/usr/share/gap/lib/grppcrep.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 | #############################################################################
##
#W grppcrep.gd GAP library Bettina Eick
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
#############################################################################
##
#F MappedVector( <exp>, <list> ). . . . . . . . . . . . . . . . . . . . local
##
MappedVector := function( exp, list )
local elm, i;
if Length( list ) = 0 then
Error("cannot compute this\n");
fi;
elm := list[1]^exp[1];
for i in [2..Length(list)] do
elm := elm * list[i]^exp[i];
od;
return elm;
end;
#############################################################################
##
#F BlownUpMatrix( <B>, <mat> ) . . . . . . . . . . blow up by field extension
##
BlownUpMatrix := function ( B, mat )
local vec, d, tmp, big, i, j, k, new, l;
# blow up each entry of mat
vec := BasisVectors( B );
d := Length( vec );
tmp := [];
big := [];
for i in [ 1 .. Length( mat ) ] do
big[i] := [];
for j in [ 1 .. Length( mat ) ] do
for k in [ 1 .. d ] do
tmp[k] := Coefficients( B, mat[i][j] * vec[k] );
od;
big[i][j] := TransposedMat( tmp );
od;
od;
# translate it into big matrix
new := List( [1..Length(big)*d], x -> [] );
for i in [1..Length(big)] do
for j in [1..Length(big)] do
for k in [1..d] do
for l in [1..d] do
new[(i-1)*d + k][(j-1)*d + l] := big[i][j][k][l];
od;
od;
od;
od;
return new;
end;
#############################################################################
##
#F BlownUpModule( <modu>, <E>, <F> ) . . . . . . . blow up by field extension
##
InstallGlobalFunction( BlownUpModule, function( modu, E, F )
local B, mats;
# the trivial case
B := AsField( F, E );
if Dimension( B ) = 1 then return modu; fi;
B := Basis( B );
#mats := List( modu.generators, x -> TransposedMat(BlownUpMat(B, x)));
mats:=List(modu.generators,x ->ImmutableMatrix(F,BlownUpMatrix(B,x)));
return GModuleByMats( mats, F );
end );
#############################################################################
##
#F ConjugatedModule( <pcgsN>, <g>, <modu> ) . . . . . . . . conjugated module
##
InstallGlobalFunction( ConjugatedModule, function( pcgsN, g, modu )
local mats, i, exp;
mats := List(modu.generators, x -> false );
for i in [1..Length(mats)] do
exp := ExponentsOfPcElement( pcgsN, pcgsN[i]^g );
mats[i] := ImmutableMatrix(modu.field,MappedVector(exp,modu.generators));
od;
return GModuleByMats( mats, modu.field );
end );
#############################################################################
##
#F FpOfModules( <pcgs>, <list of reps> ) . . . . . . . . distinguish by chars
##
InstallGlobalFunction( FpOfModules, function( pcgs, modus )
local words, traces, trset, word, exp, new, i, newset, n;
n := Length( modus );
words := ShallowCopy( AsList( pcgs ) );
traces := List( modus, x -> Concatenation( [x.dimension],
List(x.generators, y -> TraceMat( y ))));
trset := Set( traces );
# iterate computation of elements
while Length( trset ) < Length( modus ) do
word := Random( GroupOfPcgs( pcgs ) );
if word <> OneOfPcgs( pcgs ) and not word in words then
exp := ExponentsOfPcElement( pcgs, word );
new := List( modus, x->TraceMat(MappedVector(exp, x.generators)));
for i in [1..n] do
new[i] := Concatenation( traces[i], [new[i]] );
od;
newset := Set( new );
if Length( newset ) > Length( trset ) then
