/usr/share/gap/lib/grpperm.gd is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 | #############################################################################
##
#W grpperm.gd GAP library Heiko Theißen
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
#############################################################################
##
#C IsPermGroup( <obj> )
##
## <#GAPDoc Label="IsPermGroup">
## <ManSection>
## <Filt Name="IsPermGroup" Arg='obj' Type='Category'/>
##
## <Description>
## A permutation group is a group of permutations on a finite set
## <M>\Omega</M> of positive integers.
## &GAP; does <E>not</E> require the user to specify the operation domain
## <M>\Omega</M> when a permutation group is defined.
## <P/>
## <Example><![CDATA[
## gap> g:=Group((1,2,3,4),(1,2));
## Group([ (1,2,3,4), (1,2) ])
## ]]></Example>
## <P/>
## Permutation groups are groups and therefore all operations for groups
## (see Chapter <Ref Chap="Groups"/>) can be applied to them.
## In many cases special methods are installed for permutation groups
## that make computations more effective.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "IsPermGroup", IsGroup and IsPermCollection );
#############################################################################
##
#M IsSubsetLocallyFiniteGroup( <G> ) . . . . . . for magmas of permutations
##
#T Here we assume implicitly that all permutations are finitary!
#T (What would be a permutation with unbounded largest moved point?
#T Perhaps a permutation of possibly infinite order?)
##
InstallTrueMethod( IsSubsetLocallyFiniteGroup, IsPermCollection );
#############################################################################
##
#M CanEasilySortElements
##
InstallTrueMethod( CanEasilySortElements, IsPermGroup and IsFinite );
#############################################################################
##
#M KnowsHowToDecompose( <G> ) . . . . . . . . always true for perm. groups
##
InstallTrueMethod( KnowsHowToDecompose, IsPermGroup );
#############################################################################
##
#M IsGeneratorsOfMagmaWithInverses( <permcoll> ) . . . true for perm. colls.
##
InstallTrueMethod( IsGeneratorsOfMagmaWithInverses, IsPermCollection );
#############################################################################
##
#F MinimizeExplicitTransversal
##
## <ManSection>
## <Func Name="MinimizeExplicitTransversal" Arg='obj'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "MinimizeExplicitTransversal" );
#############################################################################
##
#F AddCosetInfoStabChain
##
## <ManSection>
## <Func Name="AddCosetInfoStabChain" Arg='obj'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "AddCosetInfoStabChain" );
#############################################################################
##
#F NumberCoset
#F CosetNumber
##
## <ManSection>
## <Func Name="NumberCoset" Arg='obj'/>
## <Func Name="CosetNumber" Arg='obj'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "NumberCoset" );
DeclareGlobalFunction( "CosetNumber" );
#############################################################################
##
#F IndependentGeneratorsAbelianPPermGroup
##
## <ManSection>
## <Func Name="IndependentGeneratorsAbelianPPermGroup" Arg='obj'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "IndependentGeneratorsAbelianPPermGroup" );
#############################################################################
##
#F OrbitPerms( <perms>, <pnt> )
##
## <#GAPDoc Label="OrbitPerms">
## <ManSection>
## <Func Name="OrbitPerms" Arg='perms, pnt'/>
##
## <Description>
## returns the orbit of the positive integer <A>pnt</A>
## under the group generated by the permutations in the list <A>perms</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "OrbitPerms" );
#############################################################################
##
#F OrbitsPerms( <perms>, <D> )
##
## <#GAPDoc Label="OrbitsPerms">
## <ManSection>
## <Func Name="OrbitsPerms" Arg='perms, D'/>
##
## <Description>
## returns the list of orbits of the positive integers in the list <A>D</A>
## under the group generated by the permutations in the list <A>perms</A>.
## <Example><![CDATA[
## gap> OrbitPerms( [ (1,2,3)(4,5), (3,6) ], 1 );
## [ 1, 2, 3, 6 ]
## gap> OrbitsPerms( [ (1,2,3)(4,5), (3,6) ], [ 1 .. 6 ] );
## [ [ 1, 2, 3, 6 ], [ 4, 5 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "OrbitsPerms" );
#############################################################################
##
#F SylowSubgroupPermGroup
##
## <ManSection>
## <Func Name="SylowSubgroupPermGroup" Arg='obj'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "SylowSubgroupPermGroup" );
#############################################################################
##
#F SignPermGroup
##
## <ManSection>
## <Func Name="SignPermGroup" Arg='obj'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "SignPermGroup" );
#############################################################################
##
#F CycleStructuresGroup
##
## <ManSection>
## <Func Name="CycleStructuresGroup" Arg='obj'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "CycleStructuresGroup" );
#############################################################################
##
#F ApproximateSuborbitsStabilizerPermGroup( <G>, <pnt> )
##
## <#GAPDoc Label="ApproximateSuborbitsStabilizerPermGroup">
## <ManSection>
## <Func Name="ApproximateSuborbitsStabilizerPermGroup" Arg='G, pnt'/>
##
## <Description>
## returns an approximation of the orbits of <C>Stabilizer( <A>G</A>, <A>pnt</A> )</C>
## on all points of the orbit <C>Orbit( <A>G</A>, <A>pnt</A> )</C>,
## without computing the full point stabilizer;
## As not all Schreier generators are used,
## the result may represent the orbits of only a subgroup of the point
## stabilizer.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("ApproximateSuborbitsStabilizerPermGroup");
#############################################################################
##
#A AllBlocks( <G> )
