This file is indexed.

/usr/share/gap/lib/grppcfp.gd is in gap-libs 4r6p5-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#############################################################################
##
#W  grppcfp.gd                  GAP library                      Bettina Eick
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen, Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##

#############################################################################
##
#I  InfoSQ
##
DeclareInfoClass( "InfoSQ" );

#############################################################################
##
#F  PcGroupFpGroup( <G> )
##
##  <#GAPDoc Label="PcGroupFpGroup">
##  <ManSection>
##  <Func Name="PcGroupFpGroup" Arg='G'/>
##
##  <Description>
##  creates a pc group <A>P</A> from an fp group
##  (see Chapter <Ref Chap="Finitely Presented Groups"/>) <A>G</A>
##  whose presentation is polycyclic. The resulting group <A>P</A>
##  has generators corresponding to the generators of <A>G</A>.
##  They are printed in the same way as generators of <A>G</A>,
##  but they lie in a different family.
##  If the pc presentation of <A>G</A> is not confluent,
##  an error message occurs.
##  <P/>
##  <Example><![CDATA[
##  gap> F := FreeGroup(IsSyllableWordsFamily,"a","b","c","d");;
##  gap> a := F.1;; b := F.2;; c := F.3;; d := F.4;;
##  gap> rels := [a^2, b^3, c^2, d^2, Comm(b,a)/b, Comm(c,a)/d, Comm(d,a),
##  >             Comm(c,b)/(c*d), Comm(d,b)/c, Comm(d,c)];
##  [ a^2, b^3, c^2, d^2, b^-1*a^-1*b*a*b^-1, c^-1*a^-1*c*a*d^-1, 
##    d^-1*a^-1*d*a, c^-1*b^-1*c*b*d^-1*c^-1, d^-1*b^-1*d*b*c^-1, 
##    d^-1*c^-1*d*c ]
##  gap> G := F / rels;
##  <fp group on the generators [ a, b, c, d ]>
##  gap> H := PcGroupFpGroup( G );
##  <pc group of size 24 with 4 generators>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
#T  should this become a method?
##
DeclareGlobalFunction( "PcGroupFpGroup" );
DeclareGlobalFunction( "PcGroupFpGroupNC" );

#############################################################################
##
#F  InitEpimorphismSQ( F )
#F  InitEpimorphismSQ(<hom>)
##
##  <ManSection>
##  <Func Name="InitEpimorphismSQ" Arg='F'/>
##  <Func Name="InitEpimorphismSQ" Arg='hom'/>
##
##  <Description>
##  If <A>F</A> is a finitiely presented group, this operation returns the SQ
##  epimorphism system corresponding to the largest abelian quotient of
##  <A>F</A>.
##  If <A>hom</A> is a epimorphism from a finitely presented group to a pc
##  group, it returns the system coresponding to this epimorphism.
##  No argument checking is performed.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "InitEpimorphismSQ" );

#############################################################################
##
#F  LiftEpimorphismSQ( epi, M, c )
##
##  <ManSection>
##  <Func Name="LiftEpimorphismSQ" Arg='epi, M, c'/>
##
##  <Description>
##  if c is an integer, split extensions are searched. if c=0 only one is
##  returned, otherwise the subdirect product of all such extensions is
##  found.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "LiftEpimorphismSQ" );

#############################################################################
##
#F  BlowUpCocycleSQ( v, K, F )
##
##  <ManSection>
##  <Func Name="BlowUpCocycleSQ" Arg='v, K, F'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "BlowUpCocycleSQ" );

#############################################################################
##
#F  TryModuleSQ( epi, M )
##
##  <ManSection>
##  <Func Name="TryModuleSQ" Arg='epi, M'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "TryModuleSQ" );

#############################################################################
##
#F  TryLayerSQ( epi, layer )
##
##  <ManSection>
##  <Func Name="TryLayerSQ" Arg='epi, layer'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "TryLayerSQ" );