Add( words, word );
traces := ShallowCopy( new );
trset := ShallowCopy( newset );
fi;
fi;
od;
words := List( words, x -> ExponentsOfPcElement( pcgs, x ) );
return rec( words := words,
traces := traces );
end );
#############################################################################
##
#F EquivalenceType( <fp>, <modu> ) . . . . . . . . . . use chars to find type
##
InstallGlobalFunction( EquivalenceType, function( fp, modu )
local trace;
trace := List(fp.words, x -> TraceMat(MappedVector(x, modu.generators)));
trace := Concatenation( [modu.dimension], trace );
return Position( fp.traces, trace );
end );
#############################################################################
##
#F IsEquivalentByFp( <fp>, <x>, <y> ) . . . . . . . equivalence type by chars
##
InstallGlobalFunction( IsEquivalentByFp, function( fp, x, y )
# get the easy cases first
if x.dimension <> y.dimension then
return false;
elif Dimension( x.field ) <> Dimension( y.field ) then
return false;
fi;
# now it remains to check this really
return EquivalenceType( fp, x ) = EquivalenceType( fp, y );
end );
#############################################################################
##
#F GaloisConjugates( <modu>, <F> ) . . . . . . . . . . .apply frobenius autom
##
InstallGlobalFunction( GaloisConjugates, function( modu, F )
local d, p, conj, k, mats, r, i, new;
# set up
d := Dimension( F );
p := Characteristic( F );
conj := [ modu ];
# conjugate
for k in [1..d-1] do
mats := List( modu.generators, x -> false );
r := RemInt( p^k, p^d-1 );
for i in [1..Length(mats)] do
mats[i]:=ImmutableMatrix(F,List(modu.generators[i],x->List(x,y->y^r)));
od;
new := GModuleByMats( mats, F );
Add( conj, new );
od;
return conj;
end );
#############################################################################
##
#F TrivialModule( <n>, <F> ) . . . . . . . . . . . trivial module with n gens
##
InstallGlobalFunction( TrivialModule, function( n, F )
return rec( field := F,
dimension := 1,
generators := ListWithIdenticalEntries( n,
Immutable( IdentityMat( 1, F ) ) ),
isMTXModule := true,
basis := [[One(F)]] );
end );
#############################################################################
##
#F InducedModule( <pcgsS>, <modu> ) . . . . . . . . . . . . . .induced module
##
InstallGlobalFunction( InducedModule, function( pcgsS, modu )
local m, d, h, r, mat, i, j, mats, zero, id, exp, g;
g := pcgsS[1];
m := Length( pcgsS );
d := modu.dimension;
r := RelativeOrderOfPcElement( pcgsS, g );
zero := Immutable( NullMat( d, d, modu.field ) );
id := Immutable( IdentityMat( d, modu.field ) );
# the first matrix
mat := List( [1..r], x -> List( [1..r], y -> zero ) );
exp := ExponentsOfPcElement( pcgsS, g^r, [2..m] );
mat[1][r] := MappedVector( exp, modu.generators );
for j in [2..r] do
mat[j][j-1] := id;
od;
mats := [FlatBlockMat( mat )];
# the remaining ones
for i in [2..m] do
mat := List( [1..r], x -> List( [1..r], y -> zero ) );
for j in [1..r] do
h := pcgsS[i]^(g^(j-1));
exp := ExponentsOfPcElement( pcgsS, h, [2..m] );
mat[j][j] := MappedVector( exp, modu.generators );
od;
Add( mats, ImmutableMatrix(modu.field,FlatBlockMat( mat ) ));
od;
return GModuleByMats( mats, modu.field );
end );
#############################################################################
##
#F InducedModuleByFieldReduction( <pcgsS>, <modu>, <conj>, <gal>, <s> ) . . .