##
## <#GAPDoc Label="AllBlocks">
## <ManSection>
## <Attr Name="AllBlocks" Arg='G'/>
##
## <Description>
## computes a list of representatives of all block systems for a
## permutation group <A>G</A> acting transitively on the points moved by the
## group.
## <Example><![CDATA[
## gap> AllBlocks(g);
## [ [ 1, 8 ], [ 1, 2, 3, 8 ], [ 1, 4, 5, 8 ], [ 1, 6, 7, 8 ], [ 1, 3 ],
## [ 1, 3, 5, 7 ], [ 1, 3, 4, 6 ], [ 1, 5 ], [ 1, 2, 5, 6 ], [ 1, 2 ],
## [ 1, 2, 4, 7 ], [ 1, 4 ], [ 1, 7 ], [ 1, 6 ] ]
## ]]></Example>
## <P/>
## The stabilizer of a block can be computed via the action
## <Ref Func="OnSets"/>:
## <P/>
## <Example><![CDATA[
## gap> Stabilizer(g,[1,8],OnSets);
## Group([ (1,8)(2,3)(4,5)(6,7) ])
## ]]></Example>
## <P/>
## If <C>bs</C> is a partition of the action domain, given as a set of sets,
## the stabilizer under the action <Ref Func="OnSetsDisjointSets"/> returns
## the largest subgroup which preserves <C>bs</C> as a block system.
## <P/>
## <Example><![CDATA[
## gap> g:=Group((1,2,3,4,5,6,7,8),(1,2));;
## gap> bs:=[[1,2,3,4],[5,6,7,8]];;
## gap> Stabilizer(g,bs,OnSetsDisjointSets);
## Group([ (6,7), (5,6), (5,8), (2,3), (3,4)(5,7), (1,4),
## (1,5,4,8)(2,6,3,7) ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "AllBlocks", IsPermGroup );
#############################################################################
##
#A TransitiveIdentification( <G> )
##
## <#GAPDoc Label="TransitiveIdentification">
## <ManSection>
## <Attr Name="TransitiveIdentification" Arg='G'/>
##
## <Description>
## Let <A>G</A> be a permutation group, acting transitively on a set of up
## to 30 points.
## Then <Ref Func="TransitiveIdentification"/> will return the position of
## this group in the transitive groups library.
## This means, if <A>G</A> acts on <M>m</M> points and
## <Ref Func="TransitiveIdentification"/> returns <M>n</M>,
## then <A>G</A> is permutation isomorphic to the group
## <C>TransitiveGroup(m,n)</C>.
## <P/>
## Note: The points moved do <E>not</E> need to be [1..<A>n</A>], the group
## <M>\langle (2,3,4),(2,3) \rangle</M> is considered to be transitive on 3
## points. If the group has several orbits on the points moved by it the
## result of <Ref Func="TransitiveIdentification"/> is undefined.
## <Example><![CDATA[
## gap> TransitiveIdentification(Group((1,2),(1,2,3)));
## 2
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "TransitiveIdentification", IsPermGroup );
#############################################################################
##
#A PrimitiveIdentification( <G> )
