This file is indexed.

/usr/share/gap/lib/grpnames.gi is in gap-libs 4r6p5-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
#############################################################################
##
#W  grpnames.gi                                                   Stefan Kohl
##                                                             Markus Püschel
##                                                            Sebastian Egner
##
##
#Y  Copyright (C) 2004 The GAP Group
##
##  This file contains a method for determining structure descriptions for
##  given finite groups and implementations of related functionality.
##
##  The purpose of this method is to give a human reader a rough impression
##  of the group structure -- it does neither determine the group up to
##  isomorphism (this would make the description for larger groups quite long
##  and difficult to read) nor is it usually the only ``sensible''
##  description for a given group.
##
##  The code has been translated, simplified and extended by Stefan Kohl
##  from GAP3 code written by Markus Püschel and Sebastian Egner.
##

#############################################################################
##
#M  DirectFactorsOfGroup( <G> ) . . . . . . . . . . . . . . .  generic method
##
InstallMethod( DirectFactorsOfGroup,
               "generic method", true, [ IsGroup ], 0,

  function ( G )

    local  N, facts, sizes, i, j, s1, s2;

    if not IsFinite(G) then TryNextMethod(); fi;
    N := ShallowCopy(NormalSubgroups(G));
    sizes := List(N,Size);
    SortParallel(sizes,N);
    for s1 in Difference(Set(sizes),[Size(G),1]) do
      i := PositionSet(sizes,s1);
      s2 := Size(G)/s1;
      if s1 <= s2 then 
        repeat
          if s2 > s1 then
            j := PositionSet(sizes,s2);
            if j = fail then break; fi;
          else 
            j := i + 1;
          fi;
          while sizes[j] = s2 do
            if IsTrivial(Intersection(N[i],N[j])) then
              return Union(DirectFactorsOfGroup(N[i]),
                           DirectFactorsOfGroup(N[j]));
            fi;
            j := j + 1;
          od;
          i := i + 1;
        until sizes[i] <> s1;
      fi;
    od;
    return [ G ];
  end );

#############################################################################
##
#M  SemidirectFactorsOfGroup( <G> ) . . . . . . . . . . . . .  generic method
##
InstallMethod( SemidirectFactorsOfGroup,
               "generic method", true, [ IsGroup ], 0,

  function ( G )

    local  Hs, Ns, H, N, sizeH, sizeN, firstHN, HNs;

    if not IsFinite(G) then TryNextMethod(); fi;

    # representatives of non-1-or-G subgroups
    Hs := ConjugacyClassesSubgroups(G);
    Hs := List(Hs{[2..Length(Hs)-1]}, Representative);

    # non-1-or-G normal subgroups
    Ns := Reversed( Filtered(Hs, H -> IsNormal(G, H)) );

    # find first decomposition
    firstHN := function ()

      local H, N, sizeNs;

      sizeNs := List(Ns, Size);
      for H in Hs do
        if Size(G)/Size(H) in sizeNs then
          for N in Filtered(Ns, N -> Size(N) = Size(G)/Size(H)) do
            if IsTrivial(NormalIntersection(N, H)) then
              return Size(H);
            fi;
          od;
        fi;
      od;
      return 0;
    end;

    sizeH := firstHN();
    if sizeH = 0 then return [ ]; fi;

    # find all minimal decompositions
    sizeN := Size(G)/sizeH;
    HNs := [ ];
    for H in Filtered(Hs, H -> Size(H) = sizeH) do
      for N in Filtered(Ns, N -> Size(N) = sizeN) do
        if IsTrivial(NormalIntersection(N, H)) then
          Add(HNs, [H, N]);
        fi;
      od;
    od;
    return HNs;
  end );

#############################################################################
##
#M  DecompositionTypesOfGroup( <G> ) . . . . . . . . . . . . . generic method
##
InstallMethod( DecompositionTypesOfGroup,
               "generic method", true, [ IsGroup ], 0,

  function ( G )

    local  AG, a,  # abelian invariants; an invariant 
           CS,     # conjugacy classes of non-(1-or-G) subgroups
           H,      # a subgroup (possibly normal)
           N,      # a normal subgroup
           T,      # an isom. type
           TH, tH, # isom. types for H, a type
           TN, tN, # isom. types for N, a type
           DTypes; # the decomposition types

    if not IsFinite(G) then TryNextMethod(); fi;

    DTypes := [ ];

    # abelian special case
    if IsAbelian(G) then
      AG := AbelianInvariants(G);
      if Length(AG) = 1 then DTypes := Set([AG[1]]); else
        T := ["x"];
        for a in AG do Add(T,a); od;
        DTypes := Set([T]);
      fi;
      return DTypes;
    fi;

