/usr/share/gap/lib/grppclat.gd is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 | #############################################################################
##
#W grppclat.gd GAP library Alexander Hulpke
##
##
#Y Copyright (C) 1997
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains declarations for the subgroup lattice functions for
## pc groups.
##
#############################################################################
##
#V InfoPcSubgroup
##
## <#GAPDoc Label="InfoPcSubgroup">
## <ManSection>
## <InfoClass Name="InfoPcSubgroup"/>
##
## <Description>
## Information function for the subgroup lattice functions using pcgs.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareInfoClass("InfoPcSubgroup");
#############################################################################
##
#O InvariantElementaryAbelianSeries( <G>, <morph>[, <N> [, <fine>]] )
##
## <#GAPDoc Label="InvariantElementaryAbelianSeries">
## <ManSection>
## <Oper Name="InvariantElementaryAbelianSeries" Arg='G, morph[, N [, fine]]'/>
##
## <Description>
## For a (solvable) group <A>G</A> and a list of automorphisms <A>morph</A>
## of <A>G</A>, this command finds a normal series of <A>G</A> with
## elementary abelian factors such that every group in this series is
## invariant under every automorphism in <A>morph</A>.
## <P/>
## If a normal subgroup <A>N</A> of <A>G</A> which is invariant under
## <A>morph</A> is given, this series is chosen to contain <A>N</A>.
## No tests are performed to check the validity of the arguments.
## <P/>
## The series obtained will be constructed to prefer large steps unless
## <A>fine</A> is given as <K>true</K>.
## <Example><![CDATA[
## gap> g:=Group((1,2,3,4),(1,3));
## Group([ (1,2,3,4), (1,3) ])
## gap> hom:=GroupHomomorphismByImages(g,g,GeneratorsOfGroup(g),
## > [(1,4,3,2),(1,4)(2,3)]);
## [ (1,2,3,4), (1,3) ] -> [ (1,4,3,2), (1,4)(2,3) ]
## gap> InvariantElementaryAbelianSeries(g,[hom]);
## [ Group([ (1,2,3,4), (1,3) ]), Group([ (1,3)(2,4) ]), Group(()) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("InvariantElementaryAbelianSeries");
#############################################################################
##
#O InducedAutomorphism( <epi>, <aut> )
##
## <#GAPDoc Label="InducedAutomorphism">
## <ManSection>
## <Oper Name="InducedAutomorphism" Arg='epi, aut'/>
##
## <Description>
## Let <A>aut</A> be an automorphism of a group <M>G</M> and <A>epi</A> be
## a homomorphism from <M>G</M> to a group <M>H</M> such that the kernel of
## <A>epi</A> is fixed under <A>aut</A>.
## Let <M>U</M> be the image of <A>epi</A>.
## This command returns the automorphism of <M>U</M> induced by <A>aut</A>
## via <A>epi</A>, that is, the automorphism of <M>U</M> which maps
## <M>g</M><C>^<A>epi</A></C> to
## <C>(</C><M>g</M><C>^<A>aut</A>)^<A>epi</A></C>, for <M>g \in G</M>.
## <Example><![CDATA[
## gap> g:=Group((1,2,3,4),(1,2));
## Group([ (1,2,3,4), (1,2) ])
## gap> n:=Subgroup(g,[(1,2)(3,4),(1,3)(2,4)]);
## Group([ (1,2)(3,4), (1,3)(2,4) ])
## gap> epi:=NaturalHomomorphismByNormalSubgroup(g,n);
## [ (1,2,3,4), (1,2) ] -> [ f1*f2, f1 ]
## gap> aut:=InnerAutomorphism(g,(1,2,3));
## ^(1,2,3)
## gap> InducedAutomorphism(epi,aut);
## ^f2
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("InducedAutomorphism");
