This file is indexed.

/usr/share/gap/lib/grpramat.gi is in gap-libs 4r6p5-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
#############################################################################
##
#W  grpramat.gi                 GAP Library                     Franz Gähler
##
##
#Y  Copyright (C)  1996,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains operations for matrix groups over the rationals
##

#############################################################################
##
#M  IsRationalMatrixGroup( G )
##
InstallMethod( IsRationalMatrixGroup, [ IsCyclotomicMatrixGroup ],
    G -> ForAll( Flat( GeneratorsOfGroup( G ) ), IsRat ) );

InstallTrueMethod( IsRationalMatrixGroup, IsIntegerMatrixGroup );

#############################################################################
##
#M  IsIntegerMatrixGroup( G )
##
InstallMethod( IsIntegerMatrixGroup, [ IsCyclotomicMatrixGroup ],
    function( G )
    local gen;
    gen := GeneratorsOfGroup( G );
    return ForAll( Flat( gen ), IsInt ) and
           ForAll( gen, g -> AbsInt( DeterminantMat( g ) ) = 1 ); 
    end
);

#############################################################################
##
#M  GeneralLinearGroupCons(IsMatrixGroup,n,Integers)
##
InstallMethod( GeneralLinearGroupCons,
    "some generators for GL_n(Z)",
    [ IsMatrixGroup, IsPosInt, IsIntegers ],
function(fil,n,ints)
local gens,mat,G;
  # permutations
  gens:=List(GeneratorsOfGroup(SymmetricGroup(n)),i->PermutationMat(i,n));
  # sign swapper
  mat:= IdentityMat(n,1);
  mat[1][1]:=-1;
  Add(gens,mat);
  # elementary addition
  if n>1 then
    mat:= IdentityMat(n,1);
    mat[1][2]:=1;
    Add(gens,mat);
  fi;
  gens:=List(gens,Immutable);
  G:= GroupByGenerators( gens, IdentityMat( n, 1 ) );
  Setter(IsNaturalGLnZ)(G,true);
  SetName(G,Concatenation("GL(",String(n),",Integers)"));
  if n>1 then
    SetSize(G,infinity);
    SetIsFinite(G,false);
  else
    SetIsFinite(G,true);
    SetSize(G,2);
  fi;    
  return G;
end);

#############################################################################
##
#M  SpecialLinearGroupCons(IsMatrixGroup,n,Integers)
##
InstallMethod(SpecialLinearGroupCons,"some generators for SL_n(Z)",
  [IsMatrixGroup,IsPosInt,IsIntegers],
function(fil,n,ints)
local gens,mat,G;
  # permutations
  gens:=List(GeneratorsOfGroup(AlternatingGroup(n)),i->PermutationMat(i,n));
  if n>1 then
    mat:= IdentityMat(n,1);
    mat{[1..2]}{[1..2]}:=[[0,1],[-1,0]];
    Add(gens,mat);
    # elementary addition
    mat:= IdentityMat(n,1);
    mat[1][2]:=1;
    Add(gens,mat);
  fi;
  gens:=List(gens,Immutable);
  G:= GroupByGenerators( gens, IdentityMat( n, 1 ) );
  Setter(IsNaturalSLnZ)(G,true);
  SetName(G,Concatenation("SL(",String(n),",Integers)"));
  if n>1 then
    SetSize(G,infinity);
    SetIsFinite(G,false);
  else
    SetIsFinite(G,true);
    SetSize(G,1);
  fi;
  return G;
end);

#############################################################################
##
#M  \in( <g>, GL( <n>, Integers ) )
##
InstallMethod( \in,
               "for matrix and GL(n,Z)", IsElmsColls,
               [ IsMatrix, IsNaturalGLnZ ],

  function ( g, GLnZ )
    return DimensionsMat(g) = DimensionsMat(One(GLnZ))
       and ForAll(Flat(g),IsInt) and DeterminantMat(g) in [-1,1];
  end );

#############################################################################
##
#M  \in( <g>, SL( <n>, Integers ) )
##
InstallMethod( \in,
               "for matrix and SL(n,Z)", IsElmsColls,
               [ IsMatrix, IsNaturalSLnZ ],

  function ( g, SLnZ )
    return DimensionsMat(g) = DimensionsMat(One(SLnZ))
       and ForAll(Flat(g),IsInt) and DeterminantMat(g) = 1;
  end );

