/usr/share/gap/lib/grppccom.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 | #############################################################################
##
#W grppccom.gi GAP Library Frank Celler
#W Alexander Hulpke
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the methods for complements in pc groups
##
BindGlobal("HomomorphismsSeries",function(G,h)
local r,img,i,gens,img2;
r:=ShallowCopy(h);
img:=Image(h[Length(h)],G);
for i in [Length(h)-1,Length(h)-2..1] do
gens:=GeneratorsOfGroup(img);
img2:=Image(h[i],G);
r[i]:=GroupHomomorphismByImagesNC(img,img2,gens,List(gens,j->
Image(h[i],PreImagesRepresentative(h[i+1],j))));
SetKernelOfMultiplicativeGeneralMapping(r[i],
Image(h[i+1],KernelOfMultiplicativeGeneralMapping(h[i])));
img:=img2;
od;
return r;
end);
# test function for relators
BindGlobal("OCTestRelators",function(ocr)
if not IsBound(ocr.relators) then return true;fi;
return ForAll(ocr.relators,i->ExponentsOfPcElement(ocr.generators,
Product(List([1..Length(i.generators)],
j->ocr.generators[i.generators[j]]^i.powers[j])))
=List(ocr.generators,i->0));
end);
#############################################################################
##
#F COAffineBlocks( <S>,<Sgens>,<mats>,<orbs> )
##
## Divide the vectorspace into blocks using the affine operations of <S>
## described by <mats>. Return representative for these blocks and their
## normalizers in <S>.
## if <orbs> is true orbits are kept.
##
InstallGlobalFunction( COAffineBlocks, function( S, Sgens,mats,orbs )
local dim, p, nul, one, C, L, blt, B, O, Q, i, j, v, w, n, z, root,r;
# The affine operation of <S> is described via <mats> as
#
# ( lll 0 )
# ( lll 0 )
# ( ttt 1 )
#
# where l describes the linear operation and t the translation the
# dimension of the vectorspace is of dimension one less than the
# matrices <mats>.
#
dim:=Length(mats[1]) - 1;
one:=One(mats[1][1][1]);
nul:=0 * one;
root:=Z(Characteristic(one));
p:=Characteristic( mats[1][1][1] );
C:=List( [1..dim], x -> p );
Q:=List( [0..dim-1], x -> p ^x );
L:=[];
for i in [1..p-1] do
L[LogFFE( one * i,root ) + 1]:=i;
od;
# Make a boolean list of length <p> ^ <dim>.
blt:=BlistList( [1..p ^ dim], [] );
Info(InfoComplement,3,"COAffineBlocks: ", p^dim, " elements in H^1" );
i:=1; # was: Position( blt, false );
B:=[];
# Run through this boolean list.
while i <> fail do
v:=CoefficientsQadic(i-1,p);
while Length(v)<dim do
Add(v,0);
od;
v:=v*one;
w:=ShallowCopy( v );
ConvertToVectorRep(w,p);
v:=Concatenation(v,[one]);
ConvertToVectorRep(v,p);
O:=OrbitStabilizer( S,v, Sgens,mats);
for v in O.orbit do
n:=1;
for j in [1..dim] do
z:=v[j];
if z <> nul then
n:=n + Q[j] * L[LogFFE( z,root ) + 1];
fi;
od;
blt[n]:=true;
od;
Info(InfoComplement,3,"COAffineBlocks: |block| = ", Length(O.orbit));
r:=rec( vector:=w, stabilizer:=O.stabilizer );
if orbs=true then r.orbit:=O.orbit;fi;
Add( B, r);
i:=Position( blt, false );
od;
Info(InfoComplement,3,"COAffineBlocks: ", Length( B ), " blocks found" );
return B;
end );
#############################################################################
##
#F CONextCentralizer( <ocr>, <S>, <H> ) . . . . . . . . . . . . . . . local
##
## Correct the blockstabilizer and return the stabilizer of <H> in <S>
##
InstallGlobalFunction( CONextCentralizer, function( ocr, Spcgs, H )
local gens, pnt, i;
# Get the generators of <S> and correct them.
Info(InfoComplement,3,"CONextCentralizer: correcting blockstabilizer" );
gens:=ShallowCopy( Spcgs );
pnt :=ocr.complementToCocycle( H );
for i in [1..Length( gens )] do
gens[i]:=gens[i] *
OCConjugatingWord( ocr,
ocr.complementToCocycle( H ^ gens[i] ),
pnt );
od;
Info(InfoComplement,3,"CONextCentralizer: blockstabilizer corrected" );
return ClosureGroup( ocr.centralizer, gens );
end );
#ocr is oc record, acts are elements that act via ^ on group elements, B
#is the result of BaseSteinitzVectors on the 1-cocycles in ocr.