#############################################################################
##
#F InvariantSubgroupsElementaryAbelianGroup(<G>,<homs>[,<dims>]) submodules
##
## <#GAPDoc Label="InvariantSubgroupsElementaryAbelianGroup">
## <ManSection>
## <Func Name="InvariantSubgroupsElementaryAbelianGroup"
## Arg='G, homs[, dims]'/>
##
## <Description>
## Let <A>G</A> be an elementary abelian group
## and <A>homs</A> be a set of automorphisms of <A>G</A>.
## Then this function computes all subspaces of
## <A>G</A> which are invariant under all automorphisms in <A>homs</A>.
## When considering <A>G</A> as a module for the algebra generated by
## <A>homs</A>, these are all submodules.
## If <A>homs</A> is empty, it computes all subgroups.
## If the optional parameter <A>dims</A> is given, only submodules of this
## dimension are computed.
## <Example><![CDATA[
## gap> g:=Group((1,2,3),(4,5,6),(7,8,9));
## Group([ (1,2,3), (4,5,6), (7,8,9) ])
## gap> hom:=GroupHomomorphismByImages(g,g,[(1,2,3),(4,5,6),(7,8,9)],
## > [(7,8,9),(1,2,3),(4,5,6)]);
## [ (1,2,3), (4,5,6), (7,8,9) ] -> [ (7,8,9), (1,2,3), (4,5,6) ]
## gap> u:=InvariantSubgroupsElementaryAbelianGroup(g,[hom]);
## [ Group(()), Group([ (1,2,3)(4,5,6)(7,8,9) ]),
## Group([ (1,3,2)(7,8,9), (1,3,2)(4,5,6) ]),
## Group([ (7,8,9), (4,5,6), (1,2,3) ]) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction(
"InvariantSubgroupsElementaryAbelianGroup");
#############################################################################
##
#F ActionSubspacesElementaryAbelianGroup(<P>,<G>[,<dims>]) submodules
##
## <ManSection>
## <Func Name="ActionSubspacesElementaryAbelianGroup" Arg='P, G[, dims]'/>
##
## <Description>
## computes the permutation action of <A>P</A> on the subspaces of the
## elementary abelian subgroup <A>G</A> of <A>P</A>. Returns
## a list [<A>subspaces</A>,<A>action</A>], where <A>subspaces</A> is a list of all the
## subspaces and <A>action</A> a homomorphism from <A>P</A> in a permutation group,
## which is equal to the action homomrophism for the action of <A>P</A> on
## <A>subspaces</A>. If <A>dims</A> is given, only subspaces of dimension <A>dims</A> are
## considered.
## </Description>
## </ManSection>
##
DeclareGlobalFunction(
"ActionSubspacesElementaryAbelianGroup");