#############################################################################
##
#F  SolvableQuotient(<F>,<size> )
#F  SolvableQuotient(<F>,<primes> )
#F  SolvableQuotient(<F>,<tuples> )
#F  SQ(<F>,<...> )
##
##  <#GAPDoc Label="SolvableQuotient">
##  <Heading>SolvableQuotient</Heading>
##  <ManSection>
##  <Func Name="SolvableQuotient" Arg='F, size'
##   Label="for a f.p. group and a size"/>
##  <Func Name="SolvableQuotient" Arg='F, primes'
##   Label="for a f.p. group and a list of primes"/>
##  <Func Name="SolvableQuotient" Arg='F, tuples'
##   Label="for a f.p. group and a list of tuples"/>
##  <Func Name="SQ" Arg='F, ...' Label="synonym of SolvableQuotient"/>
##
##  <Description>
##  This routine calls the solvable quotient algorithm for a finitely
##  presented group <A>F</A>.
##  The quotient to be found can be specified in the following ways:
##  Specifying an integer <A>size</A> finds a quotient of size up
##  to <A>size</A> (if such large quotients exist).
##  Specifying a list of primes in <A>primes</A> finds the largest quotient
##  involving the given primes.
##  Finally <A>tuples</A> can be used to prescribe a chief series.
##  <P/>
##  <Ref Func="SQ" Label="synonym of SolvableQuotient"/> can be used as a
##  synonym for
##  <Ref Func="SolvableQuotient" Label="for a f.p. group and a size"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "SolvableQuotient" );
DeclareSynonym( "SQ", SolvableQuotient);

#############################################################################
##
#F  EpimorphismSolvableQuotient( <F>, <param> )
##
##  <#GAPDoc Label="EpimorphismSolvableQuotient">
##  <ManSection>
##  <Func Name="EpimorphismSolvableQuotient" Arg='F, param'/>
##
##  <Description>
##  computes an epimorphism from the finitely presented group <A>fpgrp</A>
##  to the largest solvable quotient given by <A>param</A> (specified as in 
##  <Ref Func="SolvableQuotient" Label="for a f.p. group and a size"/>).
##  <P/>
##  <Example><![CDATA[
##  gap> f := FreeGroup( "a", "b", "c", "d" );;
##  gap> fp := f / [ f.1^2, f.2^2, f.3^2, f.4^2, f.1*f.2*f.1*f.2*f.1*f.2,
##  >  f.2*f.3*f.2*f.3*f.2*f.3*f.2*f.3, f.3*f.4*f.3*f.4*f.3*f.4,
##  > f.1^-1*f.3^-1*f.1*f.3, f.1^-1*f.4^-1*f.1*f.4,
##  > f.2^-1*f.4^-1*f.2*f.4 ];;
##  gap> hom:=EpimorphismSolvableQuotient(fp,300);Size(Image(hom));
##  [ a, b, c, d ] -> [ f1*f2, f1*f2, f2*f3, f2 ]
##  12
##  gap> hom:=EpimorphismSolvableQuotient(fp,[2,3]);Size(Image(hom));
##  [ a, b, c, d ] -> [ f1*f2*f4, f1*f2*f6*f8, f2*f3, f2 ]
##  1152
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("EpimorphismSolvableQuotient");

#############################################################################
##
#F  AllModulesSQ( epi, M )
##
##  <ManSection>
##  <Func Name="AllModulesSQ" Arg='epi, M'/>
##
##  <Description>
##  returns a list of all permissible extensions of <A>epi</A> with the module
##  <A>M</A>.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("AllModulesSQ");

#############################################################################
##
#F  EAPrimeLayerSQ( epi, prime )
##
##  <ManSection>
##  <Func Name="EAPrimeLayerSQ" Arg='epi, prime'/>
##
##  <Description>
##  returns the largest elementary abelian <A>prime</A> layer extending <A>epi</A>.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("EAPrimeLayerSQ");


#############################################################################
##
#E