/usr/share/gap/lib/grppcfp.gd is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 | #############################################################################
##
#W grppcfp.gd GAP library Bettina Eick
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
#############################################################################
##
#I InfoSQ
##
DeclareInfoClass( "InfoSQ" );
#############################################################################
##
#F PcGroupFpGroup( <G> )
##
## <#GAPDoc Label="PcGroupFpGroup">
## <ManSection>
## <Func Name="PcGroupFpGroup" Arg='G'/>
##
## <Description>
## creates a pc group <A>P</A> from an fp group
## (see Chapter <Ref Chap="Finitely Presented Groups"/>) <A>G</A>
## whose presentation is polycyclic. The resulting group <A>P</A>
## has generators corresponding to the generators of <A>G</A>.
## They are printed in the same way as generators of <A>G</A>,
## but they lie in a different family.
## If the pc presentation of <A>G</A> is not confluent,
## an error message occurs.
## <P/>
## <Example><![CDATA[
## gap> F := FreeGroup(IsSyllableWordsFamily,"a","b","c","d");;
## gap> a := F.1;; b := F.2;; c := F.3;; d := F.4;;
## gap> rels := [a^2, b^3, c^2, d^2, Comm(b,a)/b, Comm(c,a)/d, Comm(d,a),
## > Comm(c,b)/(c*d), Comm(d,b)/c, Comm(d,c)];
## [ a^2, b^3, c^2, d^2, b^-1*a^-1*b*a*b^-1, c^-1*a^-1*c*a*d^-1,
## d^-1*a^-1*d*a, c^-1*b^-1*c*b*d^-1*c^-1, d^-1*b^-1*d*b*c^-1,
## d^-1*c^-1*d*c ]
## gap> G := F / rels;
## <fp group on the generators [ a, b, c, d ]>
## gap> H := PcGroupFpGroup( G );
## <pc group of size 24 with 4 generators>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
#T should this become a method?
##
DeclareGlobalFunction( "PcGroupFpGroup" );
DeclareGlobalFunction( "PcGroupFpGroupNC" );
#############################################################################
##
#F InitEpimorphismSQ( F )
#F InitEpimorphismSQ(<hom>)
##
## <ManSection>
## <Func Name="InitEpimorphismSQ" Arg='F'/>
## <Func Name="InitEpimorphismSQ" Arg='hom'/>
##
## <Description>
## If <A>F</A> is a finitiely presented group, this operation returns the SQ
## epimorphism system corresponding to the largest abelian quotient of
## <A>F</A>.
## If <A>hom</A> is a epimorphism from a finitely presented group to a pc
## group, it returns the system coresponding to this epimorphism.
## No argument checking is performed.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "InitEpimorphismSQ" );
#############################################################################
##
#F LiftEpimorphismSQ( epi, M, c )
##
## <ManSection>
## <Func Name="LiftEpimorphismSQ" Arg='epi, M, c'/>
##
## <Description>
## if c is an integer, split extensions are searched. if c=0 only one is
## returned, otherwise the subdirect product of all such extensions is
## found.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "LiftEpimorphismSQ" );
#############################################################################
##
#F BlowUpCocycleSQ( v, K, F )
##
## <ManSection>
## <Func Name="BlowUpCocycleSQ" Arg='v, K, F'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "BlowUpCocycleSQ" );
#############################################################################
##
#F TryModuleSQ( epi, M )
##
## <ManSection>
## <Func Name="TryModuleSQ" Arg='epi, M'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "TryModuleSQ" );
#############################################################################
##
#F TryLayerSQ( epi, layer )
##
## <ManSection>
## <Func Name="TryLayerSQ" Arg='epi, layer'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "TryLayerSQ" );
#############################################################################
##
#F SolvableQuotient(<F>,<size> )
#F SolvableQuotient(<F>,<primes> )
#F SolvableQuotient(<F>,<tuples> )
#F SQ(<F>,<...> )
##
## <#GAPDoc Label="SolvableQuotient">
## <Heading>SolvableQuotient</Heading>
## <ManSection>
## <Func Name="SolvableQuotient" Arg='F, size'
## Label="for a f.p. group and a size"/>
## <Func Name="SolvableQuotient" Arg='F, primes'
## Label="for a f.p. group and a list of primes"/>
## <Func Name="SolvableQuotient" Arg='F, tuples'
## Label="for a f.p. group and a list of tuples"/>
## <Func Name="SQ" Arg='F, ...' Label="synonym of SolvableQuotient"/>
##
## <Description>
## This routine calls the solvable quotient algorithm for a finitely
## presented group <A>F</A>.
## The quotient to be found can be specified in the following ways:
## Specifying an integer <A>size</A> finds a quotient of size up
## to <A>size</A> (if such large quotients exist).
## Specifying a list of primes in <A>primes</A> finds the largest quotient
## involving the given primes.
## Finally <A>tuples</A> can be used to prescribe a chief series.
## <P/>
## <Ref Func="SQ" Label="synonym of SolvableQuotient"/> can be used as a
## synonym for
## <Ref Func="SolvableQuotient" Label="for a f.p. group and a size"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "SolvableQuotient" );
DeclareSynonym( "SQ", SolvableQuotient);
#############################################################################
##
#F EpimorphismSolvableQuotient( <F>, <param> )
##
## <#GAPDoc Label="EpimorphismSolvableQuotient">
## <ManSection>
## <Func Name="EpimorphismSolvableQuotient" Arg='F, param'/>
##
## <Description>
## computes an epimorphism from the finitely presented group <A>fpgrp</A>
## to the largest solvable quotient given by <A>param</A> (specified as in
## <Ref Func="SolvableQuotient" Label="for a f.p. group and a size"/>).
## <P/>
## <Example><![CDATA[
## gap> f := FreeGroup( "a", "b", "c", "d" );;
## gap> fp := f / [ f.1^2, f.2^2, f.3^2, f.4^2, f.1*f.2*f.1*f.2*f.1*f.2,
## > f.2*f.3*f.2*f.3*f.2*f.3*f.2*f.3, f.3*f.4*f.3*f.4*f.3*f.4,
## > f.1^-1*f.3^-1*f.1*f.3, f.1^-1*f.4^-1*f.1*f.4,
## > f.2^-1*f.4^-1*f.2*f.4 ];;
## gap> hom:=EpimorphismSolvableQuotient(fp,300);Size(Image(hom));
## [ a, b, c, d ] -> [ f1*f2, f1*f2, f2*f3, f2 ]
## 12
## gap> hom:=EpimorphismSolvableQuotient(fp,[2,3]);Size(Image(hom));
## [ a, b, c, d ] -> [ f1*f2*f4, f1*f2*f6*f8, f2*f3, f2 ]
## 1152
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("EpimorphismSolvableQuotient");
#############################################################################
##
#F AllModulesSQ( epi, M )
##
## <ManSection>
## <Func Name="AllModulesSQ" Arg='epi, M'/>
##
## <Description>
## returns a list of all permissible extensions of <A>epi</A> with the module
## <A>M</A>.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("AllModulesSQ");
#############################################################################
##
#F EAPrimeLayerSQ( epi, prime )
##
## <ManSection>
## <Func Name="EAPrimeLayerSQ" Arg='epi, prime'/>
##
## <Description>
## returns the largest elementary abelian <A>prime</A> layer extending <A>epi</A>.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("EAPrimeLayerSQ");
#############################################################################
##
#E
|