#############################################################################
##
#M  Normalizer( GLnZ, G ) . . . . . . . . . . . . . . . . .Normalizer in GLnZ
##
InstallMethod( NormalizerOp, IsIdenticalObj,
    [ IsNaturalGLnZ, IsCyclotomicMatrixGroup ],
function( GLnZ, G )
    return NormalizerInGLnZ( G );
end );

#############################################################################
##
#M  Centralizer( GLnZ, G ) . . . . . . . . . . . . . . . .Centralizer in GLnZ
##
InstallMethod( CentralizerOp, IsIdenticalObj,
    [ IsNaturalGLnZ, IsCyclotomicMatrixGroup ], 
function( GLnZ, G )
    return CentralizerInGLnZ( G );
end );

#############################################################################
##
#M  CrystGroupDefaultAction . . . . . . . . . . . . . . RightAction initially
##
InstallValue( CrystGroupDefaultAction, RightAction );

#############################################################################
##
#M  SetCrystGroupDefaultAction( <action> ) . . . . .RightAction or LeftAction
##
InstallGlobalFunction( SetCrystGroupDefaultAction, function( action )
   if   action = LeftAction then
       MakeReadWriteGlobal( "CrystGroupDefaultAction" );
       CrystGroupDefaultAction := LeftAction;
       MakeReadOnlyGlobal( "CrystGroupDefaultAction" );
   elif action = RightAction then
       MakeReadWriteGlobal( "CrystGroupDefaultAction" );
       CrystGroupDefaultAction := RightAction;
       MakeReadOnlyGlobal( "CrystGroupDefaultAction" );
   else
       Error( "action must be either LeftAction or RightAction" );
   fi;
end );

#############################################################################
##
#M  IsBravaisGroup( <G> ) . . . . . . . . . . . . . . . . . . .IsBravaisGroup
##
InstallMethod( IsBravaisGroup, 
    [ IsCyclotomicMatrixGroup ],
function( G )
    return G = BravaisGroup( G );
end );

#############################################################################
##
#M  InvariantLattice( G ) . . . . .invariant lattice of rational matrix group
##
InstallMethod( InvariantLattice, "for rational matrix groups", 
    [ IsCyclotomicMatrixGroup ],
function( G )

    local gen, dim, trn, rnd, tab, den;

    if not IsRationalMatrixGroup( G ) then
      TryNextMethod();
    fi;

    # return fail if no invariant lattice exists
    gen := GeneratorsOfGroup( G );
    if ForAny( gen, x -> not IsInt( TraceMat( x ) ) ) then
         return fail;
    fi;
    if ForAny( gen, x -> AbsInt( DeterminantMat( x ) ) <> 1 ) then
         return fail;
    fi;

    dim := DimensionOfMatrixGroup( G );
    trn := Immutable( IdentityMat( dim ) );
    rnd := Random( GeneratorsOfGroup( G ) );

    # refine lattice until it contains its image
    repeat

        # if there are elements with non-integer trace, 
        # we will find one, sooner or later (with probability 1)
        rnd := rnd * Random( gen );
        if not IsInt( TraceMat( rnd ) ) then
            return fail;
        fi;

        tab := List( gen, g -> trn * g * trn^-1 );
        tab := Concatenation( tab ); 
        tab := Filtered( tab, vec -> ForAny( vec, x -> not IsInt( x ) ) );

        if Length( tab ) > 0 then
            den := Lcm( List( Flat( tab ), x -> DenominatorRat( x ) ) );
            tab := Concatenation( den * Immutable( IdentityMat( dim ) ),
                       den * tab );
            tab := HermiteNormalFormIntegerMat( tab ) / den;
            trn := tab{[1..dim]} * trn;
        else
            den := 1;
        fi;         

    until den = 1;

    return trn;

end );

#############################################################################
##
#M  IsFinite( G ) . . . . . . . . . . .  IsFinite for cyclotomic matrix group
##
InstallMethod( IsFinite,
    "cyclotomic matrix group",
    [ IsCyclotomicMatrixGroup ],
function( G )

    local lat, ilat, grp, mat;

    # if not rational, use the nice monomorphism into a rational matrix group
    if not IsRationalMatrixGroup( G ) then
        return IsFinite( Image( NiceMonomorphism( G ) ) );
    fi;

