/usr/share/gap/lib/grppc.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 | #############################################################################
##
#W grppc.gi GAP Library Frank Celler
#W & Bettina Eick
##
##
#Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the methods for groups with a polycyclic collector.
##
#############################################################################
##
#M CanonicalPcgsWrtFamilyPcgs( <grp> )
##
InstallMethod( CanonicalPcgsWrtFamilyPcgs,
true,
[ IsGroup and HasFamilyPcgs ],
0,
function( grp )
local cgs;
cgs := CanonicalPcgs( InducedPcgsWrtFamilyPcgs(grp) );
if cgs = FamilyPcgs(grp) then
SetIsWholeFamily( grp, true );
fi;
return cgs;
end );
#############################################################################
##
#M CanonicalPcgsWrtHomePcgs( <grp> )
##
InstallMethod( CanonicalPcgsWrtHomePcgs,
true,
[ IsGroup and HasHomePcgs ],
0,
function( grp )
return CanonicalPcgs( InducedPcgsWrtHomePcgs(grp) );
end );
#############################################################################
##
#M InducedPcgsWrtFamilyPcgs( <grp> )
##
InstallMethod( InducedPcgsWrtFamilyPcgs,
true,
[ IsGroup and HasFamilyPcgs ],
0,
function( grp )
local pa, igs;
pa := FamilyPcgs(grp);
if HasPcgs(grp) and IsInducedPcgs(Pcgs(grp)) then
if pa = ParentPcgs(Pcgs(grp)) then
return Pcgs(grp);
fi;
fi;
igs := InducedPcgsByGenerators( pa, GeneratorsOfGroup(grp) );
if igs = pa then
SetIsWholeFamily( grp, true );
fi;
SetGroupOfPcgs (igs, grp);
return igs;
end );
InstallMethod( InducedPcgsWrtFamilyPcgs,"whole family", true,
[ IsPcGroup and IsWholeFamily], 0,
FamilyPcgs);
#############################################################################
##
#M InducedPcgsWrtHomePcgs( <G> )
##
InstallMethod( InducedPcgsWrtHomePcgs,"from generators", true, [ IsGroup ], 0,
function( G )
local home, ind;
home := HomePcgs( G );
if HasPcgs(G) and IsInducedPcgs(Pcgs(G)) then
if IsIdenticalObj(home,ParentPcgs(Pcgs(G))) then
return Pcgs(G);
fi;
fi;
ind := InducedPcgsByGenerators( home, GeneratorsOfGroup( G ) );
SetGroupOfPcgs (ind, G);
return ind;
end );
InstallMethod( InducedPcgsWrtHomePcgs,"pc group: home=family", true,
[ IsPcGroup ], 0,
InducedPcgsWrtFamilyPcgs);
#############################################################################
##
#M InducedPcgs( <pcgs>,<G> )
##
InstallMethod( InducedPcgs, "cache pcgs", true, [ IsPcgs,IsGroup ], 0,
function(pcgs, G )
local cache, i, igs;
pcgs := ParentPcgs (pcgs);
cache := ComputedInducedPcgses(G);
i := 1;
while i <= Length (cache) do
if IsIdenticalObj (cache[i], pcgs) then
return cache[i+1];
fi;
i := i + 2;
od;
igs := InducedPcgsOp( pcgs, G );
SetGroupOfPcgs (igs, G);
Append (cache, [pcgs, igs]);
if not HasPcgs(G) then
SetPcgs (G, igs);
fi;
# set home pcgs stuff
if not HasHomePcgs(G) then
SetHomePcgs (G, pcgs);
fi;
if IsIdenticalObj (HomePcgs(G), pcgs) then
SetInducedPcgsWrtHomePcgs (G, igs);
fi;
return igs;
end );
ADD_LIST(WRAPPER_OPERATIONS, InducedPcgs);
#############################################################################
##
#M InducedPcgsOp
##
InstallMethod (InducedPcgsOp, "generic method",
IsIdenticalObj, [IsPcgs, IsGroup],
function (pcgs, G)
return InducedPcgsByGenerators(
ParentPcgs(pcgs), GeneratorsOfGroup( G ) );
end);
#############################################################################
##
#M InducedPcgsOp
##
InstallMethod (InducedPcgsOp, "sift existing pcgs",
IsIdenticalObj, [IsPcgs, IsGroup and HasPcgs],
function (pcgs, G)
local seq, # pc sequence wrt pcgs (and its parent)
depths, # depths of this sequence
len, # length of the sequence
pos, # index
x, # a group element
d; # depth of x
pcgs := ParentPcgs (pcgs);
seq := [];
depths := [];
len := 0;
for x in Reversed (Pcgs (G)) do
# sift x through seq
d := DepthOfPcElement (pcgs, x);
pos := PositionSorted (depths, d);
while pos <= len and depths[pos] = d do
x := ReducedPcElement (pcgs, x, seq[pos]);
d := DepthOfPcElement (pcgs, x);
pos := PositionSorted (depths, d);
od;
if d> Length(pcgs) then
Error ("Panic: Pcgs (G) does not seem to be a pcgs");
else
seq{[pos+1..len+1]} := seq{[pos..len]};
depths{[pos+1..len+1]} := depths{[pos..len]};
seq[pos] := x;
depths[pos] := d;
len := len + 1;
fi;
od;
return InducedPcgsByPcSequenceNC (pcgs, seq, depths);
end);
#############################################################################
##
#M ComputedInducedPcgses
##
InstallMethod (ComputedInducedPcgses, "default method", [IsGroup],
G -> []);
#############################################################################
##
#F SetInducedPcgs( <home>,<G>,<pcgs> )
##
InstallGlobalFunction(SetInducedPcgs,function(home,G,pcgs)
home := ParentPcgs(home);
if not HasHomePcgs(G) then
SetHomePcgs(G,home);
fi;
if IsIdenticalObj(ParentPcgs(pcgs),home) then
Append (ComputedInducedPcgses(G), [home, pcgs]);
if IsIdenticalObj(HomePcgs(G),home) then
SetInducedPcgsWrtHomePcgs(G,pcgs);
fi;
fi;
SetGroupOfPcgs (pcgs, G);
end);
#############################################################################
##
#M Pcgs( <G> )
##
InstallMethod( Pcgs, "fail if insolvable", true,
[ HasIsSolvableGroup ],
SUM_FLAGS, # for groups for which we know that they are not solvable
# this is the best we can do.
function( G )
if not IsSolvableGroup( G ) then return fail;
else TryNextMethod(); fi;
end );
#############################################################################
##
#M Pcgs( <pcgrp> )
##
InstallMethod( Pcgs,
"for a group with known family pcgs",
true,
[ IsGroup and HasFamilyPcgs ],
0,
InducedPcgsWrtFamilyPcgs );
InstallMethod( Pcgs,
"for a group with known home pcgs",
true,
[ IsGroup and HasHomePcgs ],
1,
InducedPcgsWrtHomePcgs );
InstallMethod( Pcgs, "take induced pcgs", true,
[ IsGroup and HasInducedPcgsWrtHomePcgs ], SUM_FLAGS,
InducedPcgsWrtHomePcgs );
#############################################################################
##
#M Pcgs( <whole-family-grp> )
##
InstallMethod( Pcgs,
"for a group containing the whole family and with known family pcgs",
true,
[ IsGroup and HasFamilyPcgs and IsWholeFamily ],
0,
FamilyPcgs );
#############################################################################
##
#M GeneralizedPcgs( <G> )
##
InstallImmediateMethod( GeneralizedPcgs, IsGroup and HasPcgs, 0, Pcgs );
#############################################################################
##
#M HomePcgs( <G> )
##
## BH: changed Pcgs to G -> ParentPcgs (Pcgs(G))
##
InstallMethod( HomePcgs, true, [ IsGroup ], 0, G -> ParentPcgs( Pcgs( G ) ) );
#############################################################################
##
#M PcgsChiefSeries( <pcgs> )
##
InstallMethod( PcgsChiefSeries,"compute chief series and pcgs",true,
[IsGroup],0,
function(G)
local p,cs,csi,l,i,pcs,ins,j,u;
p:=Pcgs(G);
if p=fail then
Error("<G> must be solvable");
fi;
if not HasParent(G) then
SetParentAttr(G,Parent(G));
fi;
cs:=ChiefSeries(G);
csi:=List(cs,i->InducedPcgs(p,i));
l:=Length(cs);
pcs:=[];
ins:=[0];
for i in [l-1,l-2..1] do
# extend the pc sequence. We have a vector space factor, so we can
# simply add *some* further generators.
u:=AsSubgroup(Parent(G),cs[i+1]);
for j in Reversed(Filtered(csi[i],k->not k in cs[i+1])) do
if not j in u then
Add(pcs,j);
#NC is safe
u:=ClosureSubgroupNC(u,j);
fi;
od;
if Length(pcs)<>Length(csi[i]) then
Error("pcgs length!");
fi;
Add(ins,Length(pcs));
od;
l:=Length(pcs)+1;
pcs:=PcgsByPcSequenceNC(FamilyObj(OneOfPcgs(p)),Reversed(pcs));
SetGroupOfPcgs (pcs, G);
# store the indices
SetIndicesChiefNormalSteps(pcs,Reversed(List(ins,i->l-i)));
return pcs;
end);
#############################################################################
##
#M GroupWithGenerators( <gens> ) . . . . . . . . . . . . group by generators
#M GroupWithGenerators( <gens>, <id> )