InstallGlobalFunction(COAffineCohomologyAction,function(ocr,relativeGens,acts,B)
local tau, phi, mats;
# Get the matrices describing the affine operations. The linear part
# of the operation is just conjugation of the entries of cocycle. The
# translation are commuators with the generators. So check if <ocr>
# has a small generating set. Use only these to form the commutators.
# Translation: (.. h ..) -> (.. [h,c] ..)
if IsBound( ocr.smallGeneratingSet ) then
Error("not yet implemented");
tau:=function( c )
local l, i, j, z, v;
l:=[];
for i in ocr.smallGeneratingSet do
Add( l, Comm( ocr.generators[i], c ) );
od;
l:=ocr.listToCocycle( l );
v:=ShallowCopy( B.factorzero );
for i in [1..Length(l)] do
if l[i] <> ocr.zero then
z:=l[i];
j:=B.heads[i];
if j > 0 then
l:=l - z * B.factorspace[j];
v[j]:=z;
else
l:=l - z * B.subspace[-j];
fi;
fi;
od;
IsRowVector( v );
return v;
end;
else
tau:=function( c )
local l, i, j, z, v;
l:=[];
for i in relativeGens do
#Add( l, LeftQuotient(i,i^c));
Add( l, Comm(i,c));
od;
l:=ocr.listToCocycle( l );
v:=ListWithIdenticalEntries(Length(B.factorspace),ocr.zero);
for i in [1..Length(l)] do
if l[i] <> ocr.zero then
z:=l[i];
j:=B.heads[i];
if j > 0 then
l:=l - z * B.factorspace[j];
v[j]:=z;
else
l:=l - z * B.subspace[-j];
fi;
fi;
od;
IsRowVector( v );
return v;
end;
fi;
# Linear Operation: (.. hm ..) -> (.. (hm)^c ..)
phi:=function( z, c )
local l, i, j, v;
l:=ocr.listToCocycle( List( ocr.cocycleToList(z), x -> x ^ c ) );
v:=ListWithIdenticalEntries(Length(B.factorspace),ocr.zero);
for i in [1..Length( l )] do
if l[i] <> ocr.zero then
z:=l[i];
j:=B.heads[i];
if j > 0 then
l:=l - z * B.factorspace[j];
v[j]:=z;
else
l:=l - z * B.subspace[-j];
fi;
fi;
od;
IsRowVector( v );
return v;
end;
# Construct the affine operations and blocks under them.
mats:=AffineAction( acts,B.factorspace, phi, tau );
Assert(2,ForAll(mats,i->ForAll(i,j->Length(i)=Length(j))));
return mats;
end);
#############################################################################
##
#F CONextCocycles( <cor>, <ocr>, <S> ) . . . . . . . . . . . . . . . . local
##
## Get the next conjugacy classes of complements under operation of <S>
## using affine operation on the onecohomologygroup of <K> and <N>, where
## <ocr>:=rec( group:=<K>, module:=<N> ).
##
## <ocr> is a record as described in 'OCOneCocycles'. The classes are
## returned as list of records rec( complement, centralizer ).
##
InstallGlobalFunction( CONextCocycles, function( cor, ocr, S )
local K, N, Z, SN, B, L, LL, SNpcgs, mats, i;
# Try to split <K> over <M>, if it does not split return.
Info(InfoComplement,3,"CONextCocycles: computing cocycles" );
K:=ocr.group;
N:=ocr.module;
Z:=OCOneCocycles( ocr, true );
if IsBool( Z ) then
if IsBound( ocr.normalIn ) then
Info(InfoComplement,3,"CONextCocycles: no normal complements" );
else
Info(InfoComplement,3,"CONextCocycles: no split extension" );
fi;
return [];
fi;
ocr.generators:=CanonicalPcgs(InducedPcgs(ocr.pcgs,ocr.complement));
Assert(2,OCTestRelators(ocr));
# If there is only one complement this is normal.
if Dimension( Z ) = 0 then
Info(InfoComplement,3,"CONextCocycles: group of cocycles is trivial" );
K:=ocr.complement;
if IsBound(cor.condition) and not cor.condition(cor, K) then
return [];
else
return [rec( complement:=K, centralizer:=S )];
fi;
fi;
# If the one cohomology group is trivial, there is only one class of
# complements. Correct the blockstabilizer and return. If we only want
# normal complements, this case cannot happen, as cobounds are trivial.
SN:=SubgroupNC( S, Filtered(GeneratorsOfGroup(S),i-> not i in N));
if Dimension(ocr.oneCoboundaries)=Dimension(ocr.oneCocycles) then
Info(InfoComplement,3,"CONextCocycles: H^1 is trivial" );
K:=ocr.complement;
if IsBound(cor.condition) and not cor.condition(cor, K) then
return [];
fi;
S:=CONextCentralizer( ocr,
InducedPcgs(cor.pcgs,SN),
ocr.complement);
return [rec( complement:=K, centralizer:=S )];
fi;
# If <S> = <N>, there are no new blocks under the operation of <S>, so
# get all elements of the one cohomology group and return. If we only
# want normal complements, there also are no blocks under the operation
# of <S>.
B:=BaseSteinitzVectors(BasisVectors(Basis(ocr.oneCocycles)),
BasisVectors(Basis(ocr.oneCoboundaries)));
if Size(SN) = 1 or IsBound(ocr.normalIn) then
L:=VectorSpace(ocr.field,B.factorspace, B.factorzero);
Info(InfoComplement,3,"CONextCocycles: ",Size(L)," complements found");
if IsBound(ocr.normalIn) then
Info(InfoComplement,3,"CONextCocycles: normal complements, using H^1");
LL:=[];
if IsBound(cor.condition) then
for i in L do
K:=ocr.cocycleToComplement(i);
if cor.condition(cor, K) then
Add(LL, rec(complement:=K, centralizer:=S));
fi;
od;
else
for i in L do
K:=ocr.cocycleToComplement(i);
Add(LL, rec(complement:=K, centralizer:=S));
od;
fi;
return LL;
else
Info(InfoComplement,3,"CONextCocycles: S meets N, using H^1");
LL:=[];
if IsBound(cor.condition) then
for i in L do
K:=ocr.cocycleToComplement(i);
if cor.condition(cor, K) then
S:=ocr.centralizer;
Add(LL, rec(complement:=K, centralizer:=S));
fi;
od;
else
for i in L do
K:=ocr.cocycleToComplement(i);
S:=ocr.centralizer;
Add(LL, rec(complement:=K, centralizer:=S));
od;
fi;
return LL;
fi;
fi;
