/usr/share/gap/lib/grppcatr.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 | #############################################################################
##
#W grppcatr.gi GAP Library Frank Celler
#W & Bettina Eick
##
##
#Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the methods for attributes of polycylic groups.
##
#############################################################################
##
#M AsSSortedList( <pcgrp> )
##
InstallMethod( AsSSortedListNonstored,"pcgs computable groups",true,
[ IsGroup and CanEasilyComputePcgs and IsFinite ],0,
function( grp )
local elms, pcgs, g, u, e, i;
elms := [ One(grp) ];
pcgs := Pcgs(grp);
for g in pcgs do
u := One(grp);
e := ShallowCopy(elms);
for i in [ 1 .. RelativeOrderOfPcElement(pcgs,g)-1 ] do
u := u * g;
UniteSet( elms, e * u );
od;
od;
return elms;
end );
InstallMethod( AsSSortedList,"pcgs computable groups",true,
[ IsGroup and CanEasilyComputePcgs and IsFinite ],0,
AsSSortedListNonstored);
#############################################################################
##
#M AsList(<G>)
##
InstallMethod(AsList,"pc group",true,[IsPcGroup],0,AsSSortedListNonstored);
#############################################################################
##
#M CompositionSeries( <G> )
##
InstallMethod( CompositionSeries, "pcgs computable groups", true,
[ IsGroup and CanEasilyComputePcgs and IsFinite ], 0,
function( G )
local pcgsG, m, S, parent, i, igs, U;
# get a pcgs of <G>
pcgsG := Pcgs(G);
m := Length(pcgsG);
S := [];
# if <pcgsG> is induced use the parent
parent := ParentPcgs(pcgsG);
#if IsInducedPcgs(pcgsG) then
# parent := ParentPcgs(pcgsG);
#else
# parent := pcgsG;
#fi;
# compute the pcgs of the composition subgroups
for i in [ 1 .. m+1 ] do
igs := InducedPcgsByPcSequenceNC( parent, pcgsG{[i..m]} );
U := SubgroupByPcgs( G, igs );
Add( S, U );
od;
# and return
return S;
end );
#############################################################################
##
#M DerivedSubgroup( <G> )
##
InstallMethod( DerivedSubgroup,
"pcgs computable groups",
true,
[ IsGroup and CanEasilyComputePcgs and IsFinite ],
0,
function( U )
local pcgsU, parent, C, i, j, tmp;
# compute the commutators of the elements of a pcgs
pcgsU := Pcgs(U);
parent := ParentPcgs( pcgsU );
C := [];
for i in [ 1 .. Length(pcgsU) ] do
for j in [ i+1 .. Length(pcgsU) ] do
AddSet( C, Comm( pcgsU[j], pcgsU[i] ) );
od;
od;
# if <pcgsU> is induced use the parent
tmp := InducedPcgsByGeneratorsNC( parent, C );
C := SubgroupByPcgs( U, tmp );
return C;
end);
#############################################################################
##
#M ElementaryAbelianSeries( <G> )
##
InstallMethod( ElementaryAbelianSeries,
"pcgs computable groups using `PcgsElementaryAbelianSeries'", true,
[ IsGroup and CanEasilyComputePcgs and IsFinite ], 0,
G->EANormalSeriesByPcgs(PcgsElementaryAbelianSeries(G)));
#############################################################################
##
#M FrattiniSubgroup( <G> )
##
InstallMethod( FrattiniSubgroup,
"pcgs computable groups using prefrattini and core",
true,
[ IsGroup and CanEasilyComputePcgs and IsFinite ],
0,
function( G )
return Core( G, PrefrattiniSubgroup( G ) );
end);
#############################################################################
##
#M HallSubgroupOp( <G>, <pi> )
