This file is indexed.

/usr/share/gap/lib/grppc.gd is in gap-libs 4r6p5-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
#############################################################################
##
#W  grppc.gd                    GAP Library                      Frank Celler
##
##
#Y  Copyright (C)  1996,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the operations for groups with a polycyclic collector.
##
##  IsPcgs
##    a polycyclic generating system, also behaves like a pc sequence
##
##  IsPcGroup
##    a poylcyclic group whose elements family is defined by a collector
##
##  CanEasilyComputePcgs
##    a group that knows how to compute a pcgs relatively fast
##
##  HasDefiningPcgs
##    a group whose elements family is generated by a pcgs
##
##  HasHomePcgs
##    a group that knows a pcgs of a super group
##


#############################################################################
##
#V  InfoPcGroup
##
##  <ManSection>
##  <InfoClass Name="InfoPcGroup"/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareInfoClass("InfoPcGroup");

#############################################################################
##
#M  CanEasilysortElements
##
InstallTrueMethod( CanEasilySortElements, IsPcGroup and IsFinite );


#############################################################################
##
#M  KnowsHowToDecompose( <G> )  . . . . . . . . . . always true for pc groups
##
InstallTrueMethod( KnowsHowToDecompose, IsPcGroup );


#############################################################################
##
#M  IsGeneratorsOfMagmaWithInverses( <G> )  always true for coll. of pc elts.
##
InstallTrueMethod( IsGeneratorsOfMagmaWithInverses,
    IsMultiplicativeElementWithInverseByPolycyclicCollectorCollection );


#############################################################################
##
#A  CanonicalPcgsWrtFamilyPcgs( <grp> )	. . . . . . .  with respect to family
##
##  <ManSection>
##  <Attr Name="CanonicalPcgsWrtFamilyPcgs" Arg='grp'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareAttribute( "CanonicalPcgsWrtFamilyPcgs", IsGroup );



#############################################################################
##
#A  CanonicalPcgsWrtHomePcgs( <grp> ) . . . . . . . . .  with respect to home
##
##  <ManSection>
##  <Attr Name="CanonicalPcgsWrtHomePcgs" Arg='grp'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareAttribute( "CanonicalPcgsWrtHomePcgs", IsGroup );



#############################################################################
##
#A  FamilyPcgs( <grp> ) . . . . . . . . . . . . . . . . .  pcgs of the family
##
##  <#GAPDoc Label="FamilyPcgs">
##  <ManSection>
##  <Attr Name="FamilyPcgs" Arg='grp'/>
##
##  <Description>
##  returns a <Q>natural</Q> pcgs of a pc group <A>grp</A> 
##  (with respect to which pcgs operations as described in 
##  Chapter&nbsp;<Ref Chap="Polycyclic Groups"/> are particularly 
##  efficient).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "FamilyPcgs", IsGroup );


InstallSubsetMaintenance( FamilyPcgs, IsGroup, IsGroup );


#############################################################################
##
#A  HomePcgs( <grp> ) . . . . . . . . . . . . . . . . . . .  pcgs of the home
##
##  <ManSection>
##  <Attr Name="HomePcgs" Arg='grp'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareAttribute( "HomePcgs", IsGroup );


InstallSubsetMaintenance( HomePcgs, IsGroup, IsGroup );


#############################################################################
##
#A  InducedPcgsWrtFamilyPcgs( <grp> ) . . . . . . . .  with respect to family
##
##  <#GAPDoc Label="InducedPcgsWrtFamilyPcgs">
##  <ManSection>
##  <Attr Name="InducedPcgsWrtFamilyPcgs" Arg='grp'/>
##
##  <Description>
##  returns the pcgs which induced with respect to a family pcgs
##  (see <Ref Prop="IsParentPcgsFamilyPcgs"/> for further details).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "InducedPcgsWrtFamilyPcgs", IsGroup );


#############################################################################
##
#O  InducedPcgs( <pcgs>, <grp> )
##
##  <#GAPDoc Label="InducedPcgs">
##  <ManSection>
##  <Oper Name="InducedPcgs" Arg='pcgs, grp'/>
##
##  <Description>
##  computes a pcgs for <A>grp</A> which is induced by <A>pcgs</A>.
##  If <A>pcgs</A> has a parent pcgs,
##  then the result is induced with respect to this parent pcgs.
##  <P/>
##  <Ref Func="InducedPcgs"/> is a wrapper function only.
##  Therefore, methods for computing computing an induced pcgs
##  should be installed for the operation <C>InducedPcgsOp</C>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "InducedPcgs", [IsPcgs,IsGroup] );

