 4, 3 ],
## [ 4, 4 ] ], [ [ 5, 1 ], [ 6, 2 ], [ 7, 2 ] ],
## [ [ 6, 1 ], [ 8, 1 ], [ 8, 3 ] ], [ [ 8, 1 ], [ 10, 1 ] ],
## [ [ 9, 1 ], [ 9, 2 ], [ 9, 3 ], [ 10, 1 ] ], [ [ 9, 1 ] ],
## [ [ 9, 1 ] ], [ [ 11, 1 ] ], [ [ 11, 1 ] ], [ [ 11, 1 ] ], [ ] ]
## gap> last[3];
## [ [ 6, 1 ], [ 8, 1 ], [ 8, 3 ] ]
## gap> u5:=ClassElementLattice(ConjugacyClassesSubgroups(l)[8],1);
## Group([ (3,4), (2,4,3) ])
## gap> u6:=ClassElementLattice(ConjugacyClassesSubgroups(l)[8],3);
## Group([ (1,3), (1,3,4) ])
## gap> IsSubgroup(u5,u2);
## true
## gap> IsSubgroup(u6,u2);
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute("MinimalSupergroupsLattice",IsLatticeSubgroupsRep);
#############################################################################
##
#F DotFileLatticeSubgroups( <L>, <file> )
##
## <#GAPDoc Label="DotFileLatticeSubgroups">
## <ManSection>
## <Func Name="DotFileLatticeSubgroups" Arg='L, file'/>
##
## <Description>
## <Index>dot-file</Index>
## <Index>graphviz</Index>
## <Index>OmniGraffle</Index>
## This function produces a graphical representation of the subgroup
## lattice <A>L</A> in file <A>file</A>. The output is in <C>.dot</C> (also known as
## <C>GraphViz</C> format). For details on the format, and information about how to
## display or edit this format see <URL>http://www.graphviz.org</URL>. (On the
## Macintosh, the program <C>OmniGraffle</C> is also able to read this format.)
## <P/>
## Subgroups are labelled in the form <C><A>i</A>-<A>j</A></C> where <A>i</A> is the number of
## the class of subgroups and <A>j</A> the number within this class. Normal
## subgroups are represented by a box.
## <P/>
## <Log><![CDATA[
## gap> DotFileLatticeSubgroups(l,"s4lat.dot");
## ]]></Log>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("DotFileLatticeSubgroups");
#############################################################################
##
#F ExtendSubgroupsOfNormal( <G>, <N>,<Nsubs> )
##
## <#GAPDoc Label="ExtendSubgroupsOfNormal">
## <ManSection>
## <Func Name="ExtendSubgroupsOfNormal" Arg='G,N,Nsubs'/>
##
## <Description>
## If $N$ is normal in $G$ and $Nsubs$ is a list of subgroups of $N$ up to
## conjugacy, this function extends this list to taht of all subgroups of $G$.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("ExtendSubgroupsOfNormal");
#############################################################################
##
#F SubdirectSubgroups( <D> )
##
## <#GAPDoc Label="SubdirectSubgroups">
## <ManSection>
## <Func Name="SubdirectSubgroups" Arg='D'/>
##
## <Description>
## If $D$ is created as a direct product, this function determines all
## subgroups of $D$ up to conjugacy, using subdirect products.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("SubdirectSubgroups");
#############################################################################
##
#F SubgroupsTrivialFitting( <G> )
##
## <#GAPDoc Label="SubgroupsTrivialFitting">
## <ManSection>
## <Func Name="SubgroupsTrivialFitting" Arg='G'/>
##
## <Description>
## Determines representatives of the conjugacy classes of subgroups of a
## trivial-fitting group $G$.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("SubgroupsTrivialFitting");
#############################################################################
##
#E
|