    # brute force enumeration
    CS  := ConjugacyClassesSubgroups( G );
    CS  := CS{[2..Length(CS)-1]};
    for N in Filtered(List(Reversed(CS),Representative),
                      N -> IsNormal(G,N)) do
      for H in List(CS, Representative) do # Lemma1 (`SemidirectFactors...')
        if    Size(H)*Size(N) = Size(G)
          and IsTrivial(NormalIntersection(N,H)) 
        then
          # recursion (exponentially) on (semi-)factors
          TH := DecompositionTypesOfGroup(H);
          TN := DecompositionTypesOfGroup(N);
          if IsNormal(G,H)
          then
            # non-trivial G = H x N
            for tH in TH do
              for tN in TN do
                T := [ ];
                if   IsList(tH) and tH[1] = "x"
                then Append(T,tH{[2..Length(tH)]});
                else Add(T,tH); fi;
                if   IsList(tN) and tN[1] = "x"
                then Append(T,tN{[2..Length(tN)]});
                else Add(T,tN); fi; 
                Sort(T);
                AddSet(DTypes,Concatenation(["x"],T));
              od;
            od;
          else
            # non-direct, non-trivial G = H semidirect N 
            for tH in TH do
              for tN in TN do
                AddSet(DTypes,[":",tH,tN]);
              od;
            od;
          fi;
        fi;
      od;
    od;

    # default: a non-split extension
    if Length(DTypes) = 0 then DTypes := Set([["non-split",Size(G)]]); fi;

    return DTypes;
  end );

#############################################################################
##
#M  IsDihedralGroup( <G> ) . . . . . . . . . . . . . . . . . . generic method
##
InstallMethod( IsDihedralGroup,
               "generic method", true, [ IsGroup ], 0,

  function ( G )

    local  Zn, G1, T, n, t, s, i;

    if not IsFinite(G) then TryNextMethod(); fi;

    if Size(G) mod 2 <> 0 then return false; fi;
    n := Size(G)/2;

    # find a normal subgroup of G of type Zn
    if n mod 2 <> 0 then
      # G = < s, t | s^n = t^2 = 1, s^t = s^-1 >
      # ==> Comm(s, t) = s^-1 t s t = s^-2 ==> G' = < s^2 > = < s >
      Zn := DerivedSubgroup(G);
      if not ( IsCyclic(Zn) and Size(Zn) = n ) then return false; fi;
    else # n mod 2 = 0
      # G = < s, t | s^n = t^2 = 1, s^t = s^-1 >
      # ==> Comm(s, t) = s^-1 t s t = s^-2 ==> G' = < s^2 >
      G1 := DerivedSubgroup(G);
      if not ( IsCyclic(G1) and Size(G1) = n/2 ) then return false; fi;
      # G/G1 = {1*G1, t*G1, s*G1, t*s*G1}
      T := RightTransversal(G,G1);
      i := 1;
      repeat
        Zn := ClosureGroup(G1,T[i]);
        i  := i + 1;
      until i > 4 or ( IsCyclic(Zn) and Size(Zn) = n );
      if not ( IsCyclic(Zn) and Size(Zn) = n ) then return false; fi;
    fi; # now Zn is normal in G and Zn = < s | s^n = 1 >

    # choose t in G\Zn and check dihedral structure
    repeat t := Random(G); until not t in Zn;
    if not (Order(t) = 2 and ForAll(GeneratorsOfGroup(Zn),s->t*s*t*s=s^0))
    then return false; fi;

    # choose generator s of Zn
    repeat s := Random(Zn); until Order(s) = n;
    SetDihedralGenerators(G,[t,s]);
    return true;
  end );

#############################################################################
##
#M  IsQuaternionGroup( <G> ) . . . . . . . . . . . . . . . . . generic method
##
InstallMethod( IsQuaternionGroup,
               "generic method", true, [ IsGroup ], 0,

  function ( G )

    local  N,    # size of G
           k,    # ld(N)
           n,    # N/2
           G1,   # derived subgroup of G
           Zn,   # cyclic normal subgroup of index 2 in G
           T,    # transversal of G/G1
           t, s, # canonical generators of the quaternion group
           i;    # counter

    if not IsFinite(G) then TryNextMethod(); fi;

    N := Size(G);
    k := LogInt(N,2);
    if not( 2^k = N and k >= 3 ) then return false; fi;
    n := N/2;

    # G = <t, s | s^(2^k) = 1, t^2 = s^(2^k-1), s^t = s^-1>
    # ==> Comm(s, t) = s^-1 t s t = s^-2 ==> G' = < s^2 >
    G1 := DerivedSubgroup(G);
    if not ( IsCyclic(G1) and Size(G1) = n/2 ) then return false; fi;

    # find a normal subgroup of G of type Zn
    # G/G1 = {1*G1, t*G1, s*G1, t*s*G1}
    T := RightTransversal(G, G1);
    i := 1;
    repeat
      Zn := ClosureGroup(G1,T[i]);
      i  := i + 1;
    until i > 4 or ( IsCyclic(Zn) and Size(Zn) = n );
    if not ( IsCyclic(Zn) and Size(Zn) = n ) then return false; fi;

    # now Zn is normal in G and Zn = < s | s^n = 1 >
    # choose t in G\Zn and check quaternion structure
    repeat t := Random(G); until not t in Zn;
    if not (Order(t) = 4 and ForAll(GeneratorsOfGroup(Zn), s->s^t*s = s^0))
    then return false; fi;

    # choose generator s of Zn
    repeat s := Random(Zn); until Order(s) = n;
    SetQuaternionGenerators(G,[t,s]);
    return true;
  end );