##
## These methods override the generic code. They are installed for
## `IsMultiplicativeElementWithInverseByPolycyclicCollectorCollection' and
## automatically set family pcgs and home pcgs.
##
InstallMethod( GroupWithGenerators,
"method for pc elements collection",
true, [ IsCollection and
IsMultiplicativeElementWithInverseByPolycyclicCollectorCollection] ,
# override methods for `IsList' or `IsEmpty'.
10,
function( gens )
local G,fam,typ,pcgs;
fam:=FamilyObj(gens);
if IsFinite(gens) then
if not IsBound(fam!.defaultFinitelyGeneratedGroupType) then
fam!.defaultFinitelyGeneratedGroupType:=
NewType(fam,IsGroup and IsAttributeStoringRep
and HasGeneratorsOfMagmaWithInverses
and IsFinitelyGeneratedGroup
and HasFamilyPcgs and HasHomePcgs);
fi;
typ:=fam!.defaultFinitelyGeneratedGroupType;
else
if not IsBound(fam!.defaultGroupType) then
fam!.defaultGroupType:=
NewType(fam,IsGroup and IsAttributeStoringRep
and HasGeneratorsOfMagmaWithInverses
and HasFamilyPcgs and HasHomePcgs);
fi;
typ:=fam!.defaultGroupType;
fi;
pcgs:=DefiningPcgs(ElementsFamily(fam));
G:=rec();
ObjectifyWithAttributes(G,typ,GeneratorsOfMagmaWithInverses,AsList(gens),
FamilyPcgs,pcgs,HomePcgs,pcgs);
SetGroupOfPcgs (pcgs, G);
return G;
end );
InstallOtherMethod( GroupWithGenerators,
"method for pc collection and identity element",
IsCollsElms, [ IsCollection and
IsMultiplicativeElementWithInverseByPolycyclicCollectorCollection ,
IsMultiplicativeElementWithInverseByPolycyclicCollector] ,
0,
function( gens, id )
local G,fam,typ,pcgs;
fam:=FamilyObj(gens);
if IsFinite(gens) then
if not IsBound(fam!.defaultFinitelyGeneratedGroupWithOneType) then
fam!.defaultFinitelyGeneratedGroupWithOneType:=
NewType(fam,IsGroup and IsAttributeStoringRep
and HasGeneratorsOfMagmaWithInverses
and IsFinitelyGeneratedGroup and HasOne
and HasFamilyPcgs and HasHomePcgs);
fi;
typ:=fam!.defaultFinitelyGeneratedGroupWithOneType;
else
if not IsBound(fam!.defaultGroupWithOneType) then
fam!.defaultGroupWithOneType:=
NewType(fam,IsGroup and IsAttributeStoringRep
and HasGeneratorsOfMagmaWithInverses and HasOne
and HasFamilyPcgs and HasHomePcgs);
fi;
typ:=fam!.defaultGroupWithOneType;
fi;
pcgs:=DefiningPcgs(ElementsFamily(fam));
G:=rec();
ObjectifyWithAttributes(G,typ,GeneratorsOfMagmaWithInverses,AsList(gens),
One,id,FamilyPcgs,pcgs,HomePcgs,pcgs);
SetGroupOfPcgs (pcgs, G);
return G;
end );
InstallOtherMethod( GroupWithGenerators,
"method for empty pc collection and identity element",
true, [ IsList and IsEmpty,
IsMultiplicativeElementWithInverseByPolycyclicCollector] ,
# override methods for `IsList' or `IsEmpty'.
10,
function( gens, id )
local G,fam,typ,pcgs;
fam:= CollectionsFamily( FamilyObj( id ) );
if not IsBound(fam!.defaultFinitelyGeneratedGroupWithOneType) then
fam!.defaultFinitelyGeneratedGroupWithOneType:=
NewType(fam,IsGroup and IsAttributeStoringRep
and HasGeneratorsOfMagmaWithInverses
and IsFinitelyGeneratedGroup and HasOne
and HasFamilyPcgs and HasHomePcgs);
fi;
typ:=fam!.defaultFinitelyGeneratedGroupWithOneType;
pcgs:=DefiningPcgs(ElementsFamily(fam));
G:=rec();
ObjectifyWithAttributes(G,typ,GeneratorsOfMagmaWithInverses,[],
One,id,FamilyPcgs,pcgs,HomePcgs,pcgs);
SetGroupOfPcgs (pcgs, G);
return G;
end );
#############################################################################
##
#M <elm> in <pcgrp>
##
InstallMethod( \in,
"for pc group",
IsElmsColls,
[ IsMultiplicativeElementWithInverse,
IsGroup and HasFamilyPcgs and CanEasilyComputePcgs
],
2, # rank this method higher than the following one
function( elm, grp )
return SiftedPcElement(InducedPcgsWrtFamilyPcgs(grp),elm) = One(grp);
end );
#############################################################################
##
#M <elm> in <pcgrp>
##
InstallMethod( \in,
"for pcgs computable groups with home pcgs",
IsElmsColls,
[ IsMultiplicativeElementWithInverse,
IsGroup and HasInducedPcgsWrtHomePcgs and CanEasilyComputePcgs
],
1, # rank this method higher than the following one
function( elm, grp )
local pcgs, ppcgs;
pcgs := InducedPcgsWrtHomePcgs (grp);
ppcgs := ParentPcgs (pcgs);
if Length (pcgs) = Length (ppcgs) or not CanEasilyTestMembership (GroupOfPcgs(ppcgs)) then
TryNextMethod();
fi;
if elm in GroupOfPcgs (ppcgs) then
return SiftedPcElement(InducedPcgsWrtHomePcgs(grp),elm) = One(grp);
else
return false;
fi;
end );
#############################################################################
##
#M <elm> in <pcgrp>
##
InstallMethod( \in,
"for pcgs computable groups with induced pcgs",
IsElmsColls,
[ IsMultiplicativeElementWithInverse,
IsGroup and HasComputedInducedPcgses and CanEasilyComputePcgs
],
0,
function( elm, grp )
local pcgs, ppcgs;
for pcgs in ComputedInducedPcgses(grp) do
ppcgs := ParentPcgs (pcgs);
if Length (pcgs) < Length (ppcgs) and CanEasilyTestMembership (GroupOfPcgs(ppcgs)) then
if elm in GroupOfPcgs (ppcgs) then
return SiftedPcElement(pcgs, elm) = One(grp);
else
return false;
fi;
fi;
od;
TryNextMethod();
end );
#############################################################################
##
#M <pcgrp1> = <pcgrp2>
##
InstallMethod( \=,
"pcgs computable groups using home pcgs",
IsIdenticalObj,
[ IsGroup and HasHomePcgs and HasCanonicalPcgsWrtHomePcgs,
IsGroup and HasHomePcgs and HasCanonicalPcgsWrtHomePcgs ],
0,
function( left, right )
if HomePcgs(left) <> HomePcgs(right) then
TryNextMethod();
fi;
return CanonicalPcgsWrtHomePcgs(left) = CanonicalPcgsWrtHomePcgs(right);
end );
#############################################################################
##
#M <pcgrp1> = <pcgrp2>
##
InstallMethod( \=,
"pcgs computable groups using family pcgs",
IsIdenticalObj,
[ IsGroup and HasFamilyPcgs and HasCanonicalPcgsWrtFamilyPcgs,
IsGroup and HasFamilyPcgs and HasCanonicalPcgsWrtFamilyPcgs ],
0,
function( left, right )
if FamilyPcgs(left) <> FamilyPcgs(right) then
TryNextMethod();
fi;
return CanonicalPcgsWrtFamilyPcgs(left)
= CanonicalPcgsWrtFamilyPcgs(right);
end );
#############################################################################
##
#M IsSubset( <pcgrp>, <pcsub> )
##
## This method is better than calling `\in' for all generators,
## since one has to fetch the pcgs only once.
##
InstallMethod( IsSubset,
"pcgs computable groups",
IsIdenticalObj,
[ IsGroup and HasFamilyPcgs and CanEasilyComputePcgs,
IsGroup ],
0,
function( grp, sub )
local pcgs, id, g;
pcgs := InducedPcgsWrtFamilyPcgs(grp);
id := One(grp);
for g in GeneratorsOfGroup(sub) do
if SiftedPcElement( pcgs, g ) <> id then
return false;
fi;
od;
return true;
end );
#############################################################################
##
#M SubgroupByPcgs( <G>, <pcgs> )
##
InstallMethod( SubgroupByPcgs, "subgroup with pcgs",
true, [IsGroup, IsPcgs], 0,
function( G, pcgs )
local U;
U := SubgroupNC( G, AsList( pcgs ) );
SetPcgs( U, pcgs );
SetGroupOfPcgs (pcgs, U);
# home pcgs will be inherited
if HasHomePcgs(U) and IsIdenticalObj(HomePcgs(U),ParentPcgs(pcgs)) then
SetInducedPcgsWrtHomePcgs(U,pcgs);
fi;
if HasIsInducedPcgsWrtSpecialPcgs( pcgs ) and
IsInducedPcgsWrtSpecialPcgs( pcgs ) and
HasSpecialPcgs( G ) then
SetInducedPcgsWrtSpecialPcgs( U, pcgs );
fi;
return U;
end);
#############################################################################
##
#F VectorSpaceByPcgsOfElementaryAbelianGroup( <pcgs>, <f> )
##
InstallGlobalFunction( VectorSpaceByPcgsOfElementaryAbelianGroup,
function( arg )
local pcgs, dim, field;
pcgs := arg[1];
dim := Length( pcgs );
if IsBound( arg[2] ) then
field := arg[2];
elif dim > 0 then
field := GF( RelativeOrderOfPcElement( pcgs, pcgs[1] ) );
else
Error("trivial vectorspace, need field \n");
fi;
return VectorSpace( field, Immutable( IdentityMat( dim, field ) ) );
end );
#############################################################################
##
#F LinearActionLayer( <G>, <gens>, <pcgs> )
##
InstallGlobalFunction( LinearActionLayer, function( arg )
local gens, pcgs, field, m,mat,i,j;
# catch arguments
if Length( arg ) = 2 then
if IsGroup( arg[1] ) then
gens := GeneratorsOfGroup( arg[1] );
elif IsPcgs( arg[1] ) then
gens := AsList( arg[1] );
else
gens := arg[1];
fi;
pcgs := arg[2];
elif Length( arg ) = 3 then
gens := arg[2];
pcgs := arg[3];
fi;
# in case the layer is trivial
if Length( pcgs ) = 0 then
Error("pcgs is trivial - no field defined ");
fi;
# construct matrix rep
field := GF( RelativeOrderOfPcElement( pcgs, pcgs[1] ) );