# The situation is as follows.
#
# S As <N> does act trivial on the onecohomology
# \ K group, compute first blocks of this group under
# \ / \ the operation of <S>/<N>. But as <S>/<N> acts
# N ? affine, this can be done using affine operation
# \ / (given as matrices).
# 1
SNpcgs:=InducedPcgs(cor.pcgs,SN);
mats:=COAffineCohomologyAction(ocr,ocr.generators,SNpcgs,B);
L :=COAffineBlocks( SN, SNpcgs,mats,false );
Info(InfoComplement,3,"CONextCocycles:", Length( L ), " complements found" );
# choose a representative from each block and correct the blockstab
LL:=[];
for i in L do
K:=ocr.cocycleToComplement(i.vector*B.factorspace);
if not IsBound(cor.condition) or cor.condition(cor, K) then
if Z = [] then
S:=ClosureGroup( ocr.centralizer, i.stabilizer );
else
S:=CONextCentralizer(ocr,
InducedPcgs(cor.pcgs,
i.stabilizer), K);
fi;
Add(LL, rec(complement:=K, centralizer:=S));
fi;
od;
return LL;
end );
#############################################################################
##
#F CONextCentral( <cor>, <ocr>, <S> ) . . . . . . . . . . . . . . . . local
##
## Get the conjugacy classes of complements in case <ocr.module> is central.
##
InstallGlobalFunction( CONextCentral, function( cor, ocr, S )
local z,K,N,zett,SN,B,L,tau,gens,imgs,A,T,heads,dim,s,v,j,i,root;
# Try to split <ocr.group>
K:=ocr.group;
N:=ocr.module;
# If <K> is no split extension of <N> return the trivial list, as there
# are no complements. We compute the cocycles only if the extenstion
# splits.
zett:=OCOneCocycles( ocr, true );
if IsBool( zett ) then
if IsBound( ocr.normalIn ) then
Info(InfoComplement,3,"CONextCentral: no normal complements" );
else
Info(InfoComplement,3,"CONextCentral: no split extension" );
fi;
return [];
fi;
ocr.generators:=CanonicalPcgs(InducedPcgs(ocr.pcgs,ocr.complement));
Assert(2,OCTestRelators(ocr));
# if there is only one complement it must be normal
if Dimension(zett) = 0 then
Info(InfoComplement,3,"CONextCentral: Z^1 is trivial");
K:=ocr.complement;
if IsBound(cor.condition) and not cor.condition(cor, K) then
return [];
else
return [rec(complement:=K, centralizer:=S)];
fi;
fi;
# If the one cohomology group is trivial, there is only one class of
# complements. Correct the blockstabilizer and return. If we only want
# normal complements, this cannot happen, as the cobounds are trivial.
SN:=SubgroupNC( S, Filtered(GeneratorsOfGroup(S),i-> not i in N));
if Dimension(ocr.oneCoboundaries)=Dimension(ocr.oneCocycles) then
Info(InfoComplement,3,"CONextCocycles: H^1 is trivial" );
K:=ocr.complement;
if IsBound(cor.condition) and not cor.condition(cor, K) then
return [];
else
S:=CONextCentralizer( ocr,
InducedPcgs(cor.pcgs,SN),ocr.complement);
return [rec(complement:=K, centralizer:=S)];
fi;
fi;
# If <S> = <N>, there are no new blocks under the operation of <S>, so
# get all elements of the onecohomologygroup and return. If we only want
# normal complements, there also are no blocks under the operation of
# <S>.
B:=BaseSteinitzVectors(BasisVectors(Basis(ocr.oneCocycles)),
BasisVectors(Basis(ocr.oneCoboundaries)));
if Size(SN)=1 or IsBound( ocr.normalIn ) then
if IsBound( ocr.normalIn ) then
Info(InfoComplement,3,"CONextCocycles: normal complements, using H^1");
else
Info(InfoComplement,3,"CONextCocycles: S meets N, using H^1" );
S:=ocr.centralizer;
fi;
L:=VectorSpace(ocr.field,B.factorspace, B.factorzero);
T:=[];
for i in L do
K:=ocr.cocycleToComplement(i);
if not IsBound(cor.condition) or cor.condition(cor, K) then
Add(T, rec(complement:=K, centralizer:=S));
fi;
od;
Info(InfoComplement,3,"CONextCocycles: ",Length(T)," complements found" );
return T;
fi;