#############################################################################
##
#M  IsQuasiDihedralGroup( <G> ) . . . . . . . . . . . . . . .  generic method
##
InstallMethod( IsQuasiDihedralGroup,
               "generic method", true, [ IsGroup ], 0,

  function ( G )

    local  N,    # size of G
           k,    # ld(N)
           n,    # N/2
           G1,   # derived subgroup of G
           Zn,   # cyclic normal subgroup of index 2 in G
           T,    # transversal of G/G1
           t, s, # canonical generators of the quasidihedral group
           i;    # counter

    if not IsFinite(G) then TryNextMethod(); fi;

    N := Size(G);
    k := LogInt(N, 2);
    if not( 2^k = N and k >= 4 ) then return false; fi;
    n := N/2;

    # G = <t, s | s^(2^n) = t^2 = 1, s^t = s^(-1 + 2^(n-1))>.
    # ==> Comm(s, t) = s^-1 t s t = s^(-2+2^(n-1)) 
    # ==> G' = < s^(-2+2^(n-1)) >, |G'| = n/2.
    G1 := DerivedSubgroup(G);
    if not ( IsCyclic(G1) and Size(G1) = n/2 ) then return false; fi;

    # find a normal subgroup of G of type Zn
    # G/G1 = {1*G1, t*G1, s*G1, t*s*G1}
    T := RightTransversal(G, G1);
    i := 1;
    repeat
      Zn := ClosureGroup(G1,T[i]);
      i  := i + 1;
    until i > 4 or ( IsCyclic(Zn) and Size(Zn) = n );
    if not ( IsCyclic(Zn) and Size(Zn) = n ) then return false; fi;

    # now Zn is normal in G and Zn = < s | s^n = 1 >
    # now remain only the possibilities for the structure: 
    #   dihedral, quaternion, quasidihedral
    repeat t := Random(G); until not t in Zn;

    # detect cases: dihedral, quaternion
    if   ForAll(GeneratorsOfGroup(Zn), s -> s^t*s = s^0)
    then return false; fi;
 
    # choose t in Zn of order 2   
    repeat
      t := Random(G);
    until not( t in Zn and Order(t) = 2 ); # prob = 1/4

    # choose generator s of Zn
    repeat s := Random(Zn); until Order(s) = n;

    SetQuasiDihedralGenerators(G,[t,s]);
    return true;
  end );

#############################################################################
##
#M  IsAlternatingGroup( <G> ) . . . . . . . . . . . . . . . .  generic method
##
##  This method additionally sets the attribute `AlternatingDegree' in case
##  <G> is isomorphic to a natural alternating group.
##
InstallMethod( IsAlternatingGroup,
               "generic method", true, [ IsGroup ], 0,

  function ( G )

    local  n, ids, info;

    if not IsFinite(G) then TryNextMethod(); fi;

    if IsNaturalAlternatingGroup(G) then return true;fi;
    if Size(G) < 60 then
      if Size(G) = 1 then
        SetAlternatingDegree(G,0); return true;
      elif Size(G) = 3 then
        SetAlternatingDegree(G,3); return true;
      elif Size(G) = 12 and IdGroup(G) = [ 12, 3 ] then
        SetAlternatingDegree(G,4); return true;
      else return false; fi;
    fi;

    if not IsSimpleGroup(G) then return false; fi;

    info := IsomorphismTypeInfoFiniteSimpleGroup(G);
    if   info.series = "A"
    then SetAlternatingDegree(G,info.parameter); return true;
    else return false; fi;
  end );

#############################################################################
##
#M  AlternatingDegree( <G> ) generic method, dispatch to `IsAlternatingGroup'
##
InstallMethod( AlternatingDegree,
               "generic method, dispatch to `IsAlternatingGroup'",
               true, [ IsGroup ], 0,

  function ( G )
    if not IsFinite(G) then TryNextMethod(); fi;
    if IsNaturalAlternatingGroup(G) then return DegreeAction(G); fi;
    if IsAlternatingGroup(G) then return AlternatingDegree(G);
                             else return fail; fi;
  end );

#############################################################################
##
#M  IsNaturalAlternatingGroup( <G> ) . . . . . . .  for non-permutation group
##
InstallOtherMethod( IsNaturalAlternatingGroup, "for non-permutation group",
                    true, [ IsGroup ], 0,

  function ( G )
    if not IsFinite(G) then TryNextMethod(); fi;
    if not IsPermGroup(G) then return false; else TryNextMethod(); fi;
  end );

#############################################################################
##
#M  IsSymmetricGroup( <G> ) . . . . . . . . . . . . . . . . .  generic method
##
##  This method additionally sets the attribute `SymmetricDegree' in case 
##  <G> is isomorphic to a natural symmetric group.
##
InstallMethod( IsSymmetricGroup,
               "generic method", true, [ IsGroup ], 0,

  function ( G )

    local  G1;

    if IsNaturalSymmetricGroup(G) then return true;fi;
    if not IsFinite(G) then TryNextMethod(); fi;