# the following code takes too much time, as it has to create obvious pc
# elements again from vectors with 1 nonzero entry.
# V := Immutable( IdentityMat(Length(pcgs),field) );
# linear := function( x, g )
# return ExponentsOfPcElement( pcgs,
# PcElementByExponentsNC( pcgs, x )^g ) * One(field);
# end;
# return LinearAction( gens, V, linear );
#this is done much quicker by the following direct code:
m:=[];
for i in gens do
mat:=[];
for j in pcgs do
Add(mat,ExponentsConjugateLayer(pcgs,j,i)*One(field));
od;
mat:=ImmutableMatrix(field,mat,true);
Add(m,mat);
od;
return m;
end );
#############################################################################
##
#F AffineActionLayer( <G>, <pcgs>, <transl> )
##
InstallGlobalFunction( AffineActionLayer, function( arg )
local gens, pcgs, transl, V, field, linear;
# catch arguments
if Length( arg ) = 3 then
if IsPcgs( arg[1] ) then
gens := AsList( arg[1] );
elif IsGroup( arg[1] ) then
gens := GeneratorsOfGroup( arg[1] );
else
gens := arg[1];
fi;
pcgs := arg[2];
transl := arg[3];
elif Length( arg ) = 4 then
gens := arg[2];
pcgs := arg[3];
transl := arg[4];
fi;
# in the trivial case we cannot do anything
if Length( pcgs ) = 0 then
Error("layer is trivial . . . field is not defined \n");
fi;
# construct matrix rep
field := GF( RelativeOrderOfPcElement( pcgs, pcgs[1] ) );
V:= Immutable( IdentityMat(Length(pcgs),field) );
linear := function( x, g )
return ExponentsConjugateLayer(pcgs,
PcElementByExponentsNC( pcgs, x ),g ) * One(field);
end;
return AffineAction( gens, V, linear, transl );
end );
#############################################################################
##
#M AffineAction( <gens>, <V>, <linear>, <transl> )
##
InstallMethod( AffineAction,"generators",
true,
[ IsList,
IsMatrix,
IsFunction,
IsFunction ],
0,
function( Ggens, V, linear, transl )
local mats, gens, zero,one, g, mat, i, vec;
mats := [];
gens:=V;
zero:=Zero(V[1][1]);
one:=One(zero);
for g in Ggens do
mat := List( gens, x -> linear( x, g ) );
vec := ShallowCopy( transl(g) );
for i in [ 1 .. Length(mat) ] do
mat[i] := ShallowCopy( mat[i] );
Add( mat[i], zero );
od;
Add( vec, one );
Add( mat, vec );
mat:=ImmutableMatrix(Characteristic(one),mat,true);
Add( mats, mat );
od;
return mats;
end );
InstallOtherMethod( AffineAction,"group",
true,
[ IsGroup,
IsMatrix,
IsFunction,
IsFunction ],
0,
function( G, V, linear, transl )
return AffineAction( GeneratorsOfGroup(G), V, linear, transl );
end );
InstallOtherMethod( AffineAction,"group2",
true,
[ IsGroup,
IsList,
IsMatrix,
IsFunction,
IsFunction ],
0,
function( G, gens, V, linear, transl )
return AffineAction( gens, V, linear, transl );
end );
InstallOtherMethod( AffineAction,"pcgs",
true,
[ IsPcgs,
IsMatrix,
IsFunction,
IsFunction ],
0,
function( pcgsG, V, linear, transl )
return AffineAction( AsList( pcgsG ), V, linear, transl );
end );
#############################################################################
##
#M ClosureGroup( <U>, <H> )
##
## use home pcgs
##
InstallMethod( ClosureGroup,
"groups with home pcgs",
IsIdenticalObj,
[ IsGroup and HasHomePcgs,
IsGroup and HasHomePcgs ],
0,
function( U, H )
local home, pcgsU, pcgsH, new, N;
home := HomePcgs( U );
if home <> HomePcgs( H ) then
TryNextMethod();
fi;
pcgsU := InducedPcgs(home,U);
pcgsH := InducedPcgs(home,H);
if Length( pcgsU ) < Length( pcgsH ) then
new := InducedPcgsByPcSequenceAndGenerators( home, pcgsH,
GeneratorsOfGroup( U ) );
else
new := InducedPcgsByPcSequenceAndGenerators( home, pcgsU,
GeneratorsOfGroup( H ) );
fi;
N := SubgroupByPcgs( GroupOfPcgs( home ), new );
# SetHomePcgs( N, home );
# SetInducedPcgsWrtHomePcgs( N, new );
return N;
end );
#############################################################################
##
#M ClosureGroup( <U>, <g> )
##
## use home pcgs
##
InstallMethod( ClosureGroup,
"groups with home pcgs",
IsCollsElms,
[ IsGroup and HasHomePcgs,
IsMultiplicativeElementWithInverse ],
0,
function( U, g )
local home, pcgsU, new, N;
home := HomePcgs( U );
pcgsU := InducedPcgsWrtHomePcgs( U );
if not g in GroupOfPcgs( home ) then
TryNextMethod();
fi;
if g in U then
return U;
else
new := InducedPcgsByPcSequenceAndGenerators( home, pcgsU, [g] );
N := SubgroupByPcgs( GroupOfPcgs(home), new );
# SetHomePcgs( N, home );
# SetInducedPcgsWrtHomePcgs( N, new );
return N;
fi;
end );
#############################################################################
##
#M CommutatorSubgroup( <U>, <V> )
##
InstallMethod( CommutatorSubgroup,
"groups with home pcgs",
true,
[ IsGroup and HasHomePcgs,
IsGroup and HasHomePcgs ],
0,
function( U, V )
local pcgsU, pcgsV, home, C, u, v;
# check
home := HomePcgs(U);
if home <> HomePcgs( V ) then
TryNextMethod();
fi;
pcgsU := InducedPcgsWrtHomePcgs(U);
pcgsV := InducedPcgsWrtHomePcgs(V);
# catch trivial cases
if Length(pcgsU) = 0 or Length(pcgsV) = 0 then
return TrivialSubgroup( GroupOfPcgs(home) );
fi;
if U = V then
return DerivedSubgroup(U);
fi;
# compute commutators
C := [];
for u in pcgsU do
for v in pcgsV do
AddSet( C, Comm( v, u ) );
od;
od;
C := Subgroup( GroupOfPcgs( home ), C );
C := NormalClosure( ClosureGroup(U,V), C );
# that's it
return C;
end );
#############################################################################
##
#M ConjugateGroup( <U>, <g> )
##
InstallMethod( ConjugateGroup,
"groups with home pcgs",
IsCollsElms,
[ IsGroup and HasHomePcgs,
IsMultiplicativeElementWithInverse ],
0,
function( U, g )
local home, pcgs, id, pag, h, d, N;
# <g> must lie in the home
home := HomePcgs(U);
if not g in GroupOfPcgs(home) then
TryNextMethod();
fi;
# shift <g> through <U>
pcgs := InducedPcgsWrtHomePcgs( U );
id := Identity( U );
g := SiftedPcElement( pcgs, g );
# catch trivial case
if IsEmpty(pcgs) or g = id then
return U;
fi;
# conjugate generators
pag := [];
for h in Reversed( pcgs ) do
h := h ^ g;
d := DepthOfPcElement( home, h );
while h <> id and IsBound( pag[d] ) do
h := ReducedPcElement( home, h, pag[d] );
d := DepthOfPcElement( home, h );
od;
if h <> id then
pag[d] := h;
fi;
od;
# <pag> is an induced system
pag := Compacted( pag );
N := Subgroup( GroupOfPcgs(home), pag );
SetHomePcgs( N, home );
pag := InducedPcgsByPcSequenceNC( home, pag );
SetGroupOfPcgs (pag, N);
SetInducedPcgsWrtHomePcgs( N, pag );
# maintain useful information
UseIsomorphismRelation( U, N );
return N;
end );
#############################################################################
##
#M ConjugateSubgroups( <G>, <U> )
##
InstallMethod( ConjugateSubgroups,
"groups with home pcgs",
IsIdenticalObj,
[ IsGroup and HasHomePcgs,
IsGroup and HasHomePcgs ],
0,
function( G, U )
local pcgs, home, f, orb, i, L, res, H,ip;
# check the home pcgs are compatible
home := HomePcgs(U);
if home <> HomePcgs(G) then
TryNextMethod();
fi;
H := GroupOfPcgs( home );
# get a canonical pcgs for <U>
pcgs := CanonicalPcgsWrtHomePcgs(U);
# <G> acts on this <pcgs> via conjugation
f := function( c, g )
#was: CanonicalPcgs( HomomorphicInducedPcgs( home, c, g ) );
return CorrespondingGeneratorsByModuloPcgs(home,List(c,i->i^g));
end;
# compute the orbit of <G> on <pcgs>
orb := Orbit( G, pcgs, f );
res := List( orb, x -> false );
for i in [1..Length(orb)] do
L := Subgroup( H, orb[i] );
SetHomePcgs( L, home );
if not(IsPcgs(orb[i])) then
ip:=InducedPcgsByPcSequenceNC(home,orb[i]);
else
ip:=orb[i];
fi;
SetInducedPcgsWrtHomePcgs( L, ip );
SetGroupOfPcgs (ip, L);
res[i] := L;
od;
return res;
end );
#############################################################################
##
#M Core( <U>, <V> )
##
InstallMethod( CoreOp,
"pcgs computable groups",
true,
[ IsGroup and CanEasilyComputePcgs,
IsGroup ],
0,
function( V, U )
local pcgsV, C, v, N;
# catch trivial cases
pcgsV := Pcgs(V);
if IsSubset( U, V ) or IsTrivial(U) or IsTrivial(V) then
return U;
fi;