##
## compute and use special pcgs of <G>.
##
InstallMethod( HallSubgroupOp,
"pcgs computable groups using special pcgs",
true,
[ IsGroup and CanEasilyComputePcgs and IsFinite, IsList ],
0,
function( G, pi )
local spec, weights, gens, i, S;
spec := SpecialPcgs( G );
weights := LGWeights( spec );
gens := [];
for i in [1..Length(spec)] do
if weights[i][3] in pi then Add( gens, spec[i] ); fi;
od;
gens := InducedPcgsByPcSequenceNC( spec, gens );
S := SubgroupByPcgs( G, gens );
return S;
end );
RedispatchOnCondition(HallSubgroupOp,true,[IsGroup,IsList],
[IsGroup and IsSolvableGroup and CanEasilyComputePcgs and IsFinite,
IsList ],0);
#############################################################################
##
#M PrefrattiniSubgroup( <G> )
##
InstallMethod( PrefrattiniSubgroup,
"pcgs computable groups using special pcgs",
true,
[ IsGroup and CanEasilyComputePcgs and IsFinite ],
0,
function( G )
local pcgs, spec, first, weights, m, pref, i, start,
next, p, pcgsS, pcgsN, pcgsL, mats, modu, rad,
elms, P;
spec := SpecialPcgs( G );
first := LGFirst( spec );
weights := LGWeights( spec );
m := Length( spec );
pref := [];
for i in [1..Length(first)-1] do
start := first[i];
next := first[i+1];
p := weights[start][3];
if weights[start][1] > 1 and weights[start][2] = 1 and
next-start > 1 then
pcgsS := InducedPcgsByPcSequenceNC( spec, spec{[start..m]} );
pcgsN := InducedPcgsByPcSequenceNC( spec, spec{[next..m]} );
pcgsL := pcgsS mod pcgsN;
mats := LinearOperationLayer( spec, pcgsL );
modu := GModuleByMats( mats, GF(p) );
rad := MTX.BasisRadical( modu );
elms := List( rad, x -> PcElementByExponentsNC( pcgsL, x ) );
Append( pref, elms );
elif weights[start][2] > 1 then
Append(pref, spec{[start..next-1]} );
fi;
od;
pref := InducedPcgsByPcSequenceNC( spec, pref );
P := SubgroupByPcgs( G, pref );
return P;
end);
#############################################################################
##
#M IsFinite( <pcgrp> )
##
InstallMethod( IsFinite,
"pcgs computable groups",
true,
[ IsGroup and CanEasilyComputePcgs ],
0,
grp -> not 0 in RelativeOrders( Pcgs( grp ) ) );
#T is this method necessary at all?
#############################################################################
##
#M Size( <pcgrp> )
##
InstallMethod( Size, "pcgs computable groups", true,
[ IsGroup and CanEasilyComputePcgs ], 0,
function( grp )
local ords;
ords := RelativeOrders(Pcgs(grp));
if 0 in ords then
return infinity;
else
return Product(ords);
fi;
end );
#############################################################################
##
#M SylowComplementOp( <G>, <p> )
##
## compute and use special pcgs of <G>.
##
InstallMethod( SylowComplementOp,
"pcgs computable groups using special pcgs",
true,
[ IsGroup and CanEasilyComputePcgs and IsFinite,
IsPosInt ],
80,
function( G, p )
local spec, weights, gens, i, S;
spec := SpecialPcgs( G );
weights := LGWeights( spec );
gens := [];
for i in [1..Length(spec)] do
if weights[i][3] <> p then Add( gens, spec[i] ); fi;
od;
gens := InducedPcgsByPcSequenceNC( spec, gens );
S := SubgroupByPcgs( G, gens );
return S;
end );
RedispatchOnCondition(SylowComplementOp,true,[IsGroup,IsPosInt],
[IsGroup and IsSolvableGroup and CanEasilyComputePcgs and IsFinite,
IsPosInt ],0);
#############################################################################
##
#M SylowSubgroupOp( <G>, <p> )