#############################################################################
##
#O  InducedPcgsOp( <pcgs>, <grp> )
##
##  <ManSection>
##  <Oper Name="InducedPcgsOp" Arg='pcgs, grp'/>
##
##  <Description>
##  computes a pcgs for <A>grp</A> which is induced by <A>pcgs</A>. <A>pcgs</A> must not
##  be an induced pcgs. This operation should not be called directly. 
##  Instead, please use <C>InducedPcgs</C> which caches its results.
##  </Description>
##  </ManSection>
##
DeclareOperation( "InducedPcgsOp", [IsPcgs,IsGroup] );

#############################################################################
##
#F  SetInducedPcgs( <home>, <grp>, <pcgs> )
##
##  <ManSection>
##  <Func Name="SetInducedPcgs" Arg='home, grp, pcgs'/>
##
##  <Description>
##  This function sets <A>pcgs</A> to be a <A>home</A>-induced pcgs for
##  <A>grp</A> if the <Ref Func="HomePcgs"/> value of <A>grp</A> equals
##  <A>home</A> and the <Ref Func="ParentPcgs"/> value of <A>pcgs</A> equals
##  <A>home</A>.
##  (This means <A>pcgs</A> is induced by <A>home</A>.)
##  If <A>grp</A> has no <Ref Func="HomePcgs"/> value yet,
##  it is assigned to <A>home</A> before this.
##  This function should be used in algorithms if a pcgs for a new subgroup
##  is computed that by this calculation is known to be compatible with the
##  home pcgs of the calculation.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "SetInducedPcgs" );

#############################################################################
##
#A  ComputedInducedPcgses( <grp> )
##
##  <ManSection>
##  <Attr Name="ComputedInducedPcgses" Arg='grp'/>
##
##  <Description>
##  This attribute stores previously computed induced generating systems
##  of the group <A>grp</A>. It is a list of the form
##  <M>[ ppcgs_1, ipcgs_1, ppcgs_2, ipcgs_2, \ldots ]</M>,
##  where <M>ppcgs_n</M> is a parent pcgs and <M>igs_n</M> is the
##  corresponding induced generating system.
##  </Description>
##  </ManSection>
##
DeclareAttribute ("ComputedInducedPcgses", IsGroup, "mutable");

#############################################################################
##
#A  InducedPcgsWrtHomePcgs( <grp> ) . . . . . . . . . .  with respect to home
##
##  <ManSection>
##  <Attr Name="InducedPcgsWrtHomePcgs" Arg='grp'/>
##
##  <Description>
##  returns an induced pcgs for <A>grp</A> with respect to the home pcgs.
##  </Description>
##  </ManSection>
##
DeclareAttribute(
    "InducedPcgsWrtHomePcgs",
    IsGroup );



#############################################################################
##
#A  Pcgs( <G> ) . . . . . . . . . . . . . . . . . . . . . . pcgs of a group
##
##  <#GAPDoc Label="Pcgs">
##  <ManSection>
##  <Attr Name="Pcgs" Arg='G'/>
##
##  <Description>
##  returns a pcgs for the group <A>G</A>. 
##  If <A>grp</A> is not polycyclic it returns <K>fail</K> <E>and this result
##  is not  stored as attribute value</E>,
##  in particular in this case the filter <C>HasPcgs</C> is <E>not</E> set
##  for <A>G</A>!
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "Pcgs", IsGroup );

#############################################################################
##
#A  GeneralizedPcgs( <G> )  . . . . . . . . . . . . . . . . . pcgs of a group
##
##  <ManSection>
##  <Attr Name="GeneralizedPcgs" Arg='G'/>
##
##  <Description>
##  returns a generalized pcgs for the group <A>G</A>.
##  </Description>
##  </ManSection>
##
DeclareAttribute( "GeneralizedPcgs", IsGroup );

