/usr/share/gap/lib/grptbl.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 | #############################################################################
##
#W grptbl.gi GAP library Thomas Breuer
##
##
#Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the methods for magmas given by their multiplication
## tables.
##
#############################################################################
##
#R IsMagmaByMultiplicationTableObj( <obj> )
##
## At position 1 of the element $m_i$, the number $i$ is stored.
##
DeclareRepresentation( "IsMagmaByMultiplicationTableObj",
IsPositionalObjectRep and IsMultiplicativeElementWithInverse,
[ 1 ] );
#T change to IsPositionalObjectOneSlotRep!
#############################################################################
##
#M PrintObj( <obj> )
##
InstallMethod( PrintObj,
"for element of magma by mult. table",
[ IsMagmaByMultiplicationTableObj ],
function( obj )
Print( "m", obj![1] );
end );
#############################################################################
##
#M \=( <x>, <y> )
#M \<( <x>, <y> )
#M \*( <x>, <y> )
#M \^( <x>, <n> )
##
InstallMethod( \=,
"for two elements of magma by mult. table",
IsIdenticalObj,
[ IsMagmaByMultiplicationTableObj,
IsMagmaByMultiplicationTableObj ],
function( x, y ) return x![1] = y![1]; end );
InstallMethod( \<,
"for two elements of magma by mult. table",
IsIdenticalObj,
[ IsMagmaByMultiplicationTableObj,
IsMagmaByMultiplicationTableObj ],
function( x, y ) return x![1] < y![1]; end );
InstallMethod( \*,
"for two elements of magma by mult. table",
IsIdenticalObj,
[ IsMagmaByMultiplicationTableObj,
IsMagmaByMultiplicationTableObj ],
function( x, y )
local F;
F:= FamilyObj( x );
return F!.set[ MultiplicationTable( F )[ x![1] ][ y![1] ] ];
end );
#############################################################################
##
#M OneOp( <elm> )
##
InstallMethod( OneOp,
"for an element in a magma by mult. table",
[ IsMagmaByMultiplicationTableObj ],
function( elm )
local F, n, A, onepos, one;
F:= FamilyObj( elm );
n:= F!.n;
# Check that the mult. table admits a left and right identity element.
A:= MultiplicationTable( F );
onepos:= Position( A, [ 1 .. n ] );
if onepos = fail or A{ [ 1 .. n ] }[ onepos ] <> [ 1 .. n ] then
one:= fail;
else
one:= F!.set[ onepos ];
fi;
SetOne( F, one );
return one;
end );
#############################################################################
##
#M IsGeneratorsOfMagmaWithInverses( <elms> ) a collection of magma by
## multiplication table elements will always be acceptable
## as generators, provided each one individually has an inverse.
##
InstallMethod( IsGeneratorsOfMagmaWithInverses,
"for a collection of magma by mult table elements",
[IsCollection],
function(c)
if ForAll(c, x-> IsMagmaByMultiplicationTableObj(x) and IsMultiplicativeElementWithInverse(x)) then
return true;
fi;
TryNextMethod();
end);
#############################################################################
##
#M InverseOp( <elm> )
##
InstallMethod( InverseOp,
"for an element in a magma by mult. table",
[ IsMagmaByMultiplicationTableObj ],
function( elm )
local F, i, one, onepos, inv, j, n, A, invpos;
F:= FamilyObj( elm );
i:= elm![1];
if IsBound( F!.inverse[i] ) then
return F!.inverse[i];
fi;
# Check that `A' admits a left and right identity element.
# (This is uniquely determined.)
one:= One( elm );
if one = fail then
return fail;
fi;
onepos:= one![1];
# Check that `elm' has a left and right inverse.
# (If the multiplication is associative, this is uniquely determined.)
inv:= fail;
j:= 0;
n:= F!.n;
A:= MultiplicationTable( F );
while j <= n do
invpos:= Position( A[i], onepos, j );
if invpos <> fail and A[ invpos ][i] = onepos then
inv:= F!.set[ invpos ];
break;
fi;
j:= invpos;
od;
F!.inverse[i]:= inv;
return inv;
end );
#############################################################################
##
#F MagmaElement( <M>, <i> ) . . . . . . . . . . <i>-th element of magma <M>
##
InstallGlobalFunction( MagmaElement, function( M, i )
M:= AsSSortedList( M );
if Length( M ) < i then
return fail;
else
return M[i];
fi;
end );
#############################################################################
##
#F MagmaByMultiplicationTableCreator( <A>, <domconst> )
##
InstallGlobalFunction( MagmaByMultiplicationTableCreator,
function( A, domconst )
local F, # the family of objects
n, # dimension of `A'
range, # the range `[ 1 .. n ]'
elms, # sorted list of elements
M; # the magma, result
# Check that `A' is a valid multiplication table.
if IsMatrix( A ) then
n:= Length( A );
range:= [ 1 .. n ];