    # if not integer, choose basis in which it is integer
    if not IsIntegerMatrixGroup( G ) then
        lat := InvariantLattice( G );
        if lat = fail then
            return false;
        fi;
        ilat := lat^-1;
        grp := G^(ilat);
        IsFinite( grp );
        # IsFinite may have set the size, so we save it
        if HasSize( grp ) then
            SetSize( G, Size( grp ) );
        fi;
        # IsFinite may have set an invariant quadratic form
        if HasInvariantQuadraticForm( grp ) then
            mat := InvariantQuadraticForm( grp ).matrix;
            mat := ilat * mat * TransposedMat( ilat );
            SetInvariantQuadraticForm( G, rec( matrix := mat ) );
        fi;
        return IsFinite( grp );
    else
        return IsFinite( G );  # now G knows it is integer
    fi;

end );

#############################################################################
##
#M  IsFinite( G ) . . . . . . . . . . . . . IsFinite for integer matrix group
##
#T  This method should evetually be replaced or complemented by the methods
#T  used in GRIM!
InstallMethod( IsFinite,
    "via Minkowski kernel (short but not too efficient)",
    [ IsIntegerMatrixGroup ],
function( G )

    local grp, size, dim, basis, gens, gensp, orb, rep, stb, img, sch, i, 
          pnt, gen, tmp;

    grp   := G;
    size  := 1;
    dim   := DimensionOfMatrixGroup( grp );
    basis := Immutable( IdentityMat( dim, GF( 2 ) ) );
    for i in [1..dim] do
        orb   := [ basis[i] ];
        gens  := GeneratorsOfGroup( grp );
        gensp := List(gens,i->ImmutableMatrix(2,i*Z(2),true));
        rep   := [ One( grp ) ];
        stb   := [];
        for pnt in orb do
            for gen in [1..Length(gens)] do
                img := pnt * gensp[gen];
                if not img in orb  then
                    Add( orb, img );
                    tmp := rep[ Position( orb, pnt ) ] * gens[gen];
                    # simple test for infinite order
                    # Order() would be too expensive to do on all elements
                    if AbsInt( TraceMat( tmp ) ) > dim then
                        return false;
                    fi;
                    Add( rep, tmp );
                else
                    sch := rep[ Position( orb, pnt ) ] * gens[gen]
                           / rep[ Position( orb, img ) ];
                    if i = dim then
                        if sch <> One( grp ) then
                            if sch * sch <> One( grp ) then
                                return false;
                            fi;
                            if ForAny( stb, x -> x * sch <> sch * x ) then
                                return false;
                            fi;
                        fi;
                    else
                        # simple test for infinite order
                        # Order() would be too expensive to do on all elements
                        if AbsInt( TraceMat( sch ) ) > dim then
                            return false;
                        fi;
                    fi;
                    AddSet( stb, sch );
                fi;
            od;
        od;
        grp  := GroupByGenerators( stb, One( grp ) );
        size := size * Length( orb );
    od;

    # if we arrive here, the group is finite
    SetIsFinite( grp, true );
    SetSize( G, size * Size( grp ) );
    return true;

end );


#############################################################################
##
#M  Size( <G> ) . . . . .  for cyclotomic matrix group not known to be finite
##
InstallMethod( Size,
    "cyclotomic matrix group not known to be finite",
    [ IsCyclotomicMatrixGroup ],
    function( G )
    if IsFinite( G ) then
        return Size( G );  # now G knows it is finite
    else
        return infinity;
    fi;
    end );


#############################################################################
##
#M  NiceMonomorphism( <G> ) . . . . . . . . . . for a cyclotomic matrix group
##
##  For a *nonrational* cyclotomic matrix group, the nice monomorphism is
##  defined as an isomorphism to a rational matrix group.
##
##  Note that a stored nice monomorphism does *not* imply that the group is
##  handled by the nice monomorphism; as for matrix groups in general,
##  we want to set `IsHandledByNiceMonomorphism' only for *finite* matrix
##  groups.
##
InstallMethod( NiceMonomorphism,
    "for a (nonrational) cyclotomic matrix group",
    [ IsCyclotomicMatrixGroup ],
    function( G )
    if IsRationalMatrixGroup( G ) then
      TryNextMethod();
    else
      return BlowUpIsomorphism( G, Basis( FieldOfMatrixGroup( G ) ) );
    fi;
    end );