##
## compute and use special pcgs of <G>.
##
InstallMethod( SylowSubgroupOp,
"pcgs computable groups using special pcgs",
true,
[ IsGroup and CanEasilyComputePcgs and IsFinite,
IsPosInt ],
100,
function( G, p )
local spec, weights, gens, i, S;
spec := SpecialPcgs( G );
weights := LGWeights( spec );
gens := [];
for i in [1..Length(spec)] do
if weights[i][3] = p then Add( gens, spec[i] ); fi;
od;
gens := InducedPcgsByPcSequenceNC( spec, gens );
S := SubgroupByPcgs( G, gens );
if Size(S) > 1 then
SetIsPGroup( S, true );
SetPrimePGroup( S, p );
fi;
return S;
end );
#############################################################################
##
#F MaximalSubgroupClassesRepsLayer( <pcgs>, <layer> )
##
MaximalSubgroupClassesRepsLayer := function( pcgs, l )
local first, weights, m, start, next, pcgsS, pcgsN, pcgsL, p, mats,
modu, maxi, i, elms, sub, M, G;
first := LGFirst( pcgs );
weights := LGWeights( pcgs );
m := Length( pcgs );
start := first[l];
next := first[l+1];
G := GroupOfPcgs( pcgs );
# catch the trivial case
if weights[start][2] <> 1 then
return [];
fi;
pcgsS := InducedPcgsByPcSequenceNC( pcgs, pcgs{[start..m]} );
pcgsN := InducedPcgsByPcSequenceNC( pcgs, pcgs{[next..m]} );
pcgsL := pcgsS mod pcgsN;
p := weights[start][3];
mats := LinearOperationLayer( pcgs, pcgsL );
modu := GModuleByMats( mats, GF(p) );
maxi := MTX.BasesMaximalSubmodules( modu );
for i in [1..Length( maxi )] do
maxi[i] := ShallowCopy( maxi[i] );
TriangulizeMat( maxi[i] );
elms := List( maxi[i], x -> PcElementByExponentsNC( pcgsL, x ) );
sub := Concatenation( pcgs{[1..start-1]}, elms, pcgsN );
sub := InducedPcgsByPcSequenceNC( pcgs, sub );
M := SubgroupByPcgs( G, sub );
maxi[i] := M;
od;
return maxi;
end;
MAXSUBS_BY_PCGS:=function( G )
local spec, first, max, i, new;
spec := SpecialPcgs(G);
first := LGFirst( spec );
max := [];
for i in [1..Length(first)-1] do
new := MaximalSubgroupClassesRepsLayer( spec, i );
Append( max, new );
od;
return max;
end;
#############################################################################
##
#M MaximalSubgroupClassReps( <G> )
##
InstallMethod( MaximalSubgroupClassReps,
"pcgs computable groups using special pcgs",
true,
[ IsGroup and CanEasilyComputePcgs and IsFinite ],
0,
MAXSUBS_BY_PCGS);
#fallback
InstallMethod( MaximalSubgroupClassReps,
"pcgs computable groups using special pcgs",
true,
[ IsGroup and IsSolvableGroup and IsFinite ],
0,
MAXSUBS_BY_PCGS);
#############################################################################
##
#M MaximalSubgroups( <G> )
##
InstallMethod( MaximalSubgroups,
"pcgs computable groups using special pcgs",
true,
[ IsGroup and HasFamilyPcgs and IsFinite ],
0,
function( G )
local spec, first, m, max, i, U, new, M;
spec := SpecialPcgs(G);
first := LGFirst( spec );
m := Length( spec );
max := [];
for i in [1..Length(first)-1] do
U := Subgroup( G, spec{[first[i]..m]} );
new := MaximalSubgroupClassesRepsLayer( spec, i );
for M in new do
if IsNormal( G, M ) then
Add( max, M );
else
Append( max, ConjugateSubgroups( U, M ) );
fi;
od;
od;
return max;
end );
#############################################################################
##
#M ConjugacyClassesMaximalSubgroups( <G> )
##
#T InstallMethod( ConjugacyClassesMaximalSubgroups,
#T "generic method for groups with pcgs",
#T true,
#T [ IsGroup and CanEasilyComputePcgs ],
#T 0,
#T
#T function( G )
#T return List( MaximalSubgroupClassReps(G),
#T x -> ConjugacyClassSubgroup( G, x ) );
#T end);
#############################################################################
##
#M NormalMaximalSubgroups( <G> )
##
InstallMethod( NormalMaximalSubgroups,
"pcgs computable groups using special pcgs",
true,
[ IsGroup and CanEasilyComputePcgs and IsFinite ],
