/usr/share/gap/lib/grppccom.gd is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 | #############################################################################
##
#W grppccom.gd GAP Library Frank Celler
#W Alexander Hulpke
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the operations for the computation of complements in
## pc groups
##
#############################################################################
##
#V InfoComplement
##
## <#GAPDoc Label="InfoComplement">
## <ManSection>
## <InfoClass Name="InfoComplement"/>
##
## <Description>
## Info class for the complement routines.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareInfoClass("InfoComplement");
#############################################################################
##
#F COAffineBlocks( <S>,<Sgens>,<mats>,<orbs> )
##
## <ManSection>
## <Func Name="COAffineBlocks" Arg='S,Sgens,mats,orbs'/>
##
## <Description>
## Let <A>S</A> be a group whose generators <A>Sgens</A> act via <A>mats</A> on an affine
## space. This routine calculates the orbits under this action. If <A>orbs</A>
## also orbits as sets of vectors are returned.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("COAffineBlocks");
#############################################################################
##
#O CONextCentralizer( <ocr>, <S>, <H> ) . . . . . . . . . . . . . . . local
##
## <ManSection>
## <Oper Name="CONextCentralizer" Arg='ocr, S, H'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction("CONextCentralizer");
#############################################################################
##
#O COAffineCohomologyAction( <ocr>, <fgens>, <acts>,<B> )
##
## <ManSection>
## <Oper Name="COAffineCohomologyAction" Arg='ocr, fgens, acts,B'/>
##
## <Description>
## calculates matrices for the affine action of a factor centralizer on the
## complements, represented by elements of the cohomology group. <A>B</A> is the
## result of <C>BaseSteinitzVectors</C> used to represent the cohomology group.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("COAffineCohomologyAction");
#############################################################################
##
#O CONextCocycles( <cor>, <ocr>, <S> ) . . . . . . . . . . . . . . . . local
##
## <ManSection>
## <Oper Name="CONextCocycles" Arg='cor, ocr, S'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction("CONextCocycles");
#############################################################################
##
#O CONextCentral( <cor>, <ocr>, <S> ) . . . . . . . . . . . . . . . . local
##
## <ManSection>
## <Oper Name="CONextCentral" Arg='cor, ocr, S'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction("CONextCentral");
#############################################################################
##
#O CONextComplements( <cor>, <S>, <K>, <M> ) . . . . . . . . . . . . . local
##
## <ManSection>
## <Oper Name="CONextComplements" Arg='cor, S, K, M'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction("CONextComplements");
#############################################################################
##
#O COComplements( <cor>, <G>, <N>, <all> ) . . . . . . . . . . . . . . local
##
## <ManSection>
## <Oper Name="COComplements" Arg='cor, G, N, all'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction("COComplements");
#############################################################################
##
#O COComplementsMain( <G>, <N>, <all>, <fun> ) . . . . . . . . . . . . . local
##
## <ManSection>
## <Oper Name="COComplementsMain" Arg='G, N, all, fun'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction("COComplementsMain");
#############################################################################
##
#O ComplementClassesRepresentativesSolvableNC( <G>, <N> )
##
## <ManSection>
## <Oper Name="ComplementClassesRepresentativesSolvableNC" Arg='G, N'/>
##
## <Description>
## computes a set of representatives of the complement classes of <A>N</A> in
## <A>G</A> by cohomological methods. <A>N</A> must be a solvable normal subgroup
## of <A>G</A>.
## </Description>
## </ManSection>
##
DeclareOperation("ComplementClassesRepresentativesSolvableNC",
[IsGroup,IsGroup]);
# Basic routine for complements with solvable factor group.
DeclareGlobalFunction("COSolvableFactor");
#############################################################################
##
#O ComplementClassesRepresentatives( <G>, <N> ) . . . . . . . . . . . . find all complement
##
## <#GAPDoc Label="ComplementClassesRepresentatives">
## <ManSection>
## <Oper Name="ComplementClassesRepresentatives" Arg='G, N'/>
##
## <Description>
## Let <A>N</A> be a normal subgroup of <A>G</A>.
## This command returns a set of representatives for the conjugacy classes
## of complements of <A>N</A> in <A>G</A>.
## Complements are subgroups of <A>G</A> which intersect trivially with
## <A>N</A> and together with <A>N</A> generate <A>G</A>.
## <P/>
## At the moment only methods for a solvable <A>N</A> are available.
## <Example><![CDATA[
## gap> ComplementClassesRepresentatives(g,Group((1,2)(3,4),(1,3)(2,4)));
## [ Group([ (3,4), (2,4,3) ]) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("ComplementClassesRepresentatives",[IsGroup,IsGroup]);
#############################################################################
##
#E
|