/usr/share/gap/lib/grppcprp.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | #############################################################################
##
#W grppcprp.gi GAP Library Frank Celler
#W & Bettina Eick
##
##
#Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the methods for properties of polycylic groups.
##
InstallMethod( IsNilpotentGroup,
"method for pc groups",
true,
[IsGroup and CanEasilyComputePcgs],
0,
function( G )
local w;
w := LGWeights( SpecialPcgs(G) );
return w[Length(w)][1] = 1;
end);
InstallMethod( IsSupersolvableGroup,
"method for pc groups",
true,
[IsGroup and CanEasilyComputePcgs],
0,
function( G )
local pr, spec, pcgs, p, sub, fac, mats, modu, facs;
pr := PrimeDivisors(Size(G));
spec := SpecialPcgs(G);
pcgs := InducedPcgs( spec, FrattiniSubgroup( G ) );
for p in pr do
sub := InducedPcgsByPcSequenceAndGenerators( spec, pcgs,
GeneratorsOfGroup( PCore(G, p) ) );
if Length(sub) > Length(pcgs) then
fac := sub mod pcgs;
mats := LinearOperationLayer( G, fac );
modu := GModuleByMats( mats, GF(p) );
facs := MTX.CompositionFactors( modu );
if not ForAll( facs, x -> x.dimension = 1 ) then
return false;
fi;
fi;
od;
return true;
end);
#############################################################################
##
#E grppcpprp.gi . . . . . . . . . . . . . . . . . . . . . . . . . ends here
##
|