#############################################################################
##
#F  CanEasilyComputePcgs( <grp> ) . . . . .  group is willing to compute pcgs
##
##  <#GAPDoc Label="CanEasilyComputePcgs">
##  <ManSection>
##  <Func Name="CanEasilyComputePcgs" Arg='grp'/>
##
##  <Description>
##  This filter indicates whether it is possible to compute a pcgs for
##  <A>grp</A> cheaply.
##  Clearly, <A>grp</A> must be polycyclic in this case.
##  However, not for every polycyclic group there is a method to compute a
##  pcgs at low costs.
##  This filter is used in the method selection mainly.
##  Note that this filter may change its value from <K>false</K> to
##  <K>true</K>. 
##
##  <Example><![CDATA[
##  gap> G := Group( (1,2,3,4),(1,2) );
##  Group([ (1,2,3,4), (1,2) ])
##  gap> CanEasilyComputePcgs(G);
##  false
##  gap> Pcgs(G);
##  Pcgs([ (3,4), (2,4,3), (1,4)(2,3), (1,3)(2,4) ])
##  gap> CanEasilyComputePcgs(G);
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareFilter( "CanEasilyComputePcgs" );

# to satisfy method installation requirements
InstallTrueMethod(IsGroup,CanEasilyComputePcgs);


#############################################################################
##
#O  SubgroupByPcgs( <G>, <pcgs> )
##
##  <#GAPDoc Label="SubgroupByPcgs">
##  <ManSection>
##  <Oper Name="SubgroupByPcgs" Arg='G, pcgs'/>
##
##  <Description>
##  returns a subgroup of <A>G</A> generated by the elements of <A>pcgs</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "SubgroupByPcgs", [IsGroup, IsPcgs] );


#############################################################################
##
#O  AffineAction( <gens>, <basisvectors>, <linear>, <transl> )
##
##  <#GAPDoc Label="AffineAction">
##  <ManSection>
##  <Oper Name="AffineAction" Arg='gens, basisvectors, linear, transl'/>
##
##  <Description>
##  return a list of matrices, one for each element of <A>gens</A>, which
##  corresponds to the affine action of the elements in <A>gens</A> on the
##  basis <A>basisvectors</A> via <A>linear</A> with translation
##  <A>transl</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "AffineAction", 
    [ IsList, IsMatrix, IsFunction, IsFunction ] );


#############################################################################
##
#O  LinearAction( <gens>, <basisvectors>, <linear> )
#O  LinearOperation( <gens>, <basisvectors>, <linear> )
##
##  <#GAPDoc Label="LinearAction">
##  <ManSection>
##  <Oper Name="LinearAction" Arg='gens, basisvectors, linear'/>
##  <Oper Name="LinearOperation" Arg='gens, basisvectors, linear'/>
##
##  <Description>
##  returns a list of matrices, one for each element of <A>gens</A>, which
##  corresponds to the matrix action of the elements in <A>gens</A> on the
##  basis <A>basisvectors</A> via <A>linear</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "LinearAction", [ IsList, IsMatrix, IsFunction ] );
DeclareSynonym( "LinearOperation",LinearAction);


#############################################################################
##
#M  IsSolvableGroup
##
InstallTrueMethod(
    IsSolvableGroup,
    IsPcGroup );


#############################################################################
##
#F  AffineActionLayer( <G>, <gens>, <pcgs>, <transl> )
##
##  <#GAPDoc Label="AffineActionLayer">
##  <ManSection>
##  <Func Name="AffineActionLayer" Arg='G, gens, pcgs, transl'/>
##
##  <Description>
##  returns a list of matrices, one for each element of <A>gens</A>,
##  which corresponds to the affine action of <A>G</A> on the vector space
##  corresponding to the modulo pcgs <A>pcgs</A> with translation
##  <A>transl</A>.
##  <Example><![CDATA[
##  gap> G := SmallGroup( 96, 51 );
##  <pc group of size 96 with 6 generators>
##  gap> spec := SpecialPcgs( G );
##  Pcgs([ f1, f2, f3, f4, f5, f6 ])
##  gap> LGWeights( spec );
##  [ [ 1, 1, 2 ], [ 1, 1, 2 ], [ 1, 1, 3 ], [ 1, 2, 2 ], [ 1, 2, 2 ], 
##    [ 1, 3, 2 ] ]
##  gap> mpcgs := InducedPcgsByPcSequence( spec, spec{[4,5,6]} );
##  Pcgs([ f4, f5, f6 ])
##  gap> npcgs := InducedPcgsByPcSequence( spec, spec{[6]} );
##  Pcgs([ f6 ])
##  gap> modu := mpcgs mod npcgs;
##  [ f4, f5 ]
##  gap> mat:=LinearActionLayer( G, spec{[1,2,3]}, modu );
##  [ <an immutable 2x2 matrix over GF2>, 
##    <an immutable 2x2 matrix over GF2>, 
##    <an immutable 2x2 matrix over GF2> ]
##  gap> Print( mat, "\n" );
##  [ [ [ Z(2)^0, 0*Z(2) ], [ 0*Z(2), Z(2)^0 ] ], 
##    [ [ Z(2)^0, 0*Z(2) ], [ 0*Z(2), Z(2)^0 ] ], 
##    [ [ Z(2)^0, 0*Z(2) ], [ 0*Z(2), Z(2)^0 ] ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "AffineActionLayer" );