# start with <U>.
C := U;
# now compute intersection with all conjugate subgroups, conjugate with
# all generators of V and its powers
for v in Reversed(pcgsV) do
repeat
N := ConjugateGroup( C, v );
if C <> N then
C := Intersection( C, N );
fi;
until C = N;
if IsTrivial(C) then
return C;
fi;
od;
return C;
end );
#############################################################################
##
#M EulerianFunction( <G>, <n> )
##
InstallMethod( EulerianFunction,
"pcgs computable groups using special pcgs",
true,
[ IsGroup and CanEasilyComputePcgs,
IsPosInt ],
0,
function( G, n )
local spec, first, weights, m, i, phi, start,
next, p, d, r, j, pcgsS, pcgsN, pcgsL, mats,
modu, max, series, comps, sub, new, index, order;
spec := SpecialPcgs( G );
if Length( spec ) = 0 then return 1; fi;
first := LGFirst( spec );
weights := LGWeights( spec );
m := Length( spec );
# the first head
i := 1;
phi := 1;
while i <= Length(first)-1 and
weights[first[i]][1] = 1 and weights[first[i]][2] = 1 do
start := first[i];
next := first[i+1];
p := weights[start][3];
d := next - start;
for j in [0..d-1] do
phi := phi * (p^n - p^j);
od;
if phi = 0 then return 0; fi;
i := i + 1;
od;
# the rest
while i <= Length( first ) - 1 do
start := first[i];
next := first[i+1];
p := weights[start][3];
d := next - start;
if weights[start][2] = 1 then
pcgsS := InducedPcgsByPcSequenceNC( spec, spec{[start..m]} );
pcgsN := InducedPcgsByPcSequenceNC( spec, spec{[next..m]} );
pcgsL := pcgsS mod pcgsN;
mats := LinearActionLayer( spec, pcgsL );
modu := GModuleByMats( mats, GF(p) );
max := MTX.BasesMaximalSubmodules( modu );
# compute series
series := [ Immutable( IdentityMat(d, GF(p)) ) ];
comps := [];
sub := series[1];
while Length( max ) > 0 do
sub := SumIntersectionMat( sub, max[1] )[2];
if Length( sub ) = 0 then
new := max;
else
new := Filtered( max, x ->
RankMat( Concatenation( x, sub ) ) < d );
fi;
Add( comps, Sum( List( new, x -> p^(d - Length(x)) ) ) );
Add( series, sub );
max := Difference( max, new );
od;
# run down series
for j in [1..Length( series )-1] do
index := Length( series[j] ) - Length( series[j+1] );
order := p^index;
phi := phi * ( order^n - comps[j] );
if phi = 0 then return phi; fi;
od;
# only the radical is missing now
index := Length( series[Length(series)] );
order := p^index;
phi := phi * (order^n);
if phi = 0 then return 0; fi;
else
order := p^d;
phi := phi * ( order^n );
if phi = 0 then return 0; fi;
fi;
i := i + 1;
od;
return phi;
end );
RedispatchOnCondition(EulerianFunction,true,[IsGroup,IsPosInt],
[IsSolvableGroup,IsPosInt],
1 # make the priority higher than the default method computing
# the table of marks
);
#############################################################################
##
#M LinearAction( <gens>, <basisvectors>, <linear> )
##
InstallMethod( LinearAction,
true,
[ IsList,
IsMatrix,
IsFunction ],
0,
function( gens, base, linear )
local i,mats;
# catch trivial cases
if Length( gens ) = 0 then
return [];
fi;
# compute matrices
if Length(base)>0 then
mats := List( gens, x -> ImmutableMatrix(Characteristic(base),
List( base, y -> linear( y, x ) ),true ));
else
mats:=List(gens,i->[]);
fi;
MakeImmutable(mats);
return mats;
end );
InstallOtherMethod( LinearAction,
true,
[ IsGroup,
IsMatrix,
IsFunction ],
0,
function( G, base, linear )
return LinearAction( GeneratorsOfGroup( G ), base, linear );
end );
InstallOtherMethod( LinearAction,
true,
[ IsPcgs,
IsMatrix,
IsFunction ],
0,
function( pcgs, base, linear )
return LinearAction( pcgs, base, linear );
end );
InstallOtherMethod( LinearAction,
true,
[ IsGroup,
IsList,
IsMatrix,
IsFunction ],
0,
function( G, gens, base, linear )
return LinearAction( gens, base, linear );
end );
#############################################################################
##
#M NormalClosure( <G>, <U> )
##
InstallMethod( NormalClosureOp,
"groups with home pcgs",
true,
[ IsGroup and HasHomePcgs,
IsGroup and HasHomePcgs ],
0,
function( G, U )
local pcgs, home, gens, subg, id, K, M, g, u, tmp;
# catch trivial case
pcgs := InducedPcgsWrtHomePcgs(U);
if Length(pcgs) = 0 then
return U;
fi;
home := HomePcgs(U);
if home <> HomePcgs(G) then
TryNextMethod();
fi;
# get operating elements
gens := GeneratorsOfGroup( G );
gens := Set( List( gens, x -> SiftedPcElement( pcgs, x ) ) );
subg := GeneratorsOfGroup( U );
id := Identity( G );
K := ShallowCopy( pcgs );
repeat
M := [];
for g in gens do
for u in subg do
tmp := Comm( g, u );
if tmp <> id then
AddSet( M, tmp );
fi;
od;
od;
tmp := InducedPcgsByPcSequenceAndGenerators( home, K, M );
tmp := CanonicalPcgs( tmp );
subg := Filtered( tmp, x -> not x in K );
K := tmp;
until 0 = Length(subg);
K := SubgroupByPcgs( GroupOfPcgs(home), tmp );
# SetHomePcgs( K, home );
# SetInducedPcgsWrtHomePcgs( K, tmp );
return K;
end );
#############################################################################
##
#M Random( <pcgrp> )
##
InstallMethod( Random,
"pcgs computable groups",
true,
[ IsGroup and CanEasilyComputePcgs and IsFinite ],
0,
function(grp)
local p;
p := Pcgs(grp);
if Length( p ) = 0 then
return One( grp );
else
return Product( p, x -> x^Random(1,RelativeOrderOfPcElement(p,x)) );
fi;
end );
BindGlobal( "CentralizerSolvableGroup", function(H,U,elm)
local G, home, # the supergroup (of <H> and <U>), the home pcgs
Hp, # a pcgs for <H>
inequal, # G<>H flag
eas, # elementary abelian series in <G> through <U>
step, # counter looping over <eas>
K, L, # members of <eas>
Kp,Lp, # induced and modulo pcgs's
KcapH,LcapH, # pcgs's of intersections with <H>
N, cent, # elementary abelian factor, for affine action
cls, # classes in range/source of homomorphism
opr, # (elm^opr)=cls.representative
p, # prime dividing $|G|$
nexpo,indstep,Ldep,allcent;
# Treat the case of a trivial group.
if IsTrivial( U ) then
return H;
fi;
if IsSubgroup(H,U) then
G:=H;
inequal:=false;
else
G:=ClosureGroup( H, U );
inequal:=true;
fi;
home:=HomePcgs(G);
if not HasIndicesEANormalSteps(home) then
home:=PcgsElementaryAbelianSeries(G);
fi;
# Calculate a (central) elementary abelian series with all pcgs induced
# w.r.t. <home>.
if IsPrimePowerInt( Size( G ) ) then
p:=FactorsInt( Size( G ) )[ 1 ];
home:=PcgsCentralSeries(G);
eas:=CentralNormalSeriesByPcgs(home);
cent:=ReturnTrue;
else
home:=PcgsElementaryAbelianSeries(G);
eas:=EANormalSeriesByPcgs(home);
# AH, 26-4-99: Test centrality not via `in' but via exponents
cent:=function(pcgs,grpg,Npcgs,dep)
local i,j;
for i in grpg do
for j in Npcgs do
if DepthOfPcElement(pcgs,Comm(j,i))<dep then
return false;
fi;
od;
od;
return true;
end;
fi;
indstep:=IndicesEANormalSteps(home);
Hp:=InducedPcgs(home,H);
# Initialize the algorithm for the trivial group.
step:=1;
while IsSubset( eas[ step + 1 ], U ) do
step:=step + 1;
od;
L :=eas[ step ];
Ldep:=indstep[step];
Lp:=InducedPcgs(home,L);
if inequal then
LcapH:=NormalIntersectionPcgs( home, Hp, Lp );
fi;
cls:=[rec( representative:=elm,centralizer:=H,
centralizerpcgs:=InducedPcgs(home,H) )];
opr:=One( U );
# Now go back through the factors by all groups in the elementary abelian
# series.
for step in [ step + 1 .. Length( eas ) ] do
# We apply the homomorphism principle to the homomorphism G/L -> G/K.
# The actual computations are all done in <G>, factors are
# represented by modulo pcgs.
K :=L;
Kp:=Lp;
L :=eas[ step ];
Ldep:=indstep[step];
Lp:=InducedPcgs(home,L );
N :=Kp mod Lp; # modulo pcgs representing the kernel
allcent:=cent(home,home,N,Ldep);
if allcent=false then
nexpo:=LinearActionLayer(home{[1..indstep[step-1]-1]},N);
fi;
# #T What is this? Obviously it is needed somewhere, but it is
# #T certainly not good programming style. AH
# SetFilterObj( N, IsPcgs );
if inequal then
KcapH :=LcapH;
LcapH :=NormalIntersectionPcgs( home, Hp, Lp );
N!.capH:=KcapH mod LcapH;
#T See above
# SetFilterObj( N!.capH, IsPcgs );
else
N!.capH:=N;
fi;
cls[ 1 ].candidates:=cls[ 1 ].representative;
if allcent
or cent(home, cls[ 1 ].centralizerpcgs, N, Ldep ) then
cls:=CentralStepClEANS( home,H, U, N, cls[ 1 ],false );
else
cls:=GeneralStepClEANS( home,H, U, N, nexpo,cls[ 1 ],false );
fi;
opr:=opr * cls[ 1 ].operator;
if IsModuloPcgs(cls[1].cengen) then
cls[1].centralizerpcgs:=cls[1].cengen;
else
cls[1].centralizerpcgs:=InducedPcgsByPcSequenceNC(home,cls[1].cengen);
fi;
od;
if not IsBound(cls[1].centralizer) then
cls[1].centralizer:=SubgroupByPcgs(G,cls[1].centralizerpcgs);
fi;
cls:=ConjugateSubgroup( cls[ 1 ].centralizer, opr ^ -1 );
return cls;
end );
#############################################################################
##
#M Centralizer( <G>, <g> ) . . . . . . . . . . . . . . using affine methods
##
InstallMethod( CentralizerOp,
"pcgs computable group and element",
IsCollsElms,
[ IsGroup and CanEasilyComputePcgs and IsFinite,
IsMultiplicativeElementWithInverse ],
0, # in solvable permutation groups, backtrack seems preferable
function( G, g )
return CentralizerSolvableGroup( G, GroupByGenerators( [ g ] ), g );
end );
InstallMethod( CentralizerOp,
"pcgs computable groups",
IsIdenticalObj,
[ IsGroup and CanEasilyComputePcgs and IsFinite,
IsGroup and CanEasilyComputePcgs and IsFinite ],
0, # in solvable permutation groups, backtrack seems preferable
function( G, H )
local h,P;
P:=Parent(G);
for h in MinimalGeneratingSet( H ) do
G := CentralizerSolvableGroup( G,H, h );
od;
G:=AsSubgroup(P,G);
Assert(2,ForAll(GeneratorsOfGroup(G),i->ForAll(GeneratorsOfGroup(H),
j->Comm(i,j)=One(G))));
return G;
end );
#############################################################################
##
#M RepresentativeAction( <G>, <d>, <e>, OnPoints ) using affine methods
##
InstallOtherMethod( RepresentativeActionOp,
"element conjugacy in pcgs computable groups", IsCollsElmsElmsX,
[ IsGroup and CanEasilyComputePcgs and IsFinite,
IsMultiplicativeElementWithInverse,
IsMultiplicativeElementWithInverse,
IsFunction ],
0,
function( G, d, e, opr )
if opr <> OnPoints or not (IsPcGroup(G) or (d in G and e in G)) or
not (d in G and e in G) then
TryNextMethod();
fi;
return ClassesSolvableGroup( G, 4,rec(candidates:= [ d, e ] ));
end );
#############################################################################
##
#M CentralizerModulo(<H>,<N>,<elm>) full preimage of C_(H/N)(elm.N)
##
InstallMethod(CentralizerModulo,"pcgs computable groups, for elm",
IsCollsCollsElms,[IsGroup and CanEasilyComputePcgs, IsGroup and
CanEasilyComputePcgs, IsMultiplicativeElementWithInverse],0,
function(H,NT,elm)
local G, # common parent
home,Hp, # the home pcgs, induced pcgs
eas, step, # elementary abelian series in <G> through <U>
ea2, # used for factor series
K, L, # members of <eas>
Kp,Lp, # induced and modulo pcgs's
KcapH,LcapH, # pcgs's of intersections with <H>
N, cent, # elementary abelian factor, for affine action
tra, # transversal for candidates
p, # prime dividing $|G|$
nexpo,indstep,Ldep,allcent,
cl, i; # loop variables
# Treat trivial cases.
if Index(H,NT)=1 or (HasAbelianFactorGroup(H,NT) and elm in H)
or elm in NT then
return H;
fi;
if elm in H then
G:=H;
else
G:=ClosureGroup(H,elm);
# is the subgroup still normal
if not IsNormal(G,NT) then
Error("subgroup not normal!");
fi;
fi;
home := HomePcgs( G );
if not HasIndicesEANormalSteps(home) then
home:=PcgsElementaryAbelianSeries(G);
fi;