##
## The conjugated module is also galoisconjugate to modu. Thus we may use
## a field extension to induce.
##
InstallGlobalFunction( InducedModuleByFieldReduction,
function( pcgsS, modu, conj, gal, s )
local r, E, dE, p, l, K, EK, base, vecs, matsN, iso, coeffs, id, ch,
matg, mats, newm, exp, e, k, q, c, m, gmat;
# reduce field and increase dimension
r := RelativeOrderOfPcElement( pcgsS, pcgsS[1] );
E := modu.field;
dE := Dimension( E );
p := Characteristic( modu.field );
l := QuoInt( dE, r );
K := GF( p^l );
EK := AsField( K, E );
base := Basis( EK );
vecs := BasisVectors( base );
# blow up matrices in N
matsN := List( modu.generators, x -> BlownUpMatrix( base, x ) );
# compute isomorphism
MTX.IsIrreducible( conj );
iso := MTX.Isomorphism( conj, gal )^-1;
# compute inverse galois automorphism and corresponding matrix
exp := ExponentsOfPcElement( pcgsS, pcgsS[1]^r, [2..Length(pcgsS)] );
gmat := MappedVector( exp, modu.generators );
e := iso * gmat^-1;
for k in [1..r-1] do
q := RemInt( p^((s-1)*k), p^dE - 1);
e := List( iso, x -> List( x, y -> y^q ) ) * e;
od;
e := e[1][1];
c := PrimitiveRoot( E ) ^ QuoInt( LogFFE( e, PrimitiveRoot(E) ),
QuoInt( p^dE - 1, p^l - 1 ) );
# correct iso
iso := c^-1 * iso;
# compute base change
m := p^(1-s) mod (p^dE - 1);
coeffs := List( [1..r], j -> Coefficients( base, vecs[j]^m ) );
id := IdentityMat( modu.dimension, K );
ch := KroneckerProduct( id, TransposedMat( coeffs ) );
# construct matrix
matg := ch * BlownUpMatrix( base, iso );
# construct module and return
mats := List(Concatenation( [matg], matsN ),i->ImmutableMatrix(K,i));
newm := GModuleByMats( mats, K );
return newm;
end );
#############################################################################
##
#F ExtensionsOfModule( <pcgsS>, <modu>, <conj>, <dim> ) . . .extended modules
##
InstallGlobalFunction( ExtensionsOfModule, function( pcgsS, modu, conj, dim )
local r, new, E, p, dE, exp, gmat, iso, e, c, mats, newm, f, d, b,
L, j, w, g, k;
# set up
g := pcgsS[1];
r := RelativeOrderOfPcElement( pcgsS, g );
new := [];
# set up fields
E := modu.field;
p := Characteristic( E );
dE := Dimension( E );
# compute matrix to g^r in N
exp := ExponentsOfPcElement( pcgsS, g^r, [2..Length(pcgsS)] );
gmat := MappedVector( exp, modu.generators );
# we know that conj and modu are equivalent - compute e
MTX.IsIrreducible( conj );
iso := MTX.Isomorphism( modu, conj );
e := (gmat * iso^(-r));
e := e[1][1];
if (p^dE - 1) mod r <> 0 then
# compute rth root c of e in E
c := e ^ (r^(-1) mod (p^dE - 1));
# this yields a unique extension of modu over E
mats:=List(Concatenation([c*iso],modu.generators),
i->ImmutableMatrix(E,i));
newm := GModuleByMats( mats, E );
Add( new, newm );
# if we have roots of unity in an extension of E
if r <> p then
f := Indeterminate( E );
f := Sum( List( [1..r], x -> f^(x-1) ) );
f := Factors( PolynomialRing( E ), f );
d := DegreeOfLaurentPolynomial( f[1] );
b := dE * d;
# construct new field of dimension b
if dim = 0 or b * modu.dimension <= dim then
L := GF(p^b);
for j in [1..Length(f)] do
w := PrimitiveRoot( L ) ^ ((p^b - 1)/r);
while Value( f[j], w ) <> Zero( E ) do
w := w * PrimitiveRoot( L )^ ((p^b - 1)/r);
od;
mats:=List(Concatenation([w*c*iso],modu.generators),
i->ImmutableMatrix(L,i));
newm := GModuleByMats( mats, L );
Add( new, newm );
od;
fi;
fi;
return new;
fi;
# now we know that p^dE - 1 mod r = 0
k := 0;