if Length( A[1] ) = n
and ForAll( A, row -> ForAll( row, x -> x in range ) ) then
# Construct the family of objects.
F:= NewFamily( "MagmaByMultTableObj",
IsMagmaByMultiplicationTableObj );
F!.n:= n;
SetMultiplicationTable( F, A );
elms:= Immutable( List( range,
i -> Objectify( NewType( F,
IsMagmaByMultiplicationTableObj ), [ i ] ) ) );
SetIsSSortedList( elms, true );
F!.set:= elms;
F!.inverse:= [];
# Construct the magma.
M:= domconst( CollectionsFamily( F ), elms );
SetSize( M, n );
SetAsSSortedList( M, elms );
SetMultiplicationTable( M, MultiplicationTable( F ) );
# Return the result.
return M;
fi;
fi;
Error( "<A> must be a square matrix with entries in `[ 1 .. n ]'" );
end );
#############################################################################
##
#F MagmaByMultiplicationTable( <A> )
##
InstallGlobalFunction( MagmaByMultiplicationTable, function( A )
return MagmaByMultiplicationTableCreator( A, MagmaByGenerators );
end );
#############################################################################
##
#F MagmaWithOneByMultiplicationTable( <A> )
##
InstallGlobalFunction( MagmaWithOneByMultiplicationTable, function( A )
local n, # dimension of `A'
onepos, # position of the identity in `A'
M; # the magma, result
M:= MagmaByMultiplicationTableCreator( A, MagmaWithOneByGenerators );
# Check that `A' admits a left and right identity element.
n:= Length( A );
onepos:= Position( A, [ 1 .. n ] );
if onepos = fail or A{ [ 1 .. n ] }[ onepos ] <> [ 1 .. n ] then
return fail;
fi;
# Store the identity in the family.
SetOne( ElementsFamily( FamilyObj( M ) ), AsSSortedList( M )[ onepos ] );
SetGeneratorsOfMagma( M, AsSSortedList( M ) );
# Return the result.
return M;
end );
#############################################################################
##
#F MagmaWithInversesByMultiplicationTable( <A> )
##
InstallGlobalFunction( MagmaWithInversesByMultiplicationTable, function( A )
local F, # the family of objects
n, # dimension of `A'
onepos, # position of the identity in `A'
inv, # list of positions of inverses
i, # loop over the elements
invpos, # position of one inverse
elms, # sorted list of elements
M; # the magma, result
M:= MagmaByMultiplicationTableCreator( A,
MagmaWithInversesByGenerators );
# Check that `A' admits a left and right identity element.
n:= Length( A );
onepos:= Position( A, [ 1 .. n ] );
if onepos = fail or A{ [ 1 .. n ] }[ onepos ] <> [ 1 .. n ] then
return fail;
fi;
# Check that `A' admits inverses.
inv:= [];
for i in [ 1 .. n ] do
invpos:= Position( A[i], onepos );
if invpos = fail or A[ invpos ][i] <> onepos then
return fail;
fi;
inv[i]:= invpos;
od;
# Store identity and inverses in the family.
F:= ElementsFamily( FamilyObj( M ) );
elms:= AsSSortedList( M );
SetOne( F, elms[ onepos ] );
F!.inverse:= Immutable( elms{ inv } );
SetGeneratorsOfMagma( M, elms );
# Return the result.
return M;
end );
#############################################################################
##
#F SemigroupByMultiplicationTable( <A> )
##
InstallGlobalFunction( SemigroupByMultiplicationTable, function( A )
A:= MagmaByMultiplicationTable( A );
if not IsAssociative( A ) then
return fail;
fi;
return A;
end );
#############################################################################
##
#F MonoidByMultiplicationTable( <A> )
##
InstallGlobalFunction( MonoidByMultiplicationTable, function( A )
A:= MagmaWithOneByMultiplicationTable( A );
if A = fail or not IsAssociative( A ) then
return fail;
fi;
return A;
end );
#############################################################################
##
#F GroupByMultiplicationTable( <A> )
##
InstallGlobalFunction( GroupByMultiplicationTable, function( A )
A:= MagmaWithInversesByMultiplicationTable( A );
if A = fail or not IsAssociative( A ) then
return fail;
fi;
return A;
end );
#############################################################################
##
#M MultiplicationTable( <elmlist> )
##
InstallMethod( MultiplicationTable,
"for a list of elements",
[ IsHomogeneousList ],
elmlist -> List( elmlist, x -> List( elmlist,
y -> Position( elmlist, x * y ) ) ) );
#############################################################################
##
#M MultiplicationTable( <M> )
##
InstallMethod( MultiplicationTable,
"for a magma",
[ IsMagma ],
M -> MultiplicationTable( AsSSortedList( M ) ) );
#############################################################################
##
#E
|