# The conjugacy classes of complements are cosets of the cocycles of
# 0^S. If 'smallGeneratingSet' is given, do not use this gens.
# Translation: (.. h ..) -> (.. [h,c] ..)
if IsBound( ocr.smallGeneratingSet ) then
tau:=function( c )
local l;
l:=[];
for i in ocr.smallGeneratingSet do
Add( l, Comm( ocr.generators[i], c ) );
od;
return ocr.listToCocycle( l );
end;
else
tau:=function( c )
local l;
l:=[];
for i in ocr.generators do
Add( l, Comm( i, c ) );
od;
return ocr.listToCocycle( l );
end;
fi;
gens:=InducedPcgs(cor.pcgs,SN);
imgs:=List( gens, tau );
# Now get a base for the subspace 0^S. For those zero images which are
# not part of a base a generators of the stabilizer can be generated.
# B holds the base,
# A holds the correcting elements for the base vectors,
# T holds the stabilizer generators.
dim:=Length( imgs[1] );
A:=[];
B:=[];
T:=[];
heads:=ListWithIdenticalEntries(dim,0);
root:=Z(ocr.char);
# Get the base starting with the last one and go up.
for i in Reversed( [1..Length(imgs)] ) do
s:=gens[i];
v:=imgs[i];
j:=1;
# was:while j <= dim and IntFFE(v[j]) = 0 do
while j <= dim and v[j] = ocr.zero do
j:=j + 1;
od;
while j <= dim and heads[j] <> 0 do
z:=v[j] / B[heads[j]][j];
if z <> 0*z then
s:=s / A[heads[j]] ^ ocr.logTable[LogFFE(z,root)+1];
fi;
v:=v - v[j] / B[heads[j]][j] * B[heads[j]];
# was: while j <= dim and IntFFE(v[j]) = 0 do
while j <= dim and v[j] = ocr.zero do
j:=j + 1;
od;
od;
if j > dim then
Add( T, s );
else
Add( B, v );
Add( A, s );
heads[j]:=Length( B );
fi;
od;
# So <T> now holds a reversed list of generators for a stabilizer. <B>
# is a base for 0^<S> and <cocycles>/0^<S> are the conjugacy classes of
# complements.
S:=ClosureGroup(N,T);
if B = [] then
B:=zett;
else
B:=BaseSteinitzVectors(BasisVectors(Basis(zett)),B);
B:=VectorSpace(ocr.field,B.factorspace, B.factorzero);
fi;
L:=[];
for i in B do
K:=ocr.cocycleToComplement(i);
if not IsBound(cor.condition) or cor.condition(cor, K) then
Add(L, rec(complement:=K, centralizer:=S));
fi;
od;
Info(InfoComplement,3,"CONextCentral: ", Length(L), " complements found");
return L;
end );
#############################################################################
##
#F CONextComplements( <cor>, <S>, <K>, <M> ) . . . . . . . . . . . . . local
## S: fuser, K: Complements in, M: Complements to
##
InstallGlobalFunction( CONextComplements, function( cor, S, K, M )
local p, ocr;
Assert(1,IsSubgroup(K,M));
if IsTrivial(M) then
if IsBound(cor.condition) and not cor.condition(cor, K) then
return [];
else
return [rec( complement:=K, centralizer:=S )];
fi;
elif IsEmpty(Intersection( Factors(Size(M)), Factors(Index(K,M)))) then
# If <K> and <M> are coprime, <K> splits.
Info(InfoComplement,3,"CONextComplements: coprime case, <K> splits" );
ocr:=rec( group:=K, module:=M,
modulePcgs:=InducedPcgs(cor.pcgs,M),
pcgs:=cor.pcgs, inPcComplement:=true);
if IsBound( cor.generators ) then
ocr.generators:=cor.generators;
Assert(2,OCTestRelators(ocr));
Assert(1,IsModuloPcgs(ocr.generators));
fi;
if IsBound( cor.smallGeneratingSet ) then
ocr.smallGeneratingSet:=cor.smallGeneratingSet;
ocr.generatorsInSmall :=cor.generatorsInSmall;
elif IsBound( cor.primes ) then
p:=Factors(Size( M.generators))[1];
if p in cor.primes then
ocr.pPrimeSet:=cor.pPrimeSets[Position( cor.primes, p )];
fi;
fi;
if IsBound( cor.relators ) then
ocr.relators:=cor.relators;
Assert(2,OCTestRelators(ocr));
fi;
#was: ocr.complement:=CoprimeComplement( K, M );
OCOneCocycles( ocr, true );
OCOneCoboundaries( ocr );
if IsBound( cor.normalComplements )
and cor.normalComplements
and Dimension( ocr.oneCoboundaries ) <> 0 then
return [];
else
K:=ocr.complement;
if IsBound(cor.condition) and not cor.condition(cor, K) then
return [];
fi;
S:=SubgroupNC( S, Filtered(GeneratorsOfGroup(S),i->not i in M));
S:=CONextCentralizer( ocr,
InducedPcgs(cor.pcgs,S), K );
return [rec( complement:=K, centralizer:=S )];
fi;