#############################################################################
##
#F SubgroupsSolvableGroup(<G>[,<opt>]) . classreps of subgrps of <G>,
##
## <#GAPDoc Label="SubgroupsSolvableGroup">
## <ManSection>
## <Func Name="SubgroupsSolvableGroup" Arg='G[, opt]'/>
##
## <Description>
## This function (implementing the algorithm published in
## <Cite Key="Hulpke99"/>) computes subgroups of a solvable group <A>G</A>,
## using the homomorphism principle.
## It returns a list of representatives up to <A>G</A>-conjugacy.
## <P/>
## The optional argument <A>opt</A> is a record, which may
## be used to put restrictions on the subgroups computed. The following record
## components of <A>opt</A> are recognized and have the following effects:
## <List>
## <Mark><C>actions</C></Mark>
## <Item>
## must be a list of automorphisms of <A>G</A>. If given, only groups
## which are invariant under all these automorphisms are computed. The
## algorithm must know the normalizer in <A>G</A> of the group generated by
## <C>actions</C> (defined formally by embedding in the semidirect product of
## <A>G</A> with <A>actions</A>).
## This can be given in the component <C>funcnorm</C> and
## will be computed if this component is not given.
## </Item>
## <Mark><C>normal</C></Mark>
## <Item>
## if set to <K>true</K> only normal subgroups are guaranteed to be
## returned (though some of the returned subgroups might still be not
## normal).
## </Item>
## <Mark><C>consider</C></Mark>
## <Item>
## a function to restrict the groups computed. This must be a
## function of five parameters, <M>C</M>, <M>A</M>, <M>N</M>, <M>B</M>,
## <M>M</M>, that are interpreted as follows:
## The arguments are subgroups of a factor <M>F</M> of <A>G</A> in the
## relation <M>F \geq C > A > N > B > M</M>.
## <M>N</M> and <M>M</M> are normal subgroups.
## <M>C</M> is the full preimage of the normalizer of <M>A/N</M>
## in <M>F/N</M>.
## When computing modulo <M>M</M> and looking for subgroups <M>U</M> such
## that <M>U \cap N = B</M> and <M>\langle U, N \rangle = A</M>,
## this function is called.
## If it returns <K>false</K> then
## all potential groups <M>U</M> (and therefore all groups later arising
## from them) are disregarded. This can be used for example to compute only
## subgroups of certain sizes.
## <P/>
## (<E>This is just a restriction to speed up computations. The function may
## still return (invariant) subgroups which don't fulfill this condition!</E>)
## This parameter is used to permit calculations of some subgroups if the
## set of all subgroups would be too large to handle.
## <P/>
## The actual groups <M>C</M>, <M>A</M>, <M>N</M> and <M>B</M> which are
## passed to this function are not necessarily subgroups of <A>G</A>
## but might be subgroups of a proper factor group <M>F = <A>G</A>/H</M>.
## Therefore the <C>consider</C> function may
## not relate the parameter groups to <A>G</A>.
## </Item>
## <Mark><C>retnorm</C></Mark>
## <Item>
## if set to <K>true</K> the function not only returns a list <C>subs</C>
## of subgroups but also a corresponding list <C>norms</C> of normalizers
## in the form <C>[ subs, norms ]</C>.
## </Item>
## <Mark><C>series</C></Mark>
## <Item>
## is an elementary abelian series of <A>G</A> which will be used for
## the computation.
## </Item>
## <Mark><C>groups</C></Mark>
## <Item>
## is a list of groups to seed the calculation. Only subgroups of
## these groups are constructed.
## </Item>
## </List>
## <Example><![CDATA[
## gap> g:=Group((1,2,3),(1,2),(4,5,6),(4,5),(7,8,9),(7,8));
## Group([ (1,2,3), (1,2), (4,5,6), (4,5), (7,8,9), (7,8) ])
## gap> hom:=GroupHomomorphismByImages(g,g,
## > [(1,2,3),(1,2),(4,5,6),(4,5),(7,8,9),(7,8)],
## > [(4,5,6),(4,5),(7,8,9),(7,8),(1,2,3),(1,2)]);
## [ (1,2,3), (1,2), (4,5,6), (4,5), (7,8,9), (7,8) ] ->
## [ (4,5,6), (4,5), (7,8,9), (7,8), (1,2,3), (1,2) ]
## gap> l:=SubgroupsSolvableGroup(g,rec(actions:=[hom]));;
## gap> List(l,Size);
## [ 1, 3, 9, 27, 54, 2, 6, 18, 108, 4, 216, 8 ]
## gap> Length(ConjugacyClassesSubgroups(g)); # to compare
## 162
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("SubgroupsSolvableGroup");
#############################################################################
##
#F SizeConsiderFunction(<size>) returns `consider' function
##
## <#GAPDoc Label="SizeConsiderFunction">
## <ManSection>
## <Func Name="SizeConsiderFunction" Arg='size'/>
##
## <Description>
## This function returns a function <C>consider</C> of four arguments
## that can be used in <Ref Func="SubgroupsSolvableGroup"/> for
## the option <C>consider</C> to compute subgroups whose sizes are divisible
## by <A>size</A>.
## <Example><![CDATA[
## gap> l:=SubgroupsSolvableGroup(g,rec(actions:=[hom],
## > consider:=SizeConsiderFunction(6)));;
## gap> List(l,Size);
## [ 1, 3, 9, 27, 54, 6, 18, 108, 216 ]
## ]]></Example>
## <P/>
## This example shows that in general the <C>consider</C> function does not
## provide a perfect filter.
## It is guaranteed that all subgroups fulfilling the
## condition are returned, but not all subgroups returned necessarily fulfill
## the condition.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("SizeConsiderFunction");
#############################################################################
##
#F ExactSizeConsiderFunction(<size>) returns `consider' function
##
## <#GAPDoc Label="ExactSizeConsiderFunction">
## <ManSection>
## <Func Name="ExactSizeConsiderFunction" Arg='size'/>
##
## <Description>
## This function returns a function <C>consider</C> of four arguments
## that can be used in <Ref Func="SubgroupsSolvableGroup"/> for
## the option <C>consider</C> to compute subgroups whose sizes are exactly
## <A>size</A>.
## <Example><![CDATA[
## gap> l:=SubgroupsSolvableGroup(g,rec(actions:=[hom],
## > consider:=ExactSizeConsiderFunction(6)));;
## gap> List(l,Size);
## [ 1, 3, 9, 27, 54, 6, 108, 216 ]
## ]]></Example>
## <P/>
## Again, the <C>consider</C> function does not provide
## a perfect filter. It is guaranteed that all subgroups fulfilling the
## condition are returned, but not all subgroups returned necessarily fulfill
## the condition.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("ExactSizeConsiderFunction");
#############################################################################
##
#E
|