# Calculate a (central) elementary abelian series.
eas:=fail;
if IsPrimePowerInt( Size( G ) ) then
p := FactorsInt( Size( G ) )[ 1 ];
home:=PcgsPCentralSeriesPGroup(G);
eas:=PCentralNormalSeriesByPcgsPGroup(home);
if NT in eas then
cent := ReturnTrue;
else
eas:=fail; # useless
fi;
fi;
if eas=fail then
home:=PcgsElementaryAbelianSeries([G,NT]);
eas:=EANormalSeriesByPcgs(home);
cent:=function(pcgs,grpg,Npcgs,dep)
local i,j;
for i in grpg do
for j in Npcgs do
if DepthOfPcElement(pcgs,Comm(j,i))<dep then
return false;
fi;
od;
od;
return true;
end;
fi;
indstep:=IndicesEANormalSteps(home);
# series to NT
ea2:=List(eas,i->ClosureGroup(NT,i));
eas:=[];
for i in ea2 do
if not i in eas then
Add(eas,i);
fi;
od;
for i in eas do
if not HasHomePcgs(i) then
SetHomePcgs(i,ParentPcgs(home));
fi;
od;
Hp:=InducedPcgs(home,H);
# Initialize the algorithm for the trivial group.
step := 1;
while IsSubset( eas[ step + 1 ], H ) do
step := step + 1;
od;
L := eas[ step ];
Lp := InducedPcgs(home, L );
if not IsIdenticalObj( G, H ) then
LcapH := NormalIntersectionPcgs( home, Hp, Lp );
fi;
cl := rec( representative := elm,
centralizer := H,
centralizerpcgs := InducedPcgs(home,H ));
tra := One( H );
# cls := List( candidates, c -> cl );
# tra := List( candidates, c -> One( H ) );
tra:=One(H);
# Now go back through the factors by all groups in the elementary abelian
# series.
for step in [ step + 1 .. Length( eas ) ] do
K := L;
Kp := Lp;
L := eas[ step ];
Ldep:=indstep[step];
Lp := InducedPcgs(home, L );
N := Kp mod Lp;
#SetFilterObj( N, IsPcgs );
allcent:=cent(home,home,N,Ldep);
if allcent=false then
nexpo:=LinearActionLayer(home{[1..indstep[step-1]-1]},N);
fi;
if not IsIdenticalObj( G, H ) then
KcapH := LcapH;
LcapH := NormalIntersectionPcgs( home, Hp, Lp );
N!.capH := KcapH mod LcapH;
else
N!.capH := N;
fi;
cl.candidates := cl.representative;
if allcent
or cent(home,cl.centralizerpcgs, N, Ldep) then
cl := CentralStepClEANS( home,G, H, N, cl,true )[1];
else
cl := GeneralStepClEANS( home,G, H, N,nexpo, cl,true )[1];
fi;
tra := tra * cl.operator;
if IsModuloPcgs(cl.cengen) then
cl.centralizerpcgs:=cl.cengen;
else
cl.centralizerpcgs:=InducedPcgsByPcSequenceNC(home,cl.cengen);
fi;
od;
if not IsBound(cl.centralizer) then
cl.centralizer:=SubgroupByPcgs(G,cl.centralizerpcgs);
fi;
cl:=ConjugateSubgroup( cl.centralizer, tra ^ -1 );
Assert(2,ForAll(GeneratorsOfGroup(cl),i->Comm(elm,i) in NT));
Assert(2,IsSubset(G,cl));
return cl;
end);
InstallMethod(CentralizerModulo,"group centralizer via generators",
IsFamFamFam,[IsGroup and CanEasilyComputePcgs, IsGroup and
CanEasilyComputePcgs, IsGroup],0,
function(G,NT,U)
local i,P;
P:=Parent(G);
for i in GeneratorsOfGroup(U) do
G:=CentralizerModulo(G,NT,i);
od;
G:=AsSubgroup(P,G);
return G;
end);
# enforce solvability check.
RedispatchOnCondition(CentralizerModulo,true,[IsGroup,IsGroup,IsObject],
[IsGroup and IsSolvableGroup,IsGroup and IsSolvableGroup,IsObject],0);
#############################################################################
##
#F ElementaryAbelianSeries( <list> )
##
InstallOtherMethod( ElementaryAbelianSeries,"list of pcgs computable groups",
true,[IsList and IsFinite],
1, # there is a generic groups function with value 0
function( S )
local home,i, N, O, I, E, L;
if Length(S)=0 or not CanEasilyComputePcgs(S[1]) then
TryNextMethod();
fi;
# typecheck arguments
if 1 < Size(S[Length(S)]) then
S := ShallowCopy( S );
Add( S, TrivialSubgroup(S[1]) );
fi;
# start with the elementary series of the first group of <S>
L := ElementaryAbelianSeries( S[ 1 ] );
# enforce the same parent for 'HomePcgs' purposes.
home:=HomePcgs(S[1]);
N := [ S[ 1 ] ];
for i in [ 2 .. Length( S ) - 1 ] do
O := L;
L := [ S[ i ] ];
for E in O do
I := IntersectionSumPcgs(home, InducedPcgs(home,E),
InducedPcgs(home,S[ i ]) );
I.sum:=SubgroupByPcgs(S[1],I.sum);
I.intersection:=SubgroupByPcgs(S[1],I.intersection);
if not I.sum in N then
Add( N, I.sum );
fi;
if not I.intersection in L then
Add( L, I.intersection );
fi;
od;
od;
for E in L do
if not E in N then
Add( N, E );
fi;
od;
return N;
end);
#############################################################################
##
#M \<(G,H) . . . . . . . . . . . . . . . . . comparison of pc groups by CGS
##
InstallMethod(\<,"cgs comparison",IsIdenticalObj,[IsPcGroup,IsPcGroup],0,
function( G, H )
return Reversed( CanonicalPcgsWrtFamilyPcgs(G) )
< Reversed( CanonicalPcgsWrtFamilyPcgs(H) );
end);
#############################################################################
##
#F GapInputPcGroup( <U>, <name> ) . . . . . . . . . . . . gap input string
##
## Compute the pc-presentation for a finite polycyclic group as gap input.
## Return this input as string. The group will be named <name>,the
## generators "g<i>".
##
InstallGlobalFunction( GapInputPcGroup, function(U,name)
local gens,
wordString,
newLines,
lines,
ne,
i,j;
# <lines> will hold the various lines of the input for gap,they are
# concatenated later.
lines:=[];
# Get the generators for the group <U>.
gens:=InducedPcgsWrtHomePcgs(U);
# Initialize the group and the generators.
Add(lines,name);
Add(lines,":=function()\nlocal ");
for i in [1 .. Length(gens)] do
Add(lines,"g");
Add(lines,String(i));
Add(lines,",");
od;
Add(lines,"r,f,g,rws,x;\n");
Add(lines,"f:=FreeGroup(IsSyllableWordsFamily,");
Add(lines,String(Length(gens)));
Add(lines,");\ng:=GeneratorsOfGroup(f);\n");
for i in [1 .. Length(gens)] do
Add(lines,"g" );
Add(lines,String(i) );
Add(lines,":=g[");
Add(lines,String(i) );
Add(lines,"];\n" );
od;
Add(lines,"rws:=SingleCollector(f,");
Add(lines,String(List(gens,i->RelativeOrderOfPcElement(gens,i))));
Add(lines,");\n");
Add(lines,"r:=[\n");
# A function will yield the string for a word.
wordString:=function(a)
local k,l,list,str,count;
list:=ExponentsOfPcElement(gens,a);
k:=1;
while k <= Length(list) and list[k] = 0 do k:=k + 1; od;
if k > Length(list) then return "IdWord"; fi;
if list[k] <> 1 then
str:=Concatenation("g",String(k),"^",
String(list[k]));
else
str:=Concatenation("g",String(k));
fi;
count:=Length(str) + 15;
for l in [k + 1 .. Length(list)] do
if count > 60 then
str :=Concatenation(str,"\n ");
count:=4;
fi;
count:=count - Length(str);
if list[l] > 1 then
str:=Concatenation(str,"*g",String(l),"^",
String(list[l]));
elif list[l] = 1 then
str:=Concatenation(str,"*g",String(l));
fi;
count:=count + Length(str);
od;
return str;
end;
# Add the power presentation part.
for i in [1 .. Length(gens)] do
ne:=gens[i]^RelativeOrderOfPcElement(gens,gens[i]);
if ne<>One(U) then
Add(lines,Concatenation("[",String(i),",",
wordString(ne),"]"));
if i<Length(gens) then
Add(lines,",\n");
else
Add(lines,"\n");
fi;
fi;
od;
Add(lines,"];\nfor x in r do SetPower(rws,x[1],x[2]);od;\n");
Add(lines,"r:=[\n");
# Add the commutator presentation part.
for i in [1 .. Length(gens) - 1] do
for j in [i + 1 .. Length(gens)] do
ne:=Comm(gens[j],gens[i]);
if ne<>One(U) then
if i <> Length(gens) - 1 or j <> i + 1 then
Add(lines,Concatenation("[",String(j),",",String(i),",",
wordString(ne),"],\n"));
else
Add(lines,Concatenation("[",String(j),",",String(i),",",
wordString(ne),"]\n"));
fi;
fi;
od;
od;
Add(lines,"];\nfor x in r do SetCommutator(rws,x[1],x[2],x[3]);od;\n");
Add(lines,"return GroupByRwsNC(rws);\n");
Add(lines,"end;\n");
Add(lines,name);
Add(lines,":=");
Add(lines,name);
Add(lines,"();\n");
Add(lines,"Print(\"#I A group of order \",Size(");
Add(lines,name);
Add(lines,"),\" has been defined.\\n\");\n");
Add(lines,"Print(\"#I It is called ");
Add(lines,name);
Add(lines,"\\n\");\n");
# Concatenate all lines and return.
while Length(lines) > 1 do
if Length(lines) mod 2 = 1 then
Add(lines,"");
fi;
newLines:=[];
for i in [1 .. Length(lines) / 2] do
newLines[i]:=Concatenation(lines[2*i-1],lines[2*i]);
od;
lines:=newLines;
od;
IsString(lines[1]);
return lines[1];
end );
#############################################################################
##
#M Enumerator( <G> ) . . . . . . . . . . . . . . . . . . enumerator by pcgs
##
InstallMethod( Enumerator,"finite pc computable groups",true,
[ IsGroup and CanEasilyComputePcgs and IsFinite ], 0,
G -> EnumeratorByPcgs( Pcgs( G ) ) );
#############################################################################
##
#M KnowsHowToDecompose( <G>, <gens> )
##
InstallMethod( KnowsHowToDecompose,
"pc group and generators: always true",
IsIdenticalObj,
[ IsPcGroup, IsList ], 0,
ReturnTrue);
#############################################################################
##
#F CanonicalSubgroupRepresentativePcGroup( <G>, <U> )
##
InstallGlobalFunction( CanonicalSubgroupRepresentativePcGroup,
function(G,U)
local e, # EAS
pcgs, # himself
iso, # isomorphism to EAS group
start, # index of largest abelian quotient
i, # loop
n, # e[i]
m, # e[i+1]
pcgsm, # pcgs(m)
mpcgs, # pcgs mod pcgsm
V, # canon. rep
fv, # <V,m>
fvgens, # gens(fv)