else
# In the non-coprime case, we must construct cocycles.
ocr:=rec( group:=K, module:=M,
modulePcgs:=InducedPcgs(cor.pcgs,M),
pcgs:=cor.pcgs, inPcComplement:=true);
if IsBound( cor.generators ) then
ocr.generators:=cor.generators;
Assert(2,OCTestRelators(ocr));
Assert(1,IsModuloPcgs(ocr.generators));
fi;
if IsBound( cor.normalComplement ) and cor.normalComplements then
ocr.normalIn:=S;
fi;
# if IsBound( cor.normalSubgroup ) then
# L:=cor.normalSubgroup( S, K, M );
# if IsTrivial(L) = [] then
# return CONextCocycles(cor, ocr, S);
# else
# return CONextNormal(cor, ocr, S, L);
# fi;
# else
if IsBound( cor.smallGeneratingSet ) then
ocr.smallGeneratingSet:=cor.smallGeneratingSet;
ocr.generatorsInSmall :=cor.generatorsInSmall;
elif IsBound( cor.primes ) then
p:=Factors(Size( M.generators))[1];
if p in cor.primes then
ocr.pPrimeSet:=cor.pPrimeSets[Position(cor.primes,p)];
fi;
fi;
if IsBound( cor.relators ) then
ocr.relators:=cor.relators;
Assert(2,OCTestRelators(ocr));
fi;
if ( cor.useCentral and IsCentral( Parent(M), M ) )
or ( cor.useCentralSK and IsCentral(S,M) and IsCentral(K,M) ) then
return CONextCentral(cor, ocr, S);
else
return CONextCocycles(cor, ocr, S);
fi;
fi;
end );
#############################################################################
##
#F COComplements( <cor>, <G>, <N>, <all> ) . . . . . . . . . . . . . . local
##
## Compute the complements in <G> of the normal subgroup N[1]. N is a list
## of normal subgroups of G s.t. N[i]/N[i+1] is elementary abelian.
## If <all> is true, find all (conjugacy classes of) complements.
## Otherwise try to find just one complement.
##
InstallGlobalFunction( COComplements, function( cor, G, E, all )
local r,a,a0,FG,nextStep,C,found,i,time,hpcgs,ipcgs;
# give some information and start timing
Info(InfoComplement,3,"Complements: initialize factorgroups" );
time:=Runtime();
# we only need the series beginning from position <n>
r:=Length(E);
# Construct the homomorphisms <a>[i] = <G>/<E>[i+1] -> <G>/<E>[i].
a0:=[];
for i in [1..Length(E)-1] do
# to get compatibility we must build the natural homomorphisms
# ourselves.
ipcgs:=InducedPcgs(cor.home,E[i]);
hpcgs:=cor.home mod ipcgs;
FG:=PcGroupWithPcgs(hpcgs);
a:=GroupHomomorphismByImagesNC(G,FG,cor.home,
Concatenation(FamilyPcgs(FG),List(ipcgs,i->One(FG))));
SetKernelOfMultiplicativeGeneralMapping( a, E[i] );
Add(a0,a);
od;
# hope that NHBNS deals with the trivial subgroup sensibly
# a0:=List(E{[1..Length(E)-1]},i->NaturalHomomorphismByNormalSubgroup(G,i));
hpcgs:=List([1..Length(E)-1],
i->PcgsByPcSequenceNC(FamilyObj(One(Image(a0[i]))),
List(cor.home mod InducedPcgs(cor.home,E[i]),
j->Image(a0[i],j))));
Add(hpcgs,cor.home);
cor.hpcgs:=hpcgs;
a :=HomomorphismsSeries( G, a0 );
a0:=a0[1];
# <FG> contains the factorgroups <G>/<E>[1], ..., <G>/<E>[<r>].
FG:=List( a, Range );
Add( FG, G );
# As all entries in <cor> are optional, initialize them if they are not
# present in <cor> with the following defaults.
#
# 'generators' : standard generators
# 'relators' : pc-relators
# 'useCentral' : false
# 'useCentralSK' : false
# 'normalComplements' : false
#
if not IsBound( cor.useCentral ) then
cor.useCentral:=false;
fi;
if not IsBound( cor.useCentralSK ) then
cor.useCentralSK:=false;
fi;
if not IsBound( cor.normalComplements ) then
cor.normalComplements:=false;
fi;
if IsBound( cor.generators ) then
cor.generators:=
InducedPcgsByGeneratorsNC(cor.hpcgs[1],
List(cor.generators,x->Image(a0,x)));
else
cor.generators:=CanonicalPcgs( InducedPcgs(cor.hpcgs[1],FG[1] ));
fi;
cor.gele:=Length(cor.generators);
Assert(1,cor.generators[1] in FG[1]);
#if not IsBound( cor.normalSubgroup ) then
cor.group :=FG[1];
cor.module:=TrivialSubgroup( FG[1] );
cor.modulePcgs:=InducedPcgs(cor.hpcgs[1],cor.module);
OCAddRelations(cor,cor.generators);
#fi;
Assert(2,OCTestRelators(cor));