0,
function( G )
local spec, first, weights, max, i, new;
spec := SpecialPcgs( G );
first := LGFirst( spec );
weights := LGWeights( spec );
max := [];
for i in [1..Length(first)-1] do
if weights[first[i]][1] = 1 then
new := MaximalSubgroupClassesRepsLayer( spec, i );
Append( max, new );
fi;
od;
return max;
end );
#############################################################################
##
#F ModifyMinGens( <pcgsG>, <pcgsS>, <pcgsL>, <min> )
##
ModifyMinGens := function( pcgs, pcgsS, pcgsL, min )
local pcgsF, g, i, new, pcgsT, pcgsV;
# set up
pcgsF := pcgsS mod pcgsL;
# try to modify mingens
for g in pcgsF do
for i in [1..Length( min )] do
new := ShallowCopy( min );
new[i] := min[i] * g;
pcgsT := InducedPcgsByPcSequenceAndGenerators(pcgs, pcgsL, new);
pcgsT := Pcgs( ZassenhausIntersection( pcgs, pcgsS, pcgsT ) );
if Length( pcgsT ) > Length( pcgsL ) then
min[i] := new[i];
return;
fi;
od;
od;
# mingens cannot be modified - add new generator
Add( min, pcgsF[1] );
end;
#############################################################################
##
#F MinimalGensLayer( <pcgsG>, <pcgsS>, <pcgsN>, <min> )
##
MinimalGensLayer := function( pcgs, pcgsS, pcgsN, min )
local series, pcgsL, pcgsU, pcgsV, pcgsM;
series := [pcgsN];
# set up
pcgsL := pcgsN;
pcgsU := InducedPcgsByPcSequenceAndGenerators( pcgs, pcgsN, min );
pcgsV := pcgsU;
# loop
while Length( pcgsU ) < Length( pcgs ) do
# get intersection of V with layer
pcgsM := Pcgs( ZassenhausIntersection( pcgs, pcgsS, pcgsV ) );
if Length( pcgsM ) <> Length( pcgsL ) then
Add( series, pcgsM );
fi;
pcgsL := series[Length(series)];
# modify minimal gens
ModifyMinGens( pcgs, pcgsS, pcgsL, min );
pcgsV := InducedPcgsByPcSequenceAndGenerators( pcgs, pcgsL, min );
pcgsU := InducedPcgsByPcSequenceAndGenerators( pcgs, pcgsN, min );
if Length( pcgs ) = Length( pcgsV ) then
pcgsS := pcgsL;
Unbind( series[Length(series)] );
fi;
od;
return min;
end;
#############################################################################
##
#M MinimalGeneratingSet( <G> )
##
InstallMethod( MinimalGeneratingSet,
"pcgs computable groups using special pcgs",
true, [ IsPcGroup and IsFinite ], 0,
function( G )
local spec, weights, first, m, mingens, i, start, next, j,
pcgsN, pcgsS, pcgsU;
if IsTrivial(G) then
return [];
fi;
spec := SpecialPcgs( G );
weights := LGWeights( spec );
first := LGFirst( spec );
m := Length( spec );
# the first head
mingens := spec{[1..first[2]-1]};
i := 2;
while i <= Length( first ) -1 and
weights[first[i]][1] = 1 and weights[first[i]][2] = 1 do
start := first[i];
next := first[i+1];
for j in [1..next-start] do
if j <= Length(mingens) then
mingens[j] := mingens[j] * spec[ start+j-1 ];
else
Add(mingens, spec[ start+j-1 ] );
fi;
od;
i := i + 1;
od;
# the other heads
while i <= Length( first ) -1 do
if weights[first[i]][2] = 1 then
start := first[i];
next := first[i+1];
pcgsS := InducedPcgsByPcSequenceNC( spec, spec{[start..m]} );
pcgsN := InducedPcgsByPcSequenceNC( spec, spec{[next..m]} );
mingens := MinimalGensLayer( spec, pcgsS, pcgsN, mingens );
fi;
i := i + 1;
od;
return Set(mingens);
end );
#############################################################################
##
#M SmallGeneratingSet(<G>)
##
InstallMethod(SmallGeneratingSet,"using minimal generating set",true,
[IsPcGroup and IsFinite],0,
function (G)
if Length(Pcgs(G))>14 then
TryNextMethod();
fi;
return MinimalGeneratingSet(G);
end);
#############################################################################
##
#M GeneratorsSmallest(<pcgrp>)
##
InstallMethod(GeneratorsSmallest,"group of pc words which is full family",
true, [HasFamilyPcgs],0,
function(G)
local pcgs,gens,U,e,i,j,pa,ros,smallpcgs,exp;