##
## <#GAPDoc Label="PrimitiveIdentification">
## <ManSection>
## <Attr Name="PrimitiveIdentification" Arg='G'/>
##
## <Description>
## For a primitive permutation group for which an <M>S_n</M>-conjugate exists in
## the library of primitive permutation groups
## (see <Ref Sect="Primitive Permutation Groups"/>),
## this attribute returns the index position. That is <A>G</A> is
## conjugate to
## <C>PrimitiveGroup(NrMovedPoints(<A>G</A>),PrimitiveIdentification(<A>G</A>))</C>.
## <P/>
## Methods only exist if the primitive groups library is installed.
## <P/>
## Note: As this function uses the primitive groups library, the result is
## only guaranteed to the same extent as this library. If it is incomplete,
## <C>PrimitiveIdentification</C> might return an existing index number for a
## group not in the library.
## <Example><![CDATA[
## gap> PrimitiveIdentification(Group((1,2),(1,2,3)));
## 2
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "PrimitiveIdentification", IsPermGroup );
#############################################################################
##
#A ONanScottType( <G> )
##
## <#GAPDoc Label="ONanScottType">
## <ManSection>
## <Attr Name="ONanScottType" Arg='G'/>
##
## <Description>
## returns the type of a primitive permutation group <A>G</A>,
## according to the O'Nan-Scott classification.
## The labelling of the different types is not consistent in the literature,
## we use the following identifications. The two-letter code given is the
## name of the type as used by Praeger.
## <List>
## <Mark>1</Mark>
## <Item>
## Affine. (HA)
## </Item>
## <Mark>2</Mark>
## <Item>
## Almost simple. (AS)
## </Item>
## <Mark>3a</Mark>
## <Item>
## Diagonal, Socle consists of two normal subgroups. (HS)
## </Item>
## <Mark>3b</Mark>
## <Item>
## Diagonal, Socle is minimal normal. (SD)
## </Item>
## <Mark>4a</Mark>
## <Item>
## Product action with the first factor primitive of type 3a. (HC)
## </Item>
## <Mark>4b</Mark>
## <Item>
## Product action with the first factor primitive of type 3b. (CD)
## </Item>
## <Mark>4c</Mark>
## <Item>
## Product action with the first factor primitive of type 2. (PA)
## </Item>
## <Mark>5</Mark>
## <Item>
## Twisted wreath product (TW)
## </Item>
## </List>
## See <Cite Key="EickHulpke01"/> for correspondence to other labellings used
## in the literature.
## As it can contain letters, the type is returned as a string.
## <P/>
## If <A>G</A> is not a permutation group or does not act primitively on the
## points moved by it, the result is undefined.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "ONanScottType", IsPermGroup );
#############################################################################
##
#A SocleTypePrimitiveGroup( <G> )
##
## <#GAPDoc Label="SocleTypePrimitiveGroup">
## <ManSection>
## <Attr Name="SocleTypePrimitiveGroup" Arg='G'/>
##
## <Description>
## returns the socle type of the primitive permutation group <A>G</A>.
## The socle of a primitive group is the direct product of isomorphic simple
## groups,
## therefore the type is indicated by a record with components
## <C>series</C>, <C>parameter</C> (both as described under
## <Ref Func="IsomorphismTypeInfoFiniteSimpleGroup" Label="for a group"/>),
## and <C>width</C> for the number of direct factors.
## <P/>
## If <A>G</A> does not have a faithful primitive action,
## the result is undefined.
## <Example><![CDATA[
## gap> g:=AlternatingGroup(5);;
## gap> h:=DirectProduct(g,g);;
## gap> p:=List([1,2],i->Projection(h,i));;
## gap> ac:=Action(h,AsList(g),
## > function(g,h) return Image(p[1],h)^-1*g*Image(p[2],h);end);;
## gap> Size(ac);NrMovedPoints(ac);IsPrimitive(ac,[1..60]);
## 3600
## 60
## true
## gap> ONanScottType(ac);
## "3a"
## gap> SocleTypePrimitiveGroup(ac);
## rec(
## name := "A(5) ~ A(1,4) = L(2,4) ~ B(1,4) = O(3,4) ~ C(1,4) = S(2,4) \
## ~ 2A(1,4) = U(2,4) ~ A(1,5) = L(2,5) ~ B(1,5) = O(3,5) ~ C(1,5) = S(2,\
## 5) ~ 2A(1,5) = U(2,5)", parameter := 5, series := "A", width := 2 )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "SocleTypePrimitiveGroup", IsPermGroup );
#############################################################################
##
#F DiagonalSocleAction( <grp>,<n> )
##
## <ManSection>
## <Func Name="DiagonalSocleAction" Arg='grp,n'/>
##
## <Description>
## returns the direct product of <A>n</A> copied of <A>grp</A> in diagonal action.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "DiagonalSocleAction" );
#############################################################################
##
#F ReducedPermdegree( <g> )
##
## <ManSection>
## <Func Name="ReducedPermdegree" Arg='g'/>
##
## <Description>
## This functions tries to find cheaply a smaller domain on which the
## permutation group <A>g</A> acts faithfully. It returns a monomorphism from
## <A>g</A> onto an isomorphic group of smaller degree or <K>fail</K> if no such
## domain is found.
## <P/>
## In constrast to <C>SmallerDegreePermutationRepresentation</C> little effort
## is spent on fincting completely different actions. The degree obtained
## by <C>ReducedPermdegree</C> therefore in general is not that small, on the
## other hand <C>ReducedPermdegree</C> works fast enough (and returns a
## sufficiently well-behaved homomorphism) that it can be used within other
## routines.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "ReducedPermdegree" );
DeclareGlobalFunction("MovedPointsPerms");
#############################################################################
##
#E
|