no, # its normalizer
orb, # orbit
o, # orb index
nno, # growing normalizer
min,
minrep, # minimum indicator
# p, # orbit pos.
one, # 1
abc, # abelian case indicator
nopcgs, #pcgs(no)
te, # transversal exponents
opfun, # operation function
ce; # conj. elm
if not IsSubgroup(G,U) then
Error("#W CSR Closure\n");
G:=Subgroup(Parent(G),Concatenation(GeneratorsOfGroup(G),
GeneratorsOfGroup(U)));
fi;
# compute a pcgs fitting the EAS
pcgs:=PcgsChiefSeries(G);
e:=ChiefNormalSeriesByPcgs(pcgs);
if not IsBound(G!.chiefSeriesPcgsIsFamilyInduced) then
# test whether pcgs is family induced
m:=List(pcgs,i->ExponentsOfPcElement(FamilyPcgs(G),i));
G!.chiefSeriesPcgsIsFamilyInduced:=
ForAll(m,i->Number(i,j->j<>0)=1) and ForAll(m,i->Number(i,j->j=1)=1)
and m=Reversed(Set(m));
if not G!.chiefSeriesPcgsIsFamilyInduced then
# compute isom. &c.
V:=PcGroupWithPcgs(pcgs);
iso:=GroupHomomorphismByImagesNC(G,V,pcgs,FamilyPcgs(V));
G!.isomorphismChiefSeries:=iso;
G!.isomorphismChiefSeriesPcgs:=FamilyPcgs(Image(iso));
G!.isomorphismChiefSeriesPcgsSeries:=List(e,i->Image(iso,i));
fi;
fi;
if not G!.chiefSeriesPcgsIsFamilyInduced then
iso:=G!.isomorphismChiefSeries;
pcgs:=G!.isomorphismChiefSeriesPcgs;
e:=G!.isomorphismChiefSeriesPcgsSeries;
U:=Image(iso,U);
G:=Image(iso);
else
iso:=false;
fi;
#pcgs:=Concatenation(List([1..Length(e)-1],i->
# InducedPcgs(home,e[i]) mod InducedPcgs(home,e[i+1])));
#pcgs:=PcgsByPcSequence(ElementsFamily(FamilyObj(G)),pcgs);
##AH evtl. noch neue Gruppe
# find the largest abelian quotient
start:=2;
while start<Length(e) and HasAbelianFactorGroup(G,e[start+1]) do
start:=start+1;
od;
#initialize
V:=U;
one:=One(G);
ce:=One(G);
no:=G;
for i in [start..Length(e)-1] do
# lift from G/e[i] to G/e[i+1]
n:=e[i];
m:=e[i+1];
pcgsm:=InducedPcgs(pcgs,m);
mpcgs:=pcgs mod pcgsm;
# map v,no
#fv:=ClosureGroup(m,V);
#img:=CanonicalPcgs(InducedPcgsByGenerators(pcgs,GeneratorsOfGroup(fv)));
# if true then
nopcgs:=InducedPcgs(pcgs,no);
fvgens:=GeneratorsOfGroup(V);
if true then
min:=CorrespondingGeneratorsByModuloPcgs(mpcgs,fvgens);
#UU:=ShallowCopy(min);
# NORMALIZE_IGS(mpcgs,min);
#if UU<>min then
# Error("hier1");
#fi;
# trim m-part
min:=List(min,i->CanonicalPcElement(pcgsm,i));
# operation function: operate on the cgs modulo m
opfun:=function(u,e)
u:=CorrespondingGeneratorsByModuloPcgs(mpcgs,List(u,j->j^e));
#UU:=ShallowCopy(u);
# NORMALIZE_IGS(mpcgs,u);
#if UU<>u then
# Error("hier2");
#fi;
# trim m-part
u:=List(u,i->CanonicalPcElement(pcgsm,i));
return u;
end;
else
min:=fv;
opfun:=OnPoints;
fi;
# this function computes the orbit in a well-defined order that permits
# to find a transversal cheaply
orb:=Pcgs_OrbitStabilizer(nopcgs,false,min,nopcgs,opfun);
nno:=orb.stabpcgs;
abc:=orb.lengths;
orb:=orb.orbit;
#if Length(orb)<>Index(no,Normalizer(no,fv)) then
# Error("len!");
#fi;
# determine minimal conjugate
minrep:=one;
for o in [2..Length(orb)] do
if orb[o]<min then
min:=orb[o];
minrep:=o;
fi;
od;
# compute representative
if IsInt(minrep) then
te:=ListWithIdenticalEntries(Length(nopcgs),0);
o:=2;
while minrep<>1 do
while abc[o]>=minrep do
o:=o+1;
od;
te[o-1]:=-QuoInt(minrep-1,abc[o]);
minrep:=(minrep-1) mod abc[o]+1;
od;
te:=LinearCombinationPcgs(nopcgs,te)^-1;
if opfun(orb[1],te)<>min then
Error("wrong repres!");
fi;
minrep:=te;
fi;
#
#
# nno:=Normalizer(no,fv);
#
# rep:=RightTransversal(no,nno);
# #orb:=List(rep,i->CanonicalPcgs(InducedPcgs(pcgs,fv^i)));
#
# # try to cope with action on vector space (long orbit)
## abc:=false;
## if Index(fv,m)>1 and HasElementaryAbelianFactorGroup(fv,m) then
## nocl:=NormalClosure(no,fv);
## if HasElementaryAbelianFactorGroup(nocl,m) then
### abc:=true; # try el. ab. case
## fi;;
## fi;
#
# if abc then
# nocl:=InducedPcgs(pcgs,nocl) mod pcgsm;
# nopcgs:=InducedPcgs(pcgs,no) mod pcgsm;
# lop:=LinearActionLayer(Group(nopcgs),nocl); #matrices for action
# fvgens:=List(fvgens,i->ShallowCopy(
# ExponentsOfPcElement(nocl,i)*Z(RelativeOrders(nocl)[1])^0));
# TriangulizeMat(fvgens); # canonize
# min:=fvgens;
# minrep:=one;
# for o in rep do
# if o<>one then
# # matrix image of rep
# orb:=ExponentsOfPcElement(nopcgs,o);
# orb:=Product([1..Length(orb)],i->lop[i]^orb[i]);
# orb:=List(fvgens*orb,ShallowCopy);
# TriangulizeMat(orb);
# if orb<min then
# min:=orb;
# minrep:=o;
# fi;
# fi;
# od;
#
# else
# min:=CorrespondingGeneratorsByModuloPcgs(mpcgs,fvgens);
# NORMALIZE_IGS(mpcgs,min);
# minrep:=one;
# for o in rep do
# if o<>one then
# if Length(fvgens)=1 then
# orb:=fvgens[1]^o;
# orb:=orb^(1/LeadingExponentOfPcElement(mpcgs,orb)
# mod RelativeOrderOfPcElement(mpcgs,orb));
# orb:=[orb];
# else
# orb:=CorrespondingGeneratorsByModuloPcgs(mpcgs,List(fvgens,j->j^o));
# NORMALIZE_IGS(mpcgs,orb);
# fi;
# if orb<min then
# min:=orb;
# minrep:=o;
# fi;
# fi;
# od;
# fi;
# conjugate normalizer to new minimal one
no:=ClosureGroup(m,List(nno,i->i^minrep));
ce:=ce*minrep;
V:=V^minrep;
od;
if iso<>false then
V:=PreImage(iso,V);
no:=PreImage(iso,no);
ce:=PreImagesRepresentative(iso,ce);
fi;
return [V,no,ce];
end );
#############################################################################
##
#M ConjugacyClassSubgroups(<G>,<g>) . . . . . . . constructor for pc groups
## This method installs 'CanonicalSubgroupRepresentativePcGroup' as
## CanonicalRepresentativeDeterminator
##
InstallMethod(ConjugacyClassSubgroups,IsIdenticalObj,[IsPcGroup,IsPcGroup],0,
function(G,U)
local cl;
cl:=Objectify(NewType(CollectionsFamily(FamilyObj(G)),
IsConjugacyClassSubgroupsByStabilizerRep),rec());
SetActingDomain(cl,G);
SetRepresentative(cl,U);
SetFunctionAction(cl,OnPoints);
SetCanonicalRepresentativeDeterminatorOfExternalSet(cl,
CanonicalSubgroupRepresentativePcGroup);
return cl;
end);
InstallOtherMethod(RepresentativeActionOp,"pc group on subgroups",true,
[IsPcGroup,IsPcGroup,IsPcGroup,IsFunction],0,
function(G,U,V,f)
local c1,c2;
if f<>OnPoints or not (IsSubset(G,U) and IsSubset(G,V)) then
TryNextMethod();
fi;
if Size(U)<>Size(V) then
return fail;
fi;
c1:=CanonicalSubgroupRepresentativePcGroup(G,U);
c2:=CanonicalSubgroupRepresentativePcGroup(G,V);
if c1[1]<>c2[1] then
return fail;
fi;
return c1[3]/c2[3];
end);
#############################################################################
##
#F ChiefSeriesUnderAction( <U>, <G> )
##
InstallMethod( ChiefSeriesUnderAction,
"method for a pcgs computable group",
IsIdenticalObj,
[ IsGroup, IsGroup and CanEasilyComputePcgs ], 0,
function( U, G )
local home,e,ser,i,j,k,pcgs,mpcgs,op,m,cs,n;
home:=HomePcgs(G);
e:=ElementaryAbelianSeriesLargeSteps(G);
# make the series U-invariant
ser:=ShallowCopy(e);
e:=[G];
n:=G;
for i in [2..Length(ser)] do
# check whether we actually stepped down (or did the intersection
# already do it?
if Size(ser[i])<Size(n) then
if not IsNormal(U,ser[i]) then
# assuming the last was normal we intersect the conjugates and get a
# new normal with still ea. factor
ser[i]:=Core(U,ser[i]);
# intersect the rest of the series.
for j in [i+1..Length(ser)-1] do
ser[j]:=Intersection(ser[i],ser[j]);
od;
fi;
Add(e,ser[i]);
n:=ser[i];
fi;
od;
ser:=[G];
for i in [2..Length(e)] do
Info(InfoPcGroup,1,"Step ",i,": ",Index(e[i-1],e[i]));
if IsPrimeInt(Index(e[i-1],e[i])) then
Add(ser,e[i]);
else
pcgs:=InducedPcgs(home,e[i-1]);
mpcgs:=pcgs mod InducedPcgs(home,e[i]);
op:=LinearActionLayer(U,GeneratorsOfGroup(U),mpcgs);
m:=GModuleByMats(op,GF(RelativeOrderOfPcElement(mpcgs,mpcgs[1])));
cs:=MTX.BasesCompositionSeries(m);
Sort(cs,function(a,b) return Length(a)>Length(b);end);
cs:=cs{[2..Length(cs)]};
Info(InfoPcGroup,2,Length(cs)-1," compositionFactors");
for j in cs do
n:=e[i];
for k in j do
n:=ClosureGroup(n,PcElementByExponentsNC(mpcgs,List(k,IntFFE)));
od;
Add(ser,n);
od;
fi;
od;
return ser;
end);