#############################################################################
##
#M  IsHandledByNiceMonomorphism( <G> )  . . . . for a cyclotomic matrix group
##
##  A matrix group shall be handled via nice monomorphism if and only if it
##  is finite.
##  We install the method here because for cyclotomic matrix groups,
##  we can decide finiteness.
##
##  (Note that nice monomorphisms may be used also for infinite groups,
##  for example for non-rational matrix groups over the cyclotomics.)
##
InstallMethod( IsHandledByNiceMonomorphism, 
    "for a cyclotomic matrix group",
    [ IsCyclotomicMatrixGroup ], 
    IsFinite );


#############################################################################
##
#M  IsomorphismPermGroup( <G> ) . . . . . . . . . . for rational matrix group
##
##  The only difference to the method installed for matrix groups is that
##  finiteness of (finitely generated) matrix groups over the cyclotomics can
##  be decided and hence no warning need to be issued.
##
InstallMethod( IsomorphismPermGroup,
    "cyclotomic matrix group",
    [ IsCyclotomicMatrixGroup ], 10,
    function( G )
    if HasNiceMonomorphism(G) and IsPermGroup(Range(NiceMonomorphism(G))) then
      return RestrictedMapping(NiceMonomorphism(G),G);
    elif not IsFinite(G) then
      Error("Cannot compute permutation representation of infinite group");
    else
      return NicomorphismOfGeneralMatrixGroup(G,false,false);
    fi;
    end);


#############################################################################
##
##  *Finite* matrix groups lie in the filter `IsHandledByNiceMonomorphism'.
##  In order to make the corresponding methods for the operations involved in
##  the following `RedispatchOnCondition' calls applicable for finite
##  matrix groups over the cyclotomics,
##  we force a finiteness check as ``last resort''.
##
RedispatchOnCondition( \in, true,
    [ IsMatrix, IsCyclotomicMatrixGroup ],
    [ IsObject, IsFinite ], 0 );

RedispatchOnCondition( \=, IsIdenticalObj,
    [ IsCyclotomicMatrixGroup, IsCyclotomicMatrixGroup ],
    [ IsFinite, IsFinite ], 0 );

RedispatchOnCondition( IndexOp, IsIdenticalObj,
    [ IsCyclotomicMatrixGroup, IsCyclotomicMatrixGroup ],
    [ IsFinite, IsFinite ], 0 );

RedispatchOnCondition( IndexNC, IsIdenticalObj,
    [ IsCyclotomicMatrixGroup, IsCyclotomicMatrixGroup ],
    [ IsFinite, IsFinite ], 0 );

RedispatchOnCondition( NormalizerOp, IsIdenticalObj,
    [ IsCyclotomicMatrixGroup, IsCyclotomicMatrixGroup ],
    [ IsFinite, IsFinite ], 0 );

RedispatchOnCondition( NormalClosureOp, IsIdenticalObj,
    [ IsCyclotomicMatrixGroup, IsCyclotomicMatrixGroup ],
    [ IsFinite, IsFinite ], 0 );

RedispatchOnCondition( CentralizerOp, true,
    [ IsCyclotomicMatrixGroup, IsObject ],
    [ IsFinite ], 0 );

RedispatchOnCondition( ClosureGroup, true,
    [ IsCyclotomicMatrixGroup, IsObject ],
    [ IsFinite ], 0 );

RedispatchOnCondition( SylowSubgroupOp, true,
    [ IsCyclotomicMatrixGroup, IsPosInt ],
    [ IsFinite ], 0 );

RedispatchOnCondition( ConjugacyClasses, true,
    [ IsCyclotomicMatrixGroup ],
    [ IsFinite ], 0 );

#T as we have installed a method for this situation,
#T no fallback is needed
# RedispatchOnCondition( IsomorphismPermGroup, true,
#     [ IsCyclotomicMatrixGroup ],
#     [ IsFinite ], 0 );

RedispatchOnCondition( IsomorphismPcGroup, true,
    [ IsCyclotomicMatrixGroup ],
    [ IsFinite ], 0 );

RedispatchOnCondition( CompositionSeries, true,
    [ IsCyclotomicMatrixGroup ],
    [ IsFinite ], 0 );


#############################################################################
##
#E