    # special treatment of small cases
    if Size(G)<=2 then SetSymmetricDegree(G,Size(G)); return true;
    elif Size(G)=6 and not IsAbelian(G) then
      SetSymmetricDegree(G,3);return true;
    fi;

    G1 := DerivedSubgroup(G);
    if   not (IsAlternatingGroup(G1) and Index(G,G1) = 2)
      # this requires deg>=4
      or not IsTrivial(Centralizer(G,G1))
      or Size(G) = 720 and IdGroup(G) <> [ 720, 763 ]
    then return false; fi;
    SetSymmetricDegree(G,AlternatingDegree(G1));
    return true;
  end );

#############################################################################
##
#M  IsNaturalSymmetricGroup( <G> ) . . . . . . . .  for non-permutation group
##
InstallOtherMethod( IsNaturalSymmetricGroup, "for non-permutation group",
                    true, [ IsGroup ], 0,

  function ( G )
    if not IsFinite(G) then TryNextMethod(); fi;
    if not IsPermGroup(G) then return false; else TryNextMethod(); fi;
  end );

#############################################################################
##
#M  SymmetricDegree( <G> ) . . generic method, dispatch to `IsSymmetricGroup'
##
InstallMethod( SymmetricDegree,
               "generic method, dispatch to `IsSymmetricGroup'",
               true, [ IsGroup ], 0,

  function ( G )
    if not IsFinite(G) then TryNextMethod(); fi;
    if IsNaturalSymmetricGroup(G) then return DegreeAction(G); fi;
    if IsSymmetricGroup(G) then return SymmetricDegree(G);
                           else return fail; fi;
  end );

#############################################################################
##
#F  SizeGL(  <n>, <q> )
##
InstallGlobalFunction( SizeGL,

  function ( n, q )

    local N, qn, k;

    N  := 1;
    qn := q^n;
    for k in [0..n-1] do
      N := N * (qn - q^k);
    od;
    return N;
  end );

#############################################################################
##
#F  SizeSL(  <n>, <q> )
##
InstallGlobalFunction( SizeSL,

  function ( n, q )

    local N, qn, k;

    N  := 1;
    qn := q^n;
    for k in [0..n-1] do
      N := N * (qn - q^k);
    od;
    return N/(q - 1);
  end );

#############################################################################
##
#F  SizePSL(  <n>, <q> )
##
InstallGlobalFunction( SizePSL,

  function ( n, q )

    local N, qn, k;

    N  := 1;
    qn := q^n;
    for k in [0..n-1] do
      N := N * (qn - q^k);
    od;
    return N/((q - 1)*(Gcd(n, q - 1)));
  end );

#############################################################################
##
#F  LinearGroupParameters(  <N>  )
##
InstallGlobalFunction( LinearGroupParameters,

  function ( N )

    local  npeGL,      # list of possible [n, p, e] for a GL
           npeSL,      # list of possible [n, p, e] for a SL
           npePSL,     # list of possible [n, p, e] for a PSL
           n, p, e,    # N = Size(GL(n, p^e))
           pe, p2, ep, # p^ep is maximal prime power divisor of N
           e2,         # a divisor of ep
           x, r, G;    # temporaries

    if not IsPosInt(N) then Error("<N> must be positive integer"); fi;

    # Formeln:
    # |GL(n, q)|  = Product(q^n - q^k : k in [0..n-1])
    # |SL(n, q)|  = |GL(n, q)| / (q - 1)
    # |PSL(n, q)| = |SL(n, q)| / gcd(n, q - 1)
    #   mit q = p^e f"ur p prim, e >= 1, n >= 1.

    # Betrachte N = |GL(n,q)|. Dann gilt f"ur n >= 2
    #   (1) nu_p(N) = e * Binomial(n,2) und
    #   (2) (q - 1)^n teilt N.  
    npeGL := [ ]; npeSL := [ ]; npePSL := [ ];
    if N = 1 then
      return rec( npeGL := npeGL, npeSL := npeSL, npePSL := npePSL );
    fi;
    for pe in Collected(Factors(N)) do
      p  := pe[1];
      ep := pe[2];

      # find e, n such that (1) e*Binomial(n,2) = ep
      for e in DivisorsInt(ep) do

        # find n such that Binomial(n, 2) = ep/e
        # <==> 8 ep/e + 1 = (2 n - 1)^2
        x := 8*ep/e + 1;
        r := RootInt(x, 2);
        if r^2 = x then
          n := (r + 1)/2;

          # decide it
          G := SizeGL(n, p^e);
          if N = G then Add(npeGL,[n, p, e]); fi;
          if N = G/(p^e - 1) then Add(npeSL, [n, p, e]); fi;
          if N = G/((p^e - 1)*GcdInt(p^e - 1, n)) then
            Add(npePSL, [n, p, e]);
          fi;
        fi;
      od;
    od;
    return rec( npeGL := npeGL, npeSL := npeSL, npePSL := npePSL );
  end );

#############################################################################
##
#M  IsPSL( <G> )
##
InstallMethod( IsPSL,
               "generic method for finite groups", true, [ IsGroup ], 0,

  function ( G )

    local  npes, npe;  # list of possible PSL-parameters

    if not IsFinite(G) then TryNextMethod(); fi;

    if Size(G)>12 and not IsSimpleGroup(G) then
      return false;
    fi;

