/usr/share/gap/lib/grppcext.gd is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 | #############################################################################
##
#W grppcext.gd GAP library Bettina Eick
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
#############################################################################
##
#I InfoCompPairs
#I InfoExtReps
##
DeclareInfoClass( "InfoCompPairs" );
DeclareInfoClass( "InfoExtReps");
#############################################################################
##
#F MappedPcElement( <elm>, <pcgs>, <list> )
##
## <ManSection>
## <Func Name="MappedPcElement" Arg='elm, pcgs, list'/>
##
## <Description>
## returns the image of <A>elm</A> when mapping the pcgs <A>pcgs</A> onto <A>list</A>
## homomorphically.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("MappedPcElement");
#############################################################################
##
#F ExtensionSQ( <C>, <G>, <M>, <c> )
##
## <ManSection>
## <Func Name="ExtensionSQ" Arg='C, G, M, c'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "ExtensionSQ" );
#############################################################################
##
#F FpGroupPcGroupSQ( <G> )
##
## <ManSection>
## <Func Name="FpGroupPcGroupSQ" Arg='G'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "FpGroupPcGroupSQ" );
#############################################################################
##
#F EXPermutationActionPairs( <D> )
##
## <ManSection>
## <Func Name="EXPermutationActionPairs" Arg='D'/>
##
## <Description>
## Let <A>D</A> be a direct product of automorphism group and matrix group as
## used by <C>CompatiblePairs</C>. This function calculates a faithful
## permutation representation of <A>D</A>, which can be used to speed up
## stabilizer calculations. It returns a record with components <C>pairgens</C>:
## Generators of <A>D</A>, <C>permgens</C>: corresponding permutations, <C>permgroup</C>:
## the group generated by <C>permgens</C>, <C>isomorphism</C>: An isomorphism from
## the permutation group to <A>D</A>. This isomorphism can be used to map
## permutations, but it would be hard to get the preimage of a pair in <A>D</A>
## as a permutation.
## The routine may return <K>false</K> if somehow such a representation could
## not be found.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "EXPermutationActionPairs" );
#############################################################################
##
#F EXReducePermutationActionPairs( <r> )
##
## <ManSection>
## <Func Name="EXReducePermutationActionPairs" Arg='r'/>
##
## <Description>
## Let <A>r</A> be a record as returned by <C>EXPermutationActionPairs</C>. This
## function tries to reduce the underlying permutation representation (and
## changes the record accordingly). It is of use when stepping to a
## subgroup of all pairs.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "EXReducePermutationActionPairs" );
#############################################################################
##
#F CompatiblePairs( <G>, <M>[, <D>] )
##
## <#GAPDoc Label="CompatiblePairs">
## <ManSection>
## <Func Name="CompatiblePairs" Arg='G, M[, D]'/>
##
## <Description>
## returns the group of compatible pairs of the group <A>G</A> with the
## <A>G</A>-module <A>M</A> as subgroup of the direct product
## Aut(<A>G</A>) <M>\times</M> Aut(<A>M</A>).
## Here Aut(<A>M</A>) is considered as subgroup of a general linear group.
## The optional argument <A>D</A> should be a subgroup of
## Aut(<A>G</A>) <M>\times</M> Aut(<A>M</A>).
## If it is given, then only the compatible pairs in <A>D</A> are computed.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "CompatiblePairs" );
#############################################################################
##
#O Extension( <G>, <M>, <c> )
#O ExtensionNC( <G>, <M>, <c> )