# The following function will be called recursively in order to descend
# the tree and reach a complement. <nr> is the current level.
# it lifts the complement K over the nr-th step and fuses under the action
# of (the full preimage of) S
nextStep:=function( S, K, nr )
local M, NC, X;
# give information about the level reached
Info(InfoComplement,2,"Complements: reached level ", nr, " of ", r);
# if this is the last level we have a complement, add it to <C>
if nr = r then
Add( C, rec( complement:=K, centralizer:=S ) );
Info(InfoComplement,3,"Complements: next class found, ",
"total ", Length(C), " complement(s), ",
"time=", Runtime() - time);
found:=true;
# otherwise try to split <K> over <M> = <FE>[<nr>+1]
else
S:=PreImage( a[nr], S );
M:=KernelOfMultiplicativeGeneralMapping(a[nr]);
cor.module:=M;
cor.pcgs:=cor.hpcgs[nr+1];
cor.modulePcgs:=InducedPcgs(cor.pcgs,M);
# we cannot take the 'PreImage' as this changes the gens
cor.oldK:=K;
cor.oldgens:=cor.generators;
K:=PreImage(a[nr],K);
cor.generators:=CanonicalPcgs(InducedPcgs(cor.pcgs,K));
cor.generators:=cor.generators mod InducedPcgs(cor.pcgs,cor.module);
Assert(1,Length(cor.generators)=cor.gele);
Assert(2,OCTestRelators(cor));
# now 'CONextComplements' will try to find the complements
NC:=CONextComplements( cor, S, K, M );
Assert(1,cor.pcgs=cor.hpcgs[nr+1]);
# try to step down as fast as possible
for X in NC do
Assert(2,OCTestRelators(rec(
generators:=CanonicalPcgs(InducedPcgs(cor.hpcgs[nr+1],X.complement)),
relators:=cor.relators)));
nextStep( X.centralizer, X.complement, nr+1 );
if found and not all then
return;
fi;
od;
fi;
end;
# in <C> we will collect the complements at the last step
C:=[];
# ok, start 'nextStep' with trivial module
Info(InfoComplement,2," starting search, time=",Runtime()-time);
found:=false;
nextStep( TrivialSubgroup( FG[1] ),
SubgroupNC( FG[1], cor.generators ), 1 );
# some timings
Info(InfoComplement,2,"Complements: ",Length(C)," complement(s) found, ",
"time=", Runtime()-time );
# add the normalizer
Info(InfoComplement,3,"Complements: adding normalizers" );
for i in [1..Length(C)] do
C[i].normalizer:=ClosureGroup( C[i].centralizer,
C[i].complement );
od;
return C;
end );
#############################################################################
##
#M COComplementsMain( <G>, <N>, <all>, <fun> ) . . . . . . . . . . . . . local
##
## Prepare arguments for 'ComplementCO'.
##
InstallGlobalFunction( COComplementsMain, function( G, N, all, fun )
local H, E, cor, a, i, fun2,pcgs,home;
home:=HomePcgs(G);
pcgs:=home;
# Get the elementary abelian series through <N>.
E:=ElementaryAbelianSeriesLargeSteps( [G,N,TrivialSubgroup(G)] );
E:=Filtered(E,i->IsSubset(N,i));
# we require that the subgroups of E are subgroups of the Pcgs-Series
if Length(InducedPcgs(home,G))<Length(home) # G is not the top group
# nt not in series
or ForAny(E,i->Size(i)>1 and
not i=SubgroupNC(G,home{[DepthOfPcElement(home,
InducedPcgs(home,i)[1])..Length(home)]}))
then
Info(InfoComplement,3,"Computing better pcgs" );
# create a better pcgs
pcgs:=InducedPcgs(home,G) mod InducedPcgs(home,N);
for i in [2..Length(E)] do
pcgs:=Concatenation(pcgs,
InducedPcgs(home,E[i-1]) mod InducedPcgs(home,E[i]));
od;
if not IsPcGroup(G) then
# for non-pc groups arbitrary pcgs may become unfeasibly slow, so
# convert to a pc group in this case
pcgs:=PcgsByPcSequenceCons(IsPcgsDefaultRep,
IsPcgs and IsPrimeOrdersPcgs,FamilyObj(One(G)),pcgs,[]);
H:=PcGroupWithPcgs(pcgs);
home:=pcgs; # this is our new home pcgs
a:=GroupHomomorphismByImagesNC(G,H,pcgs,GeneratorsOfGroup(H));
E:=List(E,i->Image(a,i));
if IsFunction(fun) then
fun2:=function(x)
return fun(PreImage(a,x));
end;
else
pcgs:=home;
fun2:=fun;
fi;
Info(InfoComplement,3,"transfer back" );
return List( COComplementsMain( H, Image(a,N), all, fun2 ), x -> rec(
complement :=PreImage( a, x.complement ),
centralizer:=PreImage( a, x.centralizer ) ) );
else