    # check if G has appropiate size
    npes := LinearGroupParameters(Size(G)).npePSL;
    if Length(npes) = 0 then return false; fi;

    # more than one npe-triple should only
    # occur in the cases |G| in [60, 168, 20160] 
    if   Length(npes) > 1 and not( Size(G) in [60, 168, 20160] ) 
    then Error("algebraic panic! propably npe does not work"); fi;

    # set the parameters
    npe := npes[1];

    # catch the cases:
    #   PSL(2, 2) ~= S3, PSL(2, 3) ~= A4,
    # in which the PSL is not simple

    # PSL(2, 2)
    if npes[1] = [2, 2, 1] then
      if IsAbelian(G) then return false; fi;
      SetParametersOfGroupViewedAsPSL(G,npe); return true;
  
    # PSL(2, 3)
    elif npes[1] = [2, 3, 1] then
      if Size(DerivedSubgroup(G)) <> 4 then return false; fi;
      SetParametersOfGroupViewedAsPSL(G,npe); return true;

   # PSL(3, 4) / PSL(4, 2)
    elif npes = [ [ 4, 2, 1 ], [ 3, 2, 2 ] ] then
      if   IdGroup(SylowSubgroup(G,2)) = [64,138] then npe := npes[1];
      elif IdGroup(SylowSubgroup(G,2)) = [64,242] then npe := npes[2]; fi;
      SetParametersOfGroupViewedAsPSL(G,npe); return true;

    # other cases
    else
      if not IsSimpleGroup(G) then return false; fi;
      SetParametersOfGroupViewedAsPSL(G,npe); return true;
    fi;
  end );

#############################################################################
##
#M  PSLDegree( <G> ) . . . . . . . . . . . . generic method for finite groups
##
InstallMethod( PSLDegree,
               "generic method for finite groups", true, [ IsGroup ], 0,

  function ( G )
    if not IsFinite(G) then TryNextMethod(); fi;
    if not IsPSL(G) then return fail; fi;
    return ParametersOfGroupViewedAsPSL(G)[1];
  end );

#############################################################################
##
#M  PSLUnderlyingField( <G> ) . . . . . . .  generic method for finite groups
##
InstallMethod( PSLUnderlyingField,
               "generic method for finite groups", true, [ IsGroup ], 0,

  function ( G )
    if not IsFinite(G) then TryNextMethod(); fi;
    if not IsPSL(G) then return fail; fi;
    return GF(ParametersOfGroupViewedAsPSL(G)[2]^ParametersOfGroupViewedAsPSL(G)[3]);
  end );

#############################################################################
##
#M  IsSL( <G> ) . . . . . . . . . . . . . .  generic method for finite groups
##
InstallMethod( IsSL,
               "generic method for finite groups", true, [ IsGroup ], 0,

  function ( G )

    local  npes,  # list of possible SL-parameters
           C;     # centre of G

    if not IsFinite(G) then TryNextMethod(); fi;

    # check if G has appropiate size
    npes := LinearGroupParameters(Size(G)).npeSL;
    if Length(npes) = 0 then return false; fi;

    # more than one npe-triple should never occur
    if Length(npes) > 1 then
      Error("algebraic panic! this should not occur");
    fi;
    npes := npes[1]; 

    # catch the cases:
    #   SL(2, 2) ~= S3, SL(2, 3)
    # in which the corresponding FactorGroup PSL is not simple

    # SL(2, 2)
    if npes = [2, 2, 1] then
      if IsAbelian(G) then return false; fi;
      SetParametersOfGroupViewedAsSL(G,npes); return true;

    # SL(2, 3)
    elif npes = [2, 3, 1] then
      if Size(DerivedSubgroup(G)) <> 8 then return false; fi;
      SetParametersOfGroupViewedAsSL(G,npes); return true;

    # other cases, in which the contained PSL is simple
    else

      # calculate the centre C of G, which should have the 
      # size gcd(n, p^e - 1), and if so, check if G/C (which
      # should be the corresponding PSL) is simple
      C := Centre(G);
      if   Size(C) <> Gcd(npes[1],npes[2]^npes[3] - 1)
        or not IsSimpleGroup(G/C)
        or Size(G)/2 in List(NormalSubgroups(G),Size)
      then return false; fi;
     if   IsomorphismGroups(G,SL(npes[1],npes[2]^npes[3])) = fail
     then return false; fi;
     SetParametersOfGroupViewedAsSL(G,npes); return true;
    fi;
  end );

#############################################################################
##
#M  SLDegree( <G> ) . . . . . . . . . . . .  generic method for finite groups
##
InstallMethod( SLDegree,
               "generic method for finite groups", true, [ IsGroup ], 0,

  function ( G )
    if not IsFinite(G) then TryNextMethod(); fi;
    if not IsSL(G) then return fail; fi;
    if   HasIsNaturalSL(G) and IsNaturalSL(G)
    then return DimensionOfMatrixGroup(G); fi;
    return ParametersOfGroupViewedAsSL(G)[1];
  end );

