/usr/share/gap/lib/grpreps.gd is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | #############################################################################
##
#W grpreps.gd GAP library Bettina Eick
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
#############################################################################
##
#O AbsoluteIrrlyeducibleModules( <G>, <F>, <dim> )
#O AbsoluteIrreducibleModules( <G>, <F>, <dim> )
#O AbsolutIrreducibleModules( <G>, <F>, <dim> )
##
## <#GAPDoc Label="AbsoluteIrreducibleModules">
## <ManSection>
## <Oper Name="AbsolutelyIrreducibleModules" Arg='G, F, dim'/>
## <Oper Name="AbsoluteIrreducibleModules" Arg='G, F, dim'/>
## <Oper Name="AbsolutIrreducibleModules" Arg='G, F, dim'/>
##
## <Description>
## returns a list of length 2. The first entry is a generating system of
## <A>G</A>. The second entry is a list of all absolute irreducible modules of
## <A>G</A> over the field <A>F</A> in dimension <A>dim</A>, given as MeatAxe modules
## (see <Ref Func="GModuleByMats" Label="for generators and a field"/>).
## The other two names are just synonyms.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "AbsolutIrreducibleModules", [ IsGroup, IsField, IsInt ] );
DeclareSynonym( "AbsoluteIrreducibleModules", AbsolutIrreducibleModules );
DeclareSynonym( "AbsolutelyIrreducibleModules", AbsolutIrreducibleModules );
#############################################################################
##
#O IrreducibleModules( <G>, <F>, <dim> )
##
## <#GAPDoc Label="IrreducibleModules">
## <ManSection>
## <Oper Name="IrreducibleModules" Arg='G, F, dim'/>
##
## <Description>
## returns a list of length 2. The first entry is a generating system of
## <A>G</A>. The second entry is a list of all irreducible modules of
## <A>G</A> over the field <A>F</A> in dimension <A>dim</A>, given as MeatAxe modules
## (see <Ref Func="GModuleByMats" Label="for generators and a field"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "IrreducibleModules", [ IsGroup, IsField, IsInt ] );
#############################################################################
##
#O RegularModule( <G>, <F> )
##
## <#GAPDoc Label="RegularModule">
## <ManSection>
## <Oper Name="RegularModule" Arg='G, F'/>
##
## <Description>
## returns a list of length 2. The first entry is a generating system of
## <A>G</A>.
## The second entry is the regular module of <A>G</A> over <A>F</A>,
## given as a MeatAxe module
## (see <Ref Func="GModuleByMats" Label="for generators and a field"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "RegularModule", [ IsGroup, IsField ] );
#############################################################################
DeclareGlobalFunction( "RegularModuleByGens" );
#############################################################################
##
#E
|