# the smallest generating system is obtained from the
# family pcgs by throwing out redundant generators.
pcgs:=InducedPcgsWrtFamilyPcgs(G);
# normalize leading exponent to one
pa := ParentPcgs(pcgs);
ros := RelativeOrders(pcgs);
smallpcgs := [];
for i in [ 1 .. Length(pcgs) ] do
exp := LeadingExponentOfPcElement( pa, pcgs[i] );
smallpcgs[i] := pcgs[i] ^ (1/exp mod ros[i]);
od;
# make entry 1 above the diagonale
for i in [ 1 .. Length(smallpcgs)-1 ] do
for j in [ i+1 .. Length(smallpcgs) ] do
exp := ExponentOfPcElement( pa, smallpcgs[i], DepthOfPcElement(
pa, smallpcgs[j] ) );
if exp <> 1 then
smallpcgs[i]:=smallpcgs[i]*smallpcgs[j]^(ros[j]-exp+1);
fi;
od;
od;
gens:=[];
U:=TrivialSubgroup(G);
for i in [1..Length(smallpcgs)] do
e:=Product(smallpcgs{[1..i]});
if not e in U then
Add(gens,e);
U:=ClosureGroup(U,e);
fi;
od;
return gens;
end);
#############################################################################
##
#F NextStepCentralizer( <gens>, <cent>, <pcgsF>, <field> )
##
NextStepCentralizer := function( gens, cent, pcgsF, field )
local g, newgens, matlist, notcentral, h, comm, null, j, elm;
for g in gens do
if Length( cent ) = 0 then return []; fi;
newgens := [];
matlist := [];
notcentral := [];
for h in cent do
comm := ExponentsOfPcElement( pcgsF, Comm( h, g ) ) * One(field);
if comm = Zero( field ) * comm then
Add( newgens, h );
else
Add( notcentral, h );
Add( matlist, comm );
fi;
od;
if Length( matlist ) > 0 then
# get nullspace
null := TriangulizedNullspaceMat( matlist );
# calculate elements corresponding to null
for j in [1..Length(null)] do
elm := PcElementByExponentsNC( pcgsF, notcentral, null[j] );
Add( newgens, elm );
od;
fi;
cent := newgens;
od;
return cent;
end;
#############################################################################
##
#F GeneratorsCentrePGroup( <U> )
##
InstallGlobalFunction( GeneratorsCentrePGroup, function( U )
local pcgs, spec, n, firs, p, field, ser, gens, cent, i, pcgsF;
# catch the trivial case
pcgs := Pcgs(U);
if Length( pcgs ) = 0 then return []; fi;
# set up series
spec := SpecialPcgs( U );
n := Length( spec );
firs := LGFirst( spec );
p := PrimePGroup( U );
field := GF(p);
ser := List( firs, x ->
InducedPcgsByPcSequenceNC( spec, spec{[x..n]} ) );
gens := spec{[1..firs[2]-1]};
cent := gens;
for i in [2..Length(ser)-1] do
pcgsF := ser[i] mod ser[i+1];
cent := NextStepCentralizer( gens, cent, pcgsF, field );
Append( cent, AsList( pcgsF ) );
od;
return cent;
end );
#############################################################################
##
#F CentrePcGroup( <G> )
##
InstallGlobalFunction (CentrePcGroup, function( G )
local spec, first, weights, m, primes, cent, i, gens,
start, next, p, j, field, pcgsS, pcgsN, pcgsF, q,
U, newgens, matlist, g, conj, expo, order, eigen,
null, n, elm, r, ksi, large, pcgsH, H, oper;
# get special pcgs
spec := SpecialPcgs( G );
first := LGFirst( spec );
weights := LGWeights( spec );
m := Length( spec );
# get primes and set up
primes := Set( List( weights, x -> x[3] ) );
cent := List( primes, x -> [] );
# the first nilpotent factor
i := 1;
gens := [];
while i <= Length( first ) - 1 and weights[first[i]][1] = 1 do
start := first[i];
next := first[i+1];
p := weights[start][3];
j := Position( primes, p );
if weights[start][2] = 1 then
gens[j] := spec{[start..next-1]};
cent[j] := spec{[start..next-1]};
elif weights[start][3] = p then
field := GF(p);
pcgsS := InducedPcgsByPcSequenceNC( spec, spec{[start..m]} );
pcgsN := InducedPcgsByPcSequenceNC( spec, spec{[next..m]} );
pcgsF := pcgsS mod pcgsN;
cent[j] := NextStepCentralizer( gens[j], cent[j], pcgsF, field );
Append( cent[j], AsList( pcgsF ) );
fi;
i := i + 1;
od;
# the remaining layers
while i <= Length( first ) - 1 do
start := first[i];
next := first[i+1];
q := weights[start][3];
field := GF(q);
pcgsS := InducedPcgsByPcSequenceNC( spec, spec{[start..m]} );
pcgsN := InducedPcgsByPcSequenceNC( spec, spec{[next..m]} );