#############################################################################
##
#M  SLUnderlyingField( <G> ) . . . . . . . . generic method for finite groups
##
InstallMethod( SLUnderlyingField,
               "generic method for finite groups", true, [ IsGroup ], 0,

  function ( G )
    if not IsFinite(G) then TryNextMethod(); fi;
    if not IsSL(G) then return fail; fi;
    if   HasIsNaturalSL(G) and IsNaturalSL(G)
    then return FieldOfMatrixGroup(G); fi;
    return GF(ParametersOfGroupViewedAsSL(G)[2]^ParametersOfGroupViewedAsSL(G)[3]);
  end );

#############################################################################
##
#M  IsGL( <G> )
##
InstallMethod( IsGL,
               "generic method for finite groups", true, [ IsGroup ], 0,

  function ( G )

    local  npes,  # list of possible GL-parameters
           G1,    # derived subgroup of G
           C1;    # centre of G1

    if not IsFinite(G) then TryNextMethod(); fi;

    # check if G has appropiate size
    npes := LinearGroupParameters(Size(G)).npeGL;
    if Length(npes) = 0 then return false; fi;
  
    # more than one npe-triple should never occur
    if Length(npes) > 1 then
      Error("algebraic panic! this should not occur");
    fi;
    npes := npes[1];

    # catch the cases:
    #   GL(2, 2) ~= S3, GL(2, 3)
    # in which the contained group PSL is not simple

    # GL(2, 2)
    if npes = [2, 2, 1] then
      if IsAbelian(G) then return false; fi;
      SetParametersOfGroupViewedAsGL(G,npes); return true;

    # GL(2, 3)
    elif npes = [2, 3, 1] then
      if IdGroup(G) <> [48,29] then return false; fi;
      SetParametersOfGroupViewedAsGL(G,npes); return true;

    # other cases, in which contained PSL is simple
    else

      # calculate the derived subgroup which should be the
      # corresponding SL of index p^e - 1
      G1 := DerivedSubgroup(G);
      if Index(G, G1) <> npes[2]^npes[3] - 1 then return false; fi;

      # calculate the centre C1 of G1, which should have the 
      # size gcd(n, p^e - 1), and if so, check if G1/C1 
      # (which should be the corresponding PSL) is simple
      C1 := Centre(G1);
      if   Size(C1) <> Gcd(npes[1],npes[2]^npes[3] - 1)
        or not IsSimpleGroup(G1/C1)
      then return false; fi;
      if   IsomorphismGroups(G,GL(npes[1],npes[2]^npes[3])) = fail
      then return false; fi;
      SetParametersOfGroupViewedAsGL(G,npes); return true;
    fi;
  end );

#############################################################################
##
#M  GLDegree( <G> ) . . . . . . . . . . . .  generic method for finite groups
##
InstallMethod( GLDegree,
               "generic method for finite groups", true, [ IsGroup ], 0,

  function ( G )
    if not IsFinite(G) then TryNextMethod(); fi;
    if not IsGL(G) then return fail; fi;
    if   HasIsNaturalGL(G) and IsNaturalGL(G)
    then return DimensionOfMatrixGroup(G); fi;
    return ParametersOfGroupViewedAsGL(G)[1];
  end );

#############################################################################
##
#M  GLUnderlyingField( <G> ) . . . . . . . . generic method for finite groups
##
InstallMethod( GLUnderlyingField,
               "generic method for finite groups", true, [ IsGroup ], 0,

  function ( G )
    if not IsFinite(G) then TryNextMethod(); fi;
    if not IsGL(G) then return fail; fi;
    if   HasIsNaturalGL(G) and IsNaturalGL(G)
    then return FieldOfMatrixGroup(G); fi;
    return GF(ParametersOfGroupViewedAsGL(G)[2]^ParametersOfGroupViewedAsGL(G)[3]);
  end );

#############################################################################
##
#M  StructureDescription( <G> ) . . . . . . . . . . . . . .  for finite group
##
InstallMethod( StructureDescription,
               "for finite groups", true, [ IsGroup ], 0,

  function ( G )

    local  G1,           # the group G reconstructed; result
           Hs,           # split factors of G
           Gs,           # factors of G
           cyclics,      # cyclic factors of G
           cycsizes,     # sizes of cyclic factors of G
           noncyclics,   # noncyclic factors of G
           cycname,      # part of name corresponding to cyclics
           noncycname,   # part of name corresponding to noncyclics
           insertsep,    # function to join parts of name
           cycsaspowers, # function to write C2 x C2 x C2 as 2^3, etc.
           name,         # buffer for computed name
           cname,        # name for centre of G
           dname,        # name for derived subgroup of G
           series,       # series of simple groups
           parameter,    # parameters of G in series
           HNs,          # minimal [H, N] decompositions
           HNs1,         # HN's with prefered H or N
           HNs1Names,    # names of products in HNs1
           HN, H, N,     # semidirect factors of G
           HNname,       # name of HN
           len,          # maximal number of direct factors
           g,            # an element of G
           id,           # id of G in the library of perfect groups
           short,        # short / long output format
           i;            # counter