while (p^dE - 1) mod r^(k+1) = 0 do
k := k + 1;
od;
# if we have r distinct rth roots of e in E
if Order( e ) mod r^k <> 0 then
c := PrimitiveRoot( E ) ^ QuoInt( LogFFE( e, PrimitiveRoot(E) ), r );
for j in [1..r] do
mats:=List(Concatenation([c*iso],modu.generators),
i->ImmutableMatrix(E,i));
newm := GModuleByMats( mats, E );
Add( new, newm );
c := c * PrimitiveRoot( E ) ^ QuoInt( p^dE-1, r );
od;
return new;
fi;
# if we have we do not have any root in E, go over to extension
# construct new field of dimension b
b := dE * r;
if dim = 0 or b * modu.dimension <= dim then
L := GF( p^b );
c := PrimitiveRoot( L ) ^ QuoInt( LogFFE( e, PrimitiveRoot( L ) ), r );
mats:=List(Concatenation([c*iso],modu.generators),
i->ImmutableMatrix(L,i));
newm := GModuleByMats( mats, L );
Add( new, newm );
fi;
return new;
end );
#############################################################################
##
#F InitAbsAndIrredModules( <r>, <F>, <dim> ) . . . . . . . . . . . . . local
##
InstallGlobalFunction( InitAbsAndIrredModules, function( r, F, dim )
local new, mats, modu, f, l, E, w, j, d, p, b, irr, i;
# set up
new := [];
p := Characteristic( F );
d := Dimension(F);
if ( (p^d-1) mod r ) <> 0 then
# construct a 1-dimensional module
mats := [ ImmutableMatrix(F, IdentityMat( 1, F ) ) ];
modu := GModuleByMats( mats, F );
Add( new, modu );
if r <> p then
f := Indeterminate( F );
f := Sum( List([1..r], x -> f^(x-1) ) );
f := Factors( PolynomialRing( F ), f );
l := DegreeOfLaurentPolynomial( f[1] );
b := l * d;
# construct l-dimensional module
if dim = 0 or b <= dim then
E := GF( p^b );
for j in [ 1..Length( f ) ] do
w := PrimitiveRoot(E)^QuoInt( p^b-1, r );
while Value( f[j], w ) <> Zero( F ) do
w := w * PrimitiveRoot(E)^QuoInt( p^b-1, r );
od;
modu := GModuleByMats( [ImmutableMatrix(E,[[w]])], E );
Add( new, modu );
od;
fi;
fi;
else
# construct 1-dimensional module
w := PrimitiveRoot( F )^QuoInt( p^d - 1, r );
for j in [ 1..r ] do
mats := [ ImmutableMatrix(F,[[w]]) ];
modu := GModuleByMats( mats, F );
Add( new, modu );
w := w * PrimitiveRoot( F )^QuoInt( p^d - 1, r );
od;
fi;
# blow modules up
for i in [1..Length(new)] do
irr := BlownUpModule( new[i], new[i].field, F );
new[i] := rec( irred := irr,
absirr := new[i] );
od;
# return
return new;
end );
#############################################################################
##
#F LiftAbsAndIrredModules( <pcgsS>, <pcgsN>, <modrec>, <dim> ). . . . . local
##
InstallGlobalFunction( LiftAbsAndIrredModules,
function( pcgsS, pcgsN, modrec, dim )
local todo, fp, new, i, modu, E, conj, type, s, gal, types, r, un, j,
g, galfp, small, sconj, irred, absirr, n, F, irr, dF;
# split modules into parts
irred := List( modrec, x -> x.irred );
absirr := List( modrec, x -> x.absirr );
n := Length( modrec );
F := irred[1].field;
dF := Dimension( F );
# set up
todo := [1..n];
fp := FpOfModules( pcgsN, irred );
g := pcgsS[1];
r := RelativeOrderOfPcElement( pcgsS, g );
new := [];
# until we have all modules lifted
while Length( todo ) > 0 do
# choose a module
i := todo[1];
todo := todo{[2..Length(todo)]};
modu := absirr[i];
E := modu.field;
small := irred[i];
# compute its conjugate
sconj := ConjugatedModule( pcgsN, g, small );
type := EquivalenceType( fp, sconj );
# if the are equivalent
if type <> i then
# absirr: dimension d := d * r -- field e := e
# irr : dimension d := d * r
if dim = 0 or r * dF * small.dimension <= dim then