pcgs:=PcgsByPcSequenceNC(FamilyObj(home[1]),pcgs);
IsPrimeOrdersPcgs(pcgs); # enforce setting
H:= GroupByGenerators( pcgs );
home:=pcgs;
fi;
fi;
# if <G> and <N> are coprime <G> splits over <N>
if false and Intersection( Factors(Size(N)), Factors(Index(G,N))) = [] then
Info(InfoComplement,3,"Complements: coprime case, <G> splits" );
cor:=rec();
# otherwise we compute a hall system for <G>/<N>
else
#AH
#Info(InfoComplement,2,"Complements: computing p prime sets" );
#a :=NaturalHomomorphism( G, G / N );
#cor:=PPrimeSetsOC( Image( a ) );
#cor.generators:=List( cor.generators, x ->
# PreImagesRepresentative( a, x ) );
cor:=rec(home:=home,generators:=pcgs mod InducedPcgs(pcgs,N));
cor.useCentralSK:=true;
fi;
# if a condition was given use it
if IsFunction(fun) then cor.condition:=fun; fi;
# 'COComplements' will do most of the work
return COComplements( cor, G, E, all );
end );
InstallMethod( ComplementClassesRepresentativesSolvableNC, "pc groups",
IsIdenticalObj, [CanEasilyComputePcgs,CanEasilyComputePcgs], 0,
function(G,N)
return List( COComplementsMain(G, N, true, false), G -> G.complement );
end);
# Solvable factor group case
# find complements to (N\cap H)M/M in H/M where H=N_G(M), assuming factor is
# solvable
InstallGlobalFunction(COSolvableFactor,function(arg)
local G,N,M,keep,H,K,f,primes,p,A,S,L,hom,c,cn,nc,ncn,lnc,lncn,q,qs,qn,ser,
pos,i,pcgs,z,qk,j,ocr,bas,mark,k,orb,shom,shomgens,subbas,elm,
acterlist,free,nz,gp,actfun,mat,cond,pos2;
G:=arg[1];
N:=arg[2];
M:=arg[3];
if Length(arg)>3 then
keep:=arg[4];
else
keep:=false;;
fi;
H:=Normalizer(G,M);
Info(InfoComplement,2,"Call COSolvableFactor ",Index(G,N)," ",
Size(N)," ",Size(M)," ",Size(H));
if Size(ClosureGroup(N,H))<Size(G) then
#Print("discard\n");
return [];
fi;
K:=ClosureGroup(M,Intersection(H,N));
f:=Size(H)/Size(K);
# find prime that gives normal characteristic subgroup
primes:=Set(Factors(f));
if Length(primes)=1 then
p:=primes[1];
A:=H;
else
while Length(primes)>0 do
p:=primes[1];
A:=ClosureGroup(K,SylowSubgroup(H,p));
#Print(Index(A,K)," in ",Index(H,K),"\n");
A:=Core(H,A);
if Size(A)>Size(K) then
# found one. Doesn't need to be elementary abelian
if Length(Set(Factors(Size(A)/Size(K))))>1 then
Error("multiple primes");
else
primes:=[];
fi;
else
primes:=primes{[2..Length(primes)]}; # next one
fi;
od;
fi;
#if HasAbelianFactorGroup(A,K) then
# pcgs:=ModuloPcgs(A,K);
# S:=LinearActionLayer(H,pcgs);
# S:=GModuleByMats(S,GF(p));
# L:=MTX.BasesMinimalSubmodules(S);
# if Length(L)>0 then
# Sort(L,function(a,b) return Length(a)<Length(b);end);
# L:=List(L[1],x->PcElementByExponents(pcgs,x));
# A:=ClosureGroup(K,L);
## fi;
#else
# Print("IDX",Index(A,K),"\n");
#fi;
S:=ClosureGroup(M,SylowSubgroup(A,p));
L:=Normalizer(H,S);
# determine complements up to L-conjugacy. Currently brute-force
hom:=NaturalHomomorphismByNormalSubgroup(L,M);
q:=Image(hom);
if IsSolvableGroup(q) and not IsPcGroup(q) then
hom:=hom*IsomorphismSpecialPcGroup(q);
q:=Image(hom);
fi;
#q:=Group(SmallGeneratingSet(q),One(q));
qs:=Image(hom,S);
qn:=Image(hom,Intersection(L,K));
qk:=Image(hom,Intersection(S,K));
shom:=NaturalHomomorphismByNormalSubgroup(qs,qk);
ser:=ElementaryAbelianSeries([q,qs,qk]);
pos:=Position(ser,qk);
Info(InfoComplement,2,"Series ",List(ser,Size),pos);
c:=[qs];
cn:=[q];
for i in [pos+1..Length(ser)] do
pcgs:=ModuloPcgs(ser[i-1],ser[i]);
nc:=[];
ncn:=[];
for j in [1..Length(c)] do
ocr:=OneCocycles(c[j],pcgs);
shomgens:=List(ocr.generators,x->Image(shom,x));
if ocr.isSplitExtension then
subbas:=Basis(ocr.oneCoboundaries);
bas:=BaseSteinitzVectors(BasisVectors(Basis(ocr.oneCocycles)),
BasisVectors(subbas));
lnc:=[];
lncn:=[];
Info(InfoComplement,2,"Step ",i,",",j,": ",
p^Length(bas.factorspace)," Complements");
elm:=VectorSpace(GF(p),bas.factorspace,Zero(ocr.oneCocycles));
if Length(bas.factorspace)=0 then
elm:=Elements(elm);
else
elm:=Enumerator(elm);
fi;
mark:=BlistList([1..Length(elm)],[]);