    insertsep := function ( strs, sep, brack )

      local  s, i;

      if strs = [] then return ""; fi;
      strs := Filtered(strs,str->str<>"");
      if Length(strs) > 1 then
        for i in [1..Length(strs)] do
          if   Intersection(strs[i],brack) <> ""
          then strs[i] := Concatenation("(",strs[i],")"); fi;
        od;
      fi;
      s := strs[1];
      for i in [2..Length(strs)] do
        s := Concatenation(s,sep,strs[i]);
      od;
      if short then RemoveCharacters(s," "); fi;
      return s;
    end;

    cycsaspowers := function ( name )

      local  p, k, q;

      if not short then return name; fi;
      RemoveCharacters(name," ");
      for q in Filtered(Reversed(DivisorsInt(Size(G))),
                        IsPrimePowerInt)
      do
        p := SmallestRootInt(q); k := LogInt(q,p);
        if k > 1 then
          name := ReplacedString(name,insertsep(List([1..k],
                    i->Concatenation("C",String(p))),"x",""),
                    Concatenation(String(p),"^",String(k)));
        fi;
      od;
      RemoveCharacters(name,"C");
      return name;
    end;

    if not IsFinite(G) then TryNextMethod(); fi;

    short := ValueOption("short") = true;

    # fetch name from precomputed list, if available
    if ValueOption("recompute") <> true and Size(G) <= 2000 then
      if IsBound(NAMES_OF_SMALL_GROUPS[Size(G)]) then
        i := IdGroup(G)[2];
        if IsBound(NAMES_OF_SMALL_GROUPS[Size(G)][i]) then
          name := ShallowCopy(NAMES_OF_SMALL_GROUPS[Size(G)][i]);
          return cycsaspowers(name);
        fi;
      fi;
    fi;

    # special case trivial group
    if IsTrivial(G) then return "1"; fi;

    # special case abelian group
    if IsAbelian(G) then
      cycsizes := AbelianInvariants(G);
      cycsizes := Reversed(ElementaryDivisorsMat(DiagonalMat(cycsizes)));
      cycsizes := Filtered(cycsizes,n->n<>1);
      return cycsaspowers(insertsep(List(cycsizes,
                                         n->Concatenation("C",String(n))),
                                    " x ",""));
    fi;

    # special case alternating group
    if   IsAlternatingGroup(G)
    then return Concatenation("A",String(AlternatingDegree(G))); fi;

    # special case symmetric group
    if   IsSymmetricGroup(G)
    then return Concatenation("S",String(SymmetricDegree(G))); fi;

    # special case dihedral group
    if   IsDihedralGroup(G) and Size(G) > 6
    then return Concatenation("D",String(Size(G))); fi;

    # special case quaternion group
    if   IsQuaternionGroup(G)
    then return Concatenation("Q",String(Size(G))); fi;

    # special case quasidihedral group
    if   IsQuasiDihedralGroup(G)
    then return Concatenation("QD",String(Size(G))); fi;

    # special case PSL
    if IsPSL(G) then
      return Concatenation("PSL(",String(PSLDegree(G)),",",
                                  String(Size(PSLUnderlyingField(G))),")");
    fi;

    # special case SL
    if IsSL(G) then
      return Concatenation("SL(",String(SLDegree(G)),",",
                                 String(Size(SLUnderlyingField(G))),")");
    fi;

    # special case GL
    if IsGL(G) then
      return Concatenation("GL(",String(GLDegree(G)),",",
                                 String(Size(GLUnderlyingField(G))),")");
    fi;

    # other simple group
    if IsSimpleGroup(G) then
      name := SplitString(IsomorphismTypeInfoFiniteSimpleGroup(G).name," ");
      name := name[1];
      if Position(name,',') = fail then RemoveCharacters(name,"()"); else
        series    := IsomorphismTypeInfoFiniteSimpleGroup(G).series;
        parameter := IsomorphismTypeInfoFiniteSimpleGroup(G).parameter;
        if   series = "2A" then
          name := Concatenation("PSU(",String(parameter[1]+1),",",
                                       String(parameter[2]),")");
        elif series = "B" then
          name := Concatenation("O(",String(2*parameter[1]+1),",",
                                     String(parameter[2]),")");
        elif series = "2B" then
          name := Concatenation("Sz(",String(parameter),")");
        elif series = "C" then
          name := Concatenation("PSp(",String(2*parameter[1]),",",
                                       String(parameter[2]),")");
        elif series = "D" then
          name := Concatenation("O+(",String(2*parameter[1]),",",
                                      String(parameter[2]),")");
        elif series = "2D" then
          name := Concatenation("O-(",String(2*parameter[1]),",",
                                      String(parameter[2]),")");
        elif series = "3D" then
          name := Concatenation("3D(4,",String(parameter),")");
        elif series in ["2F","2G"] and parameter > 2 then
          name := Concatenation("Ree(",parameter,")");
        fi;
      fi;
      return name;
    fi;