#############################################################################
##
#F  GeneratorsCentrePGroup( <G> )
#F  GeneratorsCenterPGroup( <G> )
##
##  <ManSection>
##  <Func Name="GeneratorsCentrePGroup" Arg='G'/>
##  <Func Name="GeneratorsCenterPGroup" Arg='G'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "GeneratorsCentrePGroup" );

DeclareSynonym( "GeneratorsCenterPGroup", GeneratorsCentrePGroup );


#############################################################################
##
#F  LinearActionLayer( <G>, <gens>, <pcgs> )
#F  LinearOperationLayer( <G>, <gens>, <pcgs> )
##
##  <#GAPDoc Label="LinearActionLayer">
##  <ManSection>
##  <Func Name="LinearActionLayer" Arg='G, gens, pcgs'/>
##  <Func Name="LinearOperationLayer" Arg='G, gens, pcgs'/>
##
##  <Description>
##  returns a list of matrices, one for each element of <A>gens</A>,
##  which corresponds to the matrix action of <A>G</A> on the vector space
##  corresponding to the modulo pcgs <A>pcgs</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "LinearActionLayer" );
DeclareSynonym( "LinearOperationLayer",LinearActionLayer );


#############################################################################
##
#F  VectorSpaceByPcgsOfElementaryAbelianGroup( <mpcgs>, <fld> )
##
##  <#GAPDoc Label="VectorSpaceByPcgsOfElementaryAbelianGroup">
##  <ManSection>
##  <Func Name="VectorSpaceByPcgsOfElementaryAbelianGroup" Arg='mpcgs, fld'/>
##
##  <Description>
##  returns the vector space over <A>fld</A> corresponding to the modulo pcgs
##  <A>mpcgs</A>.
##  Note that <A>mpcgs</A> has to define an elementary abelian <M>p</M>-group
##  where <M>p</M> is the characteristic of <A>fld</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction(
    "VectorSpaceByPcgsOfElementaryAbelianGroup" );

#############################################################################
##
#F  GapInputPcGroup( <grp>, <string> )
##
##  <#GAPDoc Label="GapInputPcGroup">
##  <ManSection>
##  <Func Name="GapInputPcGroup" Arg='grp, string'/>
##
##  <Description>
##  <Example><![CDATA[
##  gap> G := SmallGroup( 24, 12 );
##  <pc group of size 24 with 4 generators>
##  gap> PrintTo( "save", GapInputPcGroup( G, "H" ) );
##  gap> Read( "save" );
##  #I A group of order 24 has been defined.
##  #I It is called H
##  gap> H = G;
##  false
##  gap> IdSmallGroup( H ) = IdSmallGroup( G );
##  true
##  gap> RemoveFile( "save" );;
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "GapInputPcGroup" );

#############################################################################
##
#O  CanonicalSubgroupRepresentativePcGroup( <G>, <U> )
##
##  <ManSection>
##  <Oper Name="CanonicalSubgroupRepresentativePcGroup" Arg='G, U'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "CanonicalSubgroupRepresentativePcGroup" );

#############################################################################
##
#F  CentrePcGroup( <grp> )
##
##  <ManSection>
##  <Func Name="CentrePcGroup" Arg='grp'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "CentrePcGroup" );

#############################################################################
##
#A  OmegaSeries( G )
##
##  <ManSection>
##  <Attr Name="OmegaSeries" Arg='G'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareAttribute( "OmegaSeries", IsGroup );


#############################################################################
##
#E