Add( new, InducedModule( pcgsS, modu ) );
fi;
# filter out the modules also inducing to the new one
un := [type];
for j in [1..r-2] do
sconj := ConjugatedModule( pcgsN, g, sconj );
type := EquivalenceType( fp, sconj );
AddSet( un, type );
od;
todo := Difference( todo, un );
else
# compute galois conjugates and try to find equivalent one
conj := ConjugatedModule( pcgsN, g, modu );
gal := GaloisConjugates( modu, AsField( F, E ) );
galfp := FpOfModules( pcgsN, gal );
s := EquivalenceType( galfp, conj );
if s = 1 then
# absirr: dimension: d := d -- field e := e (1 or r mod)
# e := e * l (f mod)
# e := e * r (1 mod)
Append( new, ExtensionsOfModule( pcgsS, modu, conj, dim ) );
else
# absirr: dimension d := d * r -- field e := e / r
# irr : dimension d := d
Add( new, InducedModuleByFieldReduction(
pcgsS, modu, conj, gal[s], s));
fi;
fi;
od;
# now it remains to blow the modules up
for i in [1..Length(new)] do
E := new[i].field;
irr := BlownUpModule( new[i], E, F );
new[i] := rec( irred := irr,
absirr := new[i] );
od;
# return
return new;
end );
#############################################################################
##
#F AbsAndIrredModules( <G>, <F>, <dim> ) . . . . . . . . . . . . . . . .local
##
InstallGlobalFunction( AbsAndIrredModules, function( G, F, dim )
local pcgs, m, modrec, i, pcgsS, pcgsN, r, irr;
# check
if dim < 0 then Error("dimension limit must be non-negative"); fi;
if dim > 0 and Dimension( F ) > dim then return [,[]]; fi;
# set up
pcgs := Pcgs( G );
m := Length( pcgs );
if m = 0 and (dim = 0 or Dimension( F ) <= dim) then
return [rec( irred := TrivialModule( 0, F ),
absirr := TrivialModule( 0, F ))];
elif m = 0 then return [pcgs,[]]; fi;
# the first step is separated - too many problems with empty lists
r := RelativeOrderOfPcElement( pcgs, pcgs[m] );
modrec := InitAbsAndIrredModules( r, F, dim );
# step up pc series
for i in Reversed( [1..m-1] ) do
pcgsS := InducedPcgsByPcSequence( pcgs, pcgs{[i..m]} );
pcgsN := InducedPcgsByPcSequence( pcgs, pcgs{[i+1..m]} );
modrec := LiftAbsAndIrredModules( pcgsS, pcgsN, modrec, dim );
od;
# return
return [pcgs,modrec];
end );
#############################################################################
##
#M AbsolutIrreducibleModules( <G>, <F>, <dim> ). . . . . . .up to equivalence
##
## <dim> is the limit of Dim( F ) * Dim( M ) for the modules M
##
InstallMethod( AbsolutIrreducibleModules,
"generic method for groups with pcgs",
true,
[ IsGroup and CanEasilyComputePcgs, IsField and IsFinite and IsPrimeField, IsInt ],
0,
function( G, F, dim )
local modus;
modus := AbsAndIrredModules( G, F, dim );
return [modus[1],List( modus[2], x -> x.absirr )];
end );
#############################################################################
##
#M IrreducibleModules( <G>, <F>, <dim> ) . . . . . . . . . .up to equivalence
##
## <dim> is the limit of Dim( F ) * Dim( M ) for the modules M
##
InstallMethod( IrreducibleModules,
"generic method for groups with pcgs",
true,
[ IsGroup and CanEasilyComputePcgs, IsField and IsFinite and IsPrimeField, IsInt ],
0,
function( G, F, dim )
local modus, i, tmp,gens;
modus := AbsAndIrredModules( G, F, dim );
gens:=modus[1];
modus:=modus[2];
for i in [1..Length(modus)] do
tmp := modus[i].irred;
tmp.absolutelyIrreducible := modus[i].absirr;
modus[i] := tmp;
od;
return [gens,modus];
end );
|