##
## <#GAPDoc Label="Extension">
## <ManSection>
## <Oper Name="Extension" Arg='G, M, c'/>
## <Oper Name="ExtensionNC" Arg='G, M, c'/>
##
## <Description>
## returns the extension of <A>G</A> by the <A>G</A>-module <A>M</A>
## via the cocycle <A>c</A> as pc groups.
## The <C>NC</C> version does not check the resulting group for consistence.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "Extension", [ CanEasilyComputePcgs, IsObject, IsVector ] );
DeclareOperation( "ExtensionNC", [ CanEasilyComputePcgs, IsObject, IsVector ] );
#############################################################################
##
#O Extensions( <G>, <M> )
##
## <#GAPDoc Label="Extensions">
## <ManSection>
## <Oper Name="Extensions" Arg='G, M'/>
##
## <Description>
## returns all extensions of <A>G</A> by the <A>G</A>-module <A>M</A>
## up to equivalence as pc groups.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "Extensions", [ CanEasilyComputePcgs, IsObject ] );
#############################################################################
##
#O ExtensionRepresentatives( <G>, <M>, <P> )
##
## <#GAPDoc Label="ExtensionRepresentatives">
## <ManSection>
## <Oper Name="ExtensionRepresentatives" Arg='G, M, P'/>
##
## <Description>
## returns all extensions of <A>G</A> by the <A>G</A>-module <A>M</A> up to
## equivalence under action of <A>P</A> where <A>P</A> has to be a subgroup
## of the group of compatible pairs of <A>G</A> with <A>M</A>.
## <Example><![CDATA[
## gap> G := SmallGroup( 4, 2 );;
## gap> mats := List( Pcgs( G ), x -> IdentityMat( 1, GF(2) ) );;
## gap> M := GModuleByMats( mats, GF(2) );;
## gap> A := AutomorphismGroup( G );;
## gap> B := GL( 1, 2 );;
## gap> D := DirectProduct( A, B );
## <group of size 6 with 4 generators>
## gap> P := CompatiblePairs( G, M, D );
## <group of size 6 with 2 generators>
## gap> ExtensionRepresentatives( G, M, P );
## [ <pc group of size 8 with 3 generators>,
## <pc group of size 8 with 3 generators>,
## <pc group of size 8 with 3 generators>,
## <pc group of size 8 with 3 generators> ]
## gap> Extensions( G, M );
## [ <pc group of size 8 with 3 generators>,
## <pc group of size 8 with 3 generators>,
## <pc group of size 8 with 3 generators>,
## <pc group of size 8 with 3 generators>,
## <pc group of size 8 with 3 generators>,
## <pc group of size 8 with 3 generators>,
## <pc group of size 8 with 3 generators>,
## <pc group of size 8 with 3 generators> ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ExtensionRepresentatives",
[CanEasilyComputePcgs, IsObject, IsObject] );
#############################################################################
##
#O SplitExtension( <G>, <M> )
#O SplitExtension( <G>, <aut>, <N> )
##
## <ManSection>
## <Oper Name="SplitExtension" Arg='G, M'/>
## <Oper Name="SplitExtension" Arg='G, aut, N'/>
##
## <Description>
## returns the split extension of <A>G</A> by the <A>G</A>-module <A>M</A>. In the second
## form it returns the split extension of <A>G</A> by the arbitrary finite group
## <A>N</A> where <A>aut</A> is a homomorphism of <A>G</A> into Aut(<A>N</A>).
## </Description>
## </ManSection>
##
DeclareOperation( "SplitExtension", [CanEasilyComputePcgs, IsObject] );
#############################################################################
##
#O TopExtensionsByAutomorphism( <G>, <aut>, <p> )
##
## <ManSection>
## <Oper Name="TopExtensionsByAutomorphism" Arg='G, aut, p'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareOperation( "TopExtensionsByAutomorphism",
[CanEasilyComputePcgs, IsObject, IsInt] );
#############################################################################
##
#O CyclicTopExtensions( <G>, <p> )
##
## <ManSection>
## <Oper Name="CyclicTopExtensions" Arg='G, p'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareOperation( "CyclicTopExtensions",
[CanEasilyComputePcgs, IsInt] );
#############################################################################
##
#A SocleComplement(<G>)
##
## <ManSection>
## <Attr Name="SocleComplement" Arg='G'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareAttribute( "SocleComplement", IsGroup );
#############################################################################
##
#A SocleDimensions(<G>)
##
## <ManSection>
## <Attr Name="SocleDimensions" Arg='G'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareAttribute( "SocleDimensions", IsGroup );
#############################################################################
##
#A ModuleOfExtension( < G > );
##
## <ManSection>
## <Attr Name="ModuleOfExtension" Arg='G'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareAttribute( "ModuleOfExtension", IsGroup );
#############################################################################
##
#E
|