# we act on cocycles, not cocycles modulo coboundaries. This is
# because orbits are short, and we otherwise would have to do a
# double stabilizer calculation to obtain the normalizer.
acterlist:=[];
free:=FreeGroup(Length(ocr.generators));
#cn[j]:=Group(SmallGeneratingSet(cn[j]));
for z in GeneratorsOfGroup(cn[j]) do
nz:=[z];
gp:=List(ocr.generators,x->Image(shom,x^z));
if gp=shomgens then
# no action on qs/qk -- action on cohomology is affine
# linear part
mat:=[];
for k in BasisVectors(Basis(GF(p)^Length(Zero(ocr.oneCocycles)))) do
k:=ocr.listToCocycle(List(ocr.cocycleToList(k),x->x^z));
Add(mat,k);
od;
mat:=ImmutableMatrix(GF(p),mat);
Add(nz,mat);
# affine part
mat:=ocr.listToCocycle(List(ocr.complementGens,x->Comm(x,z)));
ConvertToVectorRep(mat,GF(p));
MakeImmutable(mat);
Add(nz,mat);
if IsOne(nz[2]) and IsZero(nz[3]) then
nz[4]:=fail; # indicate that element does not act
fi;
else
gp:=GroupWithGenerators(gp);
SetEpimorphismFromFreeGroup(gp,GroupHomomorphismByImages(free,
gp,GeneratorsOfGroup(free),GeneratorsOfGroup(gp)));
Add(nz,List(shomgens,x->Factorization(gp,x)));
fi;
Add(acterlist,nz);
od;
actfun:=function(cy,a)
local genpos,l;
genpos:=PositionProperty(acterlist,x->a=x[1]);
if genpos=fail then
if IsOne(a) then
# the action test always does the identity, so its worth
# catching this as we have many short orbits
return cy;
else
return ocr.complementToCocycle(ocr.cocycleToComplement(cy)^a);
fi;
elif Length(acterlist[genpos])=4 then
# no action
return cy;
elif Length(acterlist[genpos])=3 then
# affine case
l:=cy*acterlist[genpos][2]+acterlist[genpos][3];
else
l:=ocr.cocycleToList(cy);
l:=List([1..Length(l)],x->(ocr.complementGens[x]*l[x])^a);
if acterlist[genpos][2]<>fail then
l:=List(acterlist[genpos][2],
x->MappedWord(x,GeneratorsOfGroup(free),l));
fi;
l:=List([1..Length(l)],x->LeftQuotient(ocr.complementGens[x],l[x]));
l:=ocr.listToCocycle(l);
fi;
#if l<>ocr.complementToCocycle(ocr.cocycleToComplement(cy)^a) then Error("ACT");fi;
return l;
end;
pos:=1;
repeat
#z:=ClosureGroup(ser[i],ocr.cocycleToComplement(elm[pos]));
orb:=OrbitStabilizer(cn[j],elm[pos],actfun);
mark[pos]:=true;
#cnt:=1;
for k in [2..Length(orb.orbit)] do
pos2:=Position(elm,SiftedVector(subbas,orb.orbit[k]));
#if mark[pos2]=false then cnt:=cnt+1;fi;
mark[pos2]:=true; # mark orbit off
od;
#Print(cnt,"/",Length(orb.orbit),"\n");
if IsSubset(orb.stabilizer,qn) then
cond:=Size(orb.stabilizer)=Size(q);
else
cond:=Size(ClosureGroup(qn,orb.stabilizer))=Size(q);
fi;
if cond then
# normalizer is still large enough to keep the complement
Add(lnc,ClosureGroup(ser[i],ocr.cocycleToComplement(elm[pos])));
Add(lncn,orb.stabilizer);
fi;
pos:=Position(mark,false);
until pos=fail;
Info(InfoComplement,2,Length(lnc)," good normalizer orbits");
Append(nc,lnc);
Append(ncn,lncn);
fi;
od;
c:=nc;
cn:=ncn;
od;
c:=List(c,x->PreImage(hom,x));
#c:=SubgroupsOrbitsAndNormalizers(K,c,false);
#c:=List(c,x->x.representative);
nc:=PermPreConjtestGroups(K,c);
Info(InfoComplement,2,Length(c)," Preimages in ",Length(nc)," clusters ");
c:=[];
for i in nc do
cn:=SubgroupsOrbitsAndNormalizers(i[1],i[2],false);
Add(c,List(cn,x->x.representative));
od;
Info(InfoComplement,1,"Overall ",Sum(c,Length)," Complements ",
Size(qs)/Size(qk));
if keep then
return c;
else
c:=Concatenation(c);
fi;
if Size(A)<Size(H) then
# recursively do the next step up
cn:=List(c,x->COSolvableFactor(G,N,x));
nc:=Concatenation(cn);
c:=nc;
fi;
return c;
end);
#############################################################################
##
#M ComplementClassesRepresentatives( <G>, <N> ) . . . . find all complement
##
InstallMethod( ComplementClassesRepresentatives,
"solvable normal subgroup or factor group",
IsIdenticalObj, [IsGroup,IsGroup],0,
function( G, N )
local C;
# if <G> and <N> are equal the only complement is trivial
if G = N then
C:=[TrivialSubgroup(G)];
# if <N> is trivial the only complement is <G>
elif Size(N) = 1 then
C:=[G];
elif not IsNormal(G,N) then
Error("N must be normal in G");
elif IsSolvableGroup(N) then
# otherwise we have to work
C:=ComplementClassesRepresentativesSolvableNC(G,N);
elif HasSolvableFactorGroup(G,N) then
C:=COSolvableFactor(G,N,TrivialSubgroup(G));
else
TryNextMethod();
fi;
# return what we have found
return C;
end);
#############################################################################
##
#M ComplementcClassesRepresentatives( <G>, <N> )
##
InstallMethod( ComplementClassesRepresentatives,
"tell that the normal subgroup must be solvable",IsIdenticalObj,
[IsGroup,IsGroup],-2*RankFilter(IsGroup),
function( G, N )
if IsSolvableGroup(N) then
TryNextMethod();
fi;
Error("Cannot compute complement classes for nonsolvable normal subgroups");
end);
#############################################################################
##
#E grppccom.gi . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
##
|