InstallMethod(IsSimpleGroup,"for solvable groups",true,
[IsSolvableGroup],
# this is also better for permutation groups, so we increase the value to
# be above the value for `IsPermGroup'.
Maximum(RankFilter(IsSolvableGroup),
RankFilter(IsPermGroup)+1)
-RankFilter(IsSolvableGroup),
function(G)
return IsInt(Size(G)) and IsPrimeInt(Size(G));
end);
#############################################################################
##
#M ViewObj(<G>)
##
InstallMethod(ViewObj,"pc group",true,[IsPcGroup],0,
function(G)
if (not HasParent(G)) or
Length(GeneratorsOfGroup(G))*Length(GeneratorsOfGroup(Parent(G)))
/ GAPInfo.ViewLength > 50 then
Print("<pc group");
if HasSize(G) then
Print(" of size ",Size(G));
fi;
Print(" with ",Length(GeneratorsOfGroup(G)),
" generators>");
else
Print("Group(");
ViewObj(GeneratorsOfGroup(G));
Print(")");
fi;
end);
#############################################################################
##
#M CanEasilyComputePcgs( <pcgrp> ) . . . . . . . . . . . . . . . . pc group
##
InstallTrueMethod( CanEasilyComputePcgs, IsPcGroup );
# InstallTrueMethod( CanEasilyComputePcgs, HasPcgs );
# we cannot guarantee that computations with any pcgs is efficient
InstallTrueMethod( CanEasilyComputePcgs, IsGroup and HasFamilyPcgs );
#############################################################################
##
#M CanEasilyTestMembership
##
# InstallTrueMethod(CanEasilyTestMembership,CanEasilyComputePcgs);
# we cannot test membership using a pcgs
# InstallTrueMethod(CanComputeSize, CanEasilyComputePcgs); #unneccessary
#############################################################################
##
#M IsSolvableGroup
##
InstallTrueMethod(IsSolvableGroup, CanEasilyComputePcgs);
#############################################################################
##
#M CanComputeSizeAnySubgroup
##
InstallTrueMethod( CanComputeSizeAnySubgroup, CanEasilyComputePcgs );
#############################################################################
##
#M CanEasilyComputePcgs( <grp> ) . . . . . . . . . subset or factor relation
##
## Since factor groups might be in a different representation,
## they should *not* inherit `CanEasilyComputePcgs' automatically.
##
#InstallSubsetMaintenance( CanEasilyComputePcgs,
# IsGroup and CanEasilyComputePcgs, IsGroup );
#############################################################################
##
#M IsConjugatorIsomorphism( <hom> )
##
InstallMethod( IsConjugatorIsomorphism,
"for a pc group general mapping",
true,
[ IsGroupGeneralMapping ], 1,
# There is no filter to test whether source and range of a homomorphism
# are pc groups.
# So we have to test explicitly and make this method
# higher ranking than the default one in `ghom.gi'.
function( hom )
local s, r, G, genss, rep;
s:= Source( hom );
if not IsPcGroup( s ) then
TryNextMethod();
elif not ( IsGroupHomomorphism( hom ) and IsBijective( hom ) ) then
return false;
elif IsEndoGeneralMapping( hom ) and IsInnerAutomorphism( hom ) then
return true;
fi;
r:= Range( hom );
# Check whether source and range are in the same family.
if FamilyObj( s ) <> FamilyObj( r ) then
return false;
fi;
# Compute a conjugator in the full pc group.
G:= GroupOfPcgs( FamilyPcgs( s ) );
genss:= GeneratorsOfGroup( s );
rep:= RepresentativeAction( G, genss, List( genss,
i -> ImagesRepresentative( hom, i ) ), OnTuples );
# Return the result.
if rep <> fail then
Assert( 1, ForAll( genss, i -> Image( hom, i ) = i^rep ) );
SetConjugatorOfConjugatorIsomorphism( hom, rep );
return true;
else
return false;
fi;
end );
#############################################################################
##
#M CanEasilyComputeWithIndependentGensAbelianGroup( <pcgrp> )
##
InstallTrueMethod(CanEasilyComputeWithIndependentGensAbelianGroup,
IsGroup and CanEasilyComputePcgs and IsAbelian);
#############################################################################
##
#M IndependentGeneratorsOfAbelianGroup( <A> )
##
InstallMethod(IndependentGeneratorsOfAbelianGroup,
"Use Pcgs and NormalFormIntMat to find the independent generators",
[IsGroup and CanEasilyComputePcgs and IsAbelian],0,
function(G)
local matrix, snf, base, ord, cti, row, g, o, cf, j, i;
if IsTrivial(G) then return []; fi;
matrix:=List([1..Size(Pcgs(G))],g->List(ExponentsOfRelativePower(Pcgs(G),g)));
for i in [1..Size(Pcgs(G))] do
matrix[i][i]:=-RelativeOrders(Pcgs(G))[i];
od;
snf:=NormalFormIntMat(matrix,1+8+16);
base:=[];
ord:=[];
cti:=snf.coltrans^-1;
for i in [1..Length(cti)] do
row:=cti[i];
g:=LinearCombinationPcgs(Pcgs(G),row,One(G));
if not IsOne(g) then
# get the involved prime factors
o:=snf.normal[i][i];
cf:=Collected(Factors(o));
if Length(cf)>1 then
for j in cf do
j:=j[1]^j[2];
Add(ord,j);
Add(base,g^(o/j));
od;
else
Add(base,g);
Add(ord,o);
fi;
fi;
od;
SortParallel(ord,base);
return base;
end);
#############################################################################
##
#M MinimalGeneratingSet( <A> )
##
InstallMethod(MinimalGeneratingSet,
"compute via Smith normal form",
[IsGroup and CanEasilyComputePcgs and IsAbelian], RankFilter (IsPcGroup),
function(G)
local pcgs, matrix, snf, gens, cti, row, g, i;
if IsTrivial (G) then
return [];
fi;
pcgs := Pcgs (G);
matrix:=List([1..Length(pcgs)],i->List(ExponentsOfRelativePower(pcgs,i)));
for i in [1..Length(pcgs)] do
matrix[i][i]:=-RelativeOrders(pcgs)[i];
od;
snf:=NormalFormIntMat(matrix,1+8+16);
gens:=[];
cti:=snf.coltrans^-1;
for i in [1..Length(cti)] do
row:=cti[i];
g:=Product( List([1..Length(row)],j->pcgs[j]^row[j]));
if not IsOne(g) then
Add(gens,g);
fi;
od;
return gens;
end);
#############################################################################
##
#M ExponentOfPGroupAndElm( <G>, <bound> )
##
# Return exponent and probably also an element of high order. If exponent is
# found to be larger than bound, just return the result found so far.
#
# JS: A result of Higman detailed on p564 of C. Sims Computation with
# F. P. Groups shows that an element of maximal order in a p-group
# exists where its weight with respect to a special pcgs is at most
# the p-class of the group. Furthermore we need only check normed
# row vectors as exponent vectors since every cyclic subgroup has a
# generator with a normed row vector for exponents.
#
# This function just checks all such vectors using a simple backtrack
# method. It handles the case of the trivial group and a regular
# p-group specially.
#
# Assumed: G is a p-group, of max size p^30 or so.
BindGlobal("ExponentOfPGroupAndElm",
function(G,bound)
local all,pcgs,monic,weights,pclass,p;
monic := function(w,p,f)
local a,ldim,c,M,M1;
M := [0,0];
c := Maximum(w);
for ldim in [1..Size(w)] do
a := ListWithIdenticalEntries(Size(w),0);
a[ldim] := 1;
M1 := all(ldim,a,w,p,c-w[ldim],f);
if M1[1] > M[1] then M:=M1; if M[1] > bound then return M; fi; fi;
od;
return M;
end;
all := function(ldim,a,w,p,c,f)
local M,M1;
if ldim = Size(a) then return [f(a),PcElementByExponents(pcgs,a)]; fi;
M := [0,0];
a{[ldim+2..Size(a)]} := ListWithIdenticalEntries(Size(a)-ldim-1,0);
a[ldim+1] := Minimum( p-1, Int(c/w[ldim+1]) );
while a[ldim+1] >= 0 do
M1 := all(ldim+1,a,w,p,c-a[ldim+1]*w[ldim+1],f);
if M1[1] > M[1] then M:=M1; if M[1] > bound then return M; fi; fi;
a[ldim+1] := a[ldim+1]-1;
od;
return M;
end;
p := PrimePGroup(G);
if p = fail then return [1,One(G)]; fi; # handle trivial p-group of size 1
pcgs := SpecialPcgs(G);
weights := LGLayers(pcgs);
pclass := Maximum(weights);
if pclass < p then # Easily recognized regular p-group
pclass := Maximum(List(pcgs,Order));
return [pclass,First(pcgs,g->Order(g)=pclass)];
fi;
bound := Minimum(p^(pclass-1),bound);
return monic(LGLayers(pcgs),PrimePGroup(G),a->Order(PcElementByExponents(pcgs,a)));
end);
InstallMethod( Exponent,"solvable group: does obvious bound work?",
true,[IsGroup and IsSolvableGroup],0,
#based on code by Jack Schmidt
function(G)
local L, upper, lower, cnts, cnt, a, i;
if IsPGroup(G) then
return ExponentOfPGroupAndElm(G,Size(G))[1];
fi;
L:=DerivedSeriesOfGroup(G);
upper:=1;
for i in [1..Length(L)-1] do
upper:=upper*Lcm(AbelianInvariants(L[i]));
od;
lower:=Lcm(List(Pcgs(G),Order));
cnts:=LogInt(Size(G),2);
cnt:=cnts;
repeat
a:=Lcm(lower,Order(Random(G)));
if a>lower then
if a=upper then
return upper;
fi;
lower:=a;
cnt:=cnts;
else
cnt:=cnt-1;
fi;
until cnt<1;
# fails
TryNextMethod();
end);
#############################################################################
##
#M AgemoOp( <G> )
##
InstallMethod( AgemoOp, "PGroups",true,[ IsPGroup, IsPosInt, IsPosInt ],0,
function( G, p, n )
local q, pcgs, sub, hom, f, ex, C;
q := p ^ n;
# if <G> is abelian, raise the generators to the q.th power
if IsAbelian(G) then
return SubgroupNC( G,Filtered( List( GeneratorsOfGroup( G ), x ->
x^q ),i->not IsOne(i)) );
fi;
# based on Code by Jack Schmidt
pcgs:=Pcgs(G);
ex:=One(G);
sub:=NormalClosure(G,SubgroupNC(G,Filtered(List(pcgs,i->i^q),x->x<>ex)));
hom:=NaturalHomomorphismByNormalSubgroup(G,sub);
f:=Range(hom);
ex:=ExponentOfPGroupAndElm(f,q);
while ex[1]>q do
# take the element of highest order in f and take power of its preimage
ex:=PreImagesRepresentative(hom,ex[2]^q);
sub:=NormalClosure(G,ClosureSubgroupNC(sub,ex));
hom:=NaturalHomomorphismByNormalSubgroup(G,sub);
f:=Range(hom);
ex:=ExponentOfPGroupAndElm(f,q);
od;
return sub;
# otherwise compute the conjugacy classes of elements
C := Set( List( ConjugacyClasses(G), x -> Representative(x)^q ) );
return NormalClosure( G, SubgroupNC( G, C ) );
end );
InstallMethod(Socle,"for p-groups",true,[IsPGroup],0,
function(G)
if IsTrivial(G) then return G; fi;
return Omega(Center(G),PrimePGroup(G),1);
end);
#############################################################################
##
#M OmegaOp( <G>, <p>, <n> ) . . . . . . . . . . . . for p-groups
##
## The following method is due to Jack Schmidt
## Omega(G,p,e) is defined to be <g in G: g^(p^e)=1>
# Omega_LowerBound returns a subgroup of Omega(G,p,e)
# Assumed: G is a p-group, e is a positive integer
BindGlobal("Omega_LowerBound_RANDOM",100); # number of random elements to test
BindGlobal("Omega_LowerBound",
function(G,p,e)
local gens,H,fix_order;
fix_order:=function(g) while not IsOne(g^(p^e)) do g:=g^p; od; return g; end;
H:=Subgroup(G,List(Pcgs(G),fix_order));
H:=ClosureGroup(H,List([1..Omega_LowerBound_RANDOM],i->fix_order(Random(G))));
return H;
end);