    # direct product decomposition
    Gs := DirectFactorsOfGroup( G );
    if Length(Gs) > 1 then

      # decompose the factors
      Hs := List(Gs,StructureDescription);

      # construct
      cyclics  := Filtered(Gs,IsCyclic);
      if cyclics <> [] then
        cycsizes := ElementaryDivisorsMat(DiagonalMat(List(cyclics,Size)));
        cycsizes := Filtered(cycsizes,n->n<>1);
        cycname  := cycsaspowers(insertsep(List(cycsizes,
                                 n->Concatenation("C",String(n))),
                                 " x ",":."));
      else cycname := ""; fi;
      noncyclics := Difference(Gs,cyclics);
      noncycname := insertsep(List(noncyclics,StructureDescription),
                              " x ",":.");

      return insertsep([cycname,noncycname]," x ",":.");
    fi;

    # semidirect product decomposition
    HNs := SemidirectFactorsOfGroup( G );
    if Length(HNs) > 0 then

      # prefer abelian H; abelian N; many direct factors in N; phi injective
      HNs1 := Filtered(HNs, HN -> IsAbelian(HN[1])); 
      if Length(HNs1) > 0 then HNs := HNs1; fi;
      HNs1 := Filtered(HNs, HN -> IsAbelian(HN[2]));
      if Length(HNs1) > 0 then
        HNs := HNs1;
        len := Maximum( List(HNs, HN -> Length(AbelianInvariants(HN[2]))) );
        HNs := Filtered(HNs, HN -> Length(AbelianInvariants(HN[2])) = len);
      fi;
      HNs1 := Filtered(HNs, HN -> Length(DirectFactorsOfGroup(HN[2])) > 1);
      if Length(HNs1) > 0 then
        HNs := HNs1;
        len := Maximum(List(HNs,HN -> Length(DirectFactorsOfGroup(HN[2]))));
        HNs := Filtered(HNs,HN -> Length(DirectFactorsOfGroup(HN[2]))=len);
      fi;
      HNs1 := Filtered(HNs, HN -> IsTrivial(Centralizer(HN[1],HN[2])));
      if Length(HNs1) > 0 then HNs := HNs1; fi;
      if Length(HNs) > 1 then

        # decompose the pairs [H, N] and remove isomorphic copies
        HNs1      := [];
        HNs1Names := [];
        for HN in HNs do
          HNname := Concatenation(StructureDescription(HN[1]),
                                  StructureDescription(HN[2]));
          if not HNname in HNs1Names then
            Add(HNs1,      HN);
            Add(HNs1Names, HNname);
          fi;
        od;
        HNs := HNs1;

        if Length(HNs) > 1 then
          Info(InfoWarning,2,"Warning! Non-unique semidirect product:");
          Info(InfoWarning,2,List(HNs,HN -> List(HN,StructureDescription)));
        fi;
      fi;

      H := HNs[1][1]; N := HNs[1][2];

      return insertsep([StructureDescription(N),
                        StructureDescription(H)]," : ","x:.");
    fi;

    # non-splitting, non-simple group
    if not IsTrivial(Centre(G)) then
      cname := insertsep([StructureDescription(Centre(G)),
                          StructureDescription(G/Centre(G))]," . ","x:.");
    fi;
    if not IsPerfectGroup(G) then
      dname := insertsep([StructureDescription(DerivedSubgroup(G)),
                          StructureDescription(G/DerivedSubgroup(G))],
                         " . ","x:.");
    fi;
    if   IsBound(cname) and IsBound(dname) and cname <> dname
    then return Concatenation(cname," = ",dname);
    elif IsBound(cname) then return cname;
    elif IsBound(dname) then return dname;
    elif not IsTrivial(FrattiniSubgroup(G))
    then return insertsep([StructureDescription(FrattiniSubgroup(G)),
                           StructureDescription(G/FrattiniSubgroup(G))],
                          " . ","x:.");
    elif     IsPosInt(NrPerfectGroups(Size(G)))
         and not Size(G) in [ 86016, 368640, 737280 ]
    then
         id := PerfectIdentification(G);
         return Concatenation("PerfectGroup(",String(id[1]),",",
                                              String(id[2]),")");
    else return Concatenation("<a non-simple perfect group of order ",
                Size(G)," with trivial centre and trivial Frattini ",
                "subgroup, which cannot be written as a direct or ",
                "semidirect product of smaller groups>");
    fi;
  end );

#############################################################################
##
#M  StructureDescription( <G> ) . . . . . . . . . . .  for group by nice mono
##
InstallMethod( StructureDescription,
               "for groups handled by nice monomorphism", true, 
			   [ IsGroup and IsHandledByNiceMonomorphism], 0,
	function ( G )
		return StructureDescription ( NiceObject ( G ) );
	end );
	

#############################################################################
##
#M  ViewObj( <G> ) . . . . . . . . for group with known structure description
##
InstallMethod( ViewObj,
               "for groups with known structure description",
               true, [ IsGroup and HasStructureDescription ], SUM_FLAGS,

  function ( G )
    if HasName(G) then TryNextMethod(); fi;
    Print(StructureDescription(G));
  end );

#############################################################################
##
#E  grpnames.gi . . . . . . . . . . . . . . . . . . . . . . . . . . ends here