pcgsF := pcgsS mod pcgsN;
for j in [1..Length(primes)] do
p := primes[j];
if p = q and (weights[start][2] > 1 or Length( cent[j] ) > 0) then
pcgsH := spec mod pcgsN;
H := GroupByPcgs( pcgsH );
gens := List(cent[j], x->MappedPcElement(x, pcgsH, Pcgs(H)));
Append( gens, Pcgs(H){[start..next-1]} );
# calculate centre of centF
U := Subgroup( H, gens );
gens := GeneratorsCentrePGroup( U );
gens := List( gens, x -> MappedPcElement(x,Pcgs(H),pcgsH));
# get centralizer
oper := spec{Filtered([1..start-1], x -> weights[x][2] = 1)};
cent[j] := NextStepCentralizer( oper, gens, pcgsF, field );
# case p <> q
elif Length( cent[j] ) > 0 then
# get operation of centF on M
newgens := [];
matlist := [];
for g in cent[j] do
conj := List( pcgsF,
x -> ExponentsOfPcElement( pcgsF, x^g ) )
* One( field );
if conj = conj^0 then
AddSet( newgens, g );
else
Add( matlist, conj );
fi;
od;
cent[j] := Filtered( cent[j], g -> not g in newgens );
if Length( matlist ) > 0 then
# get exponent of <cent[j]> mod N
expo := 1;
for g in cent[j] do
order := 1;
while SiftedPcElement( pcgsN, g ) <> Identity(G) do
g := g ^ p;
order := order * p;
od;
expo := Maximum( expo, order );
od;
# get splitting field
r := 1;
while EuclideanRemainder( q^r - 1, expo ) <> 0 do
r := r+1;
od;
if q^r >= 2^16 then
TryNextMethod();
fi;
large := GF(q^r);
ksi := GeneratorsOfField(large)[1]^((q^r - 1) / expo);
# calculate simultaneous eigenvalues
eigen := SimultaneousEigenvalues( matlist, expo, ksi );
# solve system
null := BasisNullspaceModN( eigen, expo );
# calculate elements corresponding to null
for n in null do
elm := PcElementByExponentsNC( pcgsF, cent[j], n );
if elm <> Identity( G ) then
AddSet( newgens, elm );
fi;
od;
fi;
cent[j] := newgens;
fi;
od;
i := i + 1;
od;
# return centre as direct product of p-parts
G:= SubgroupNC( G, Concatenation( cent ) );
Assert( 1, IsAbelian( G ) );
SetIsAbelian( G, true );
return G;
end);
#############################################################################
##
#M Centre( <G> )
##
InstallMethod( Centre,
"pcgs computable groups using special pcgs",
[ IsGroup and CanEasilyComputePcgs and IsFinite ],
CentrePcGroup);
#############################################################################
##
#M OmegaSeries( G )
##
InstallMethod( OmegaSeries,
"for p-groups",
true,
[IsGroup and CanEasilyComputePcgs and IsFinite],
0,
function( G )
local pcgs, cl, U, series, exp, sub, p, M;
pcgs := Pcgs( G );
if Length( pcgs ) = 0 then return [G]; fi;
if Length( pcgs ) = 1 then return [G,TrivialSubgroup(G)]; fi;
U := TrivialSubgroup( G );
series := [U];
p := PrimePGroup( G );
cl := ConjugacyClasses( G );
exp := 1;
while Size( U ) < Size( G ) do
sub := Filtered( cl, x -> Order( Representative( x ) ) = p ^ exp );
sub := Concatenation( List( sub, x -> AsList(x) ) );
sub := InducedPcgsByPcSequenceAndGenerators( pcgs, Pcgs(U), sub );
M := SubgroupByPcgs( G, sub );
if Size( M ) > Size( U ) then
Add( series, M );
fi;
U := M;
exp := exp + 1;
od;
return Reversed( series );
end);
#############################################################################
##
#M PCentralSeriesOp( <G>, <p> ) . . . . . . . . . . . . <p>-central series
##
InstallMethod( PCentralSeriesOp,
"method for pc groups and prime",
true,
[ IsPcGroup and IsFinite, IsPosInt ],
0,
function( G, p )
local spec, weig, firs, ser, int, i, t, s, w, sub, N;
spec := SpecialPcgs(G);
weig := LGWeights( spec );
firs := LGFirst( spec );
ser := [G];
int := [];
for i in [1..Length(firs)-1] do
t := firs[i];
s := firs[i+1];
w := weig[t];
if w[1] = 1 and w[3] = p then
sub := Concatenation( int, spec{[s..Length(spec)]} );
sub := InducedPcgsByPcSequenceNC( spec, sub );
N := SubgroupByPcgs( G, sub );
Add( ser, N );
else
Append( int, spec{[t..s-1]} );
fi;
od;
return ser;
end );
#############################################################################
##
#E grppcatr.gi . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
##
|