# Omega_Search is a brute force search for Omega.
# One can search by coset if Omega(G) = { g in G : g^(p^e) = 1 }
# This is the case in regular p-groups, and if nilclass(G) < p
# then G is regular.
# Assumed: G is a p-group, e is a positive integer
BindGlobal("Omega_Search",
function(G,p,e)
local g,H,fix_order,T;
H:=Omega_LowerBound(G,p,e);
fix_order:=function(g) while not IsOne(g^(p^e)) do g:=g^p; od; return g; end;
if NilpotencyClassOfGroup(G) < p
then T:=RightTransversal(G,H);
else T:=G;
fi;
for g in T do
g:=fix_order(g);
if(g in H) then continue; fi;
H:=ClosureSubgroup(H,g);
if(H=G) then return G; fi;
od;
return H;
end);
# Omega_UpperBoundAbelianQuotient(G,p,e) returns a subgroup K<=G
# such that Omega(G,p,e) <= K. Then Omega(K,p,e)=Omega(G,p,e)
# allowing other methods to work on a smaller group.
#
# It is not guaranteed that K is a proper subgroup of G.
#
# In detail: Omega(G/[G,G],p,e) = K/[G,G] and K is returned.
#
# Assumed: G is a p-group, e is a positive integer
BindGlobal("Omega_UpperBoundAbelianQuotient",
function(G,p,e)
local f;
f:=MaximalAbelianQuotient(G);
IsAbelian(Image(f));
return SubgroupByPcgs(G,Pcgs(PreImagesSet(f,Omega(Image(f),p,e))));
end);
# Efficiency notes:
#
# (1) "PreImagesSet" is used to find the preimage of Omega in G/[G,G].
# there may very well be faster ways of doing this.
#
# (2) "SubgroupByPcgs(G,Pcgs(...))" is used to give the returned subgroup
# with natural standard generators. There may be better ways of doing this,
# and this may not be needed at all.
# Omega_UpperBoundCentralQuotient(G,p,e) returns
# a subgroup K with Omega(G,p,e) <= K <= G. The
# algorithm is (moderately) randomized.
#
# The algorithm is NOT fast.
#
# In detail a random central element, z, of order p is
# selected and K is returned where K/<z> = Omega(G/<z>,p,e).
#
# Assumed: G is a p-group, e is a positive integer
BindGlobal("Omega_UpperBoundCentralQuotient",
function(G,p,e)
local z,f;
z:=One(G); while(IsOne(z)) do z:=Random(Socle(G)); od;
f:=NaturalHomomorphismByNormalSubgroup(G,Subgroup(G,[z]));
IsAbelian(Image(f)); # Probably is not, but quick to check
return SubgroupByPcgs(G,Pcgs(PreImagesSet(f,Omega(Image(f),p,e))));
end);
# Efficiency Points:
#
# (1) "Omega" is used to compute Omega(G/<z>,p,e). |G/<z>| = |G|/p.
# This is a very very tiny reduction AND it is very possible for
# Omega(G/<z>)=G/<z> for every nontrivial element z of the socle without
# Omega(G)=G. Hence the calculation of Omega(G/<z>) may take a very
# long time AND may prove worthless.
#
# (2) "PreImagesSet" is used to calculate the preimage of Omega(G/<z>)
# there may be more efficient methods to do this. I have noticed a very
# wide spread of times for the various PreImage functions.
# Omega(G,p,e) is a normal, characteristic, fully invariant subgroup that
# behaves nicely under group homomorphisms. In particular
# if Omega(G/N)=K/N then Omega(G) <= K. If Omega(G) <= K,
# then Omega(G)=Omega(K).
#
# Hence the general strategy is to find good upper bounds K for
# Omega(G), and then compute Omega(K) instead. It is difficult
# to tell when one's upper bound is actually equal to Omega(G),
# so we attempt to terminate early by finding good lower bounds
# H as well.
#
# Assumed: G is a p-group, e is a positive integer
BindGlobal("Omega_Sims_CENTRAL",100);
BindGlobal("Omega_Sims_RUNTIME",5000);
#Choose a central element z of order p. Suppose that by induction
#we know H = Omega(G/<z>). Then Omega(G) is contained in the inverse
#image K of H in G. Compute K/K'. If that quotient has elements of
#order p^2, then we can cut K down a bit. Thus we may assume that we
#know a normal subgroup K of G that contains Omega(G), K maps into
#H, and K/K' has exponent p. One would hope that K is small enough
#that random methods combined with deterministic computations would
#make it possible to compute Omega(K) = Omega(G).
#-Charles Sims
BindGlobal("Omega_Sims",
function(G,p,e)
local H,K,Knew,fails,gens,r;
if(IsTrivial(G)) then return G; fi;
K:=G;
H:=Omega_LowerBound(K,p,e);
if(H=K) then return K; fi;
# Step 1, reduce until K/K' = Omega(K/K') then Omega(G)=Omega(K)
while (true) do # there is a `break' below
Knew:=Omega_UpperBoundAbelianQuotient(K,p,e);
if(Knew=K) then break; fi;
K:=Knew;
od;
if (H=K) then
return K;
fi;
# Step 2, reduce until we have fail lots of times in a row
# or waste a lot of time.
r:=Runtime();
fails:=0;
while(fails<Omega_Sims_CENTRAL and Runtime()-r<Omega_Sims_RUNTIME) do
Knew:=Omega_UpperBoundCentralQuotient(K,p,e);
if(K=Knew) then fails:=fails+1; continue; fi;
fails:=0;
K:=Knew;
if(H=K) then return H; fi;
od;
# Step 3: Repeat step 1
while(true) do
Knew:=Omega_UpperBoundAbelianQuotient(K,p,e);
if(Knew=K) then break; fi;
K:=Knew;
od;
if(H=K) then return K; fi;
# Step 4: If K<G, then we have reduced the problem, so just ask for Omega(K,p,e) directly.
if(K<>G) then return Omega(K,p,e); fi;
# Otherwise we try to search.
if(Size(G)<2^24) then return Omega_Search(G,p,e); fi;
# If the group is too big to search, just let the user know. If he wants
# to continue we can try and return a lower bound, but this is too small
# quite often.
Error("Inductive method failed. You may 'return;' if you wish to use a\n",
"(possible incorrect) lower bound ",H," for Omega.");
return H;
end);
InstallMethod( OmegaOp, "for p groups", true,
[ IsGroup, IsPosInt, IsPosInt ], 0,
function( G, p, n )
local gens, q, gen, ord, o;
# trivial cases
if n=0 then return TrivialSubgroup(G);fi;
if IsAbelian( G ) then
q := p^n;
gens := [ ];
for gen in IndependentGeneratorsOfAbelianGroup( G ) do
ord := Order( gen );
o := GcdInt( ord, q );
if o <> 1 then
Add( gens, gen ^ ( ord / o ) );
fi;
od;
return SubgroupNC( G, gens );
fi;
if not PrimePGroup(G)=p then
TryNextMethod();
fi;
if ForAll(Pcgs(G),g->IsOne(g^(p^n))) then
return G;
elif(Size(G)<2^15) then
return Omega_Search(G,p,n);
else
return Omega_Sims(G,p,n);
fi;
end);
############################################################################
##
#M HallSubgroupOp (<grp>, <pi>)
##
InstallMethod (HallSubgroupOp, "via IsomoprhismPcGroup", true,
[IsGroup and IsSolvableGroup and IsFinite, IsList], 0,
function (grp, pi)
local iso;
iso := IsomorphismPcGroup (grp);
return PreImagesSet (iso, HallSubgroup (ImagesSource (iso), pi));
end);
############################################################################
##
#M HallSubgroupOp (<grp>, <pi>)
##
RedispatchOnCondition(HallSubgroupOp,true,[IsGroup,IsList],
[IsSolvableGroup and IsFinite,],1);
############################################################################
##
#M SylowComplementOp (<grp>, <p>)
##
InstallMethod (SylowComplementOp, "via IsomoprhismPcGroup", true,
[IsGroup and IsSolvableGroup and IsFinite, IsPosInt], 0,
function (grp, p)
local iso;
iso := IsomorphismPcGroup (grp);
return PreImagesSet (iso, SylowComplement (ImagesSource (iso), p));
end);
############################################################################
##
#M SylowComplementOp (<grp>, <p>)
##
RedispatchOnCondition(SylowComplementOp,true,[IsGroup,IsPosInt],
[IsSolvableGroup and IsFinite,
IsPosInt ],1);
#############################################################################
##
#E
|