/usr/share/gap/lib/ideal.gd is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 | #############################################################################
##
#W ideal.gd GAP library Thomas Breuer
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file declares the operations for ideals.
##
#############################################################################
##
## <#GAPDoc Label="[1]{ideal}">
## A <E>left ideal</E> in a ring <M>R</M> is a subring of <M>R</M> that
## is closed under multiplication with elements of <M>R</M> from the left.
## <P/>
## A <E>right ideal</E> in a ring <M>R</M> is a subring of <M>R</M> that
## is closed under multiplication with elements of <M>R</M> from the right.
## <P/>
## A <E>two-sided ideal</E> or simply <E>ideal</E> in a ring <M>R</M>
## is both a left ideal and a right ideal in <M>R</M>.
## <P/>
## So being a (left/right/two-sided) ideal is not a property of a domain
## but refers to the acting ring(s).
## Hence we must ask, e. g., <C>IsIdeal( </C><M>R, I</M><C> )</C> if we
## want to know whether the ring <M>I</M> is an ideal in the ring <M>R</M>.
## The property <Ref Func="IsTwoSidedIdealInParent"/> can be used to store
## whether a ring is an ideal in its parent.
## <P/>
## (Whenever the term <C>"Ideal"</C> occurs in an identifier without a
## specifying prefix <C>"Left"</C> or <C>"Right"</C>,
## this means the same as <C>"TwoSidedIdeal"</C>.
## Conversely, any occurrence of <C>"TwoSidedIdeal"</C> can be substituted
## by <C>"Ideal"</C>.)
## <P/>
## For any of the above kinds of ideals, there is a notion of generators,
## namely <Ref Func="GeneratorsOfLeftIdeal"/>,
## <Ref Func="GeneratorsOfRightIdeal"/>, and
## <Ref Func="GeneratorsOfTwoSidedIdeal"/>.
## The acting rings can be accessed as <Ref Func="LeftActingRingOfIdeal"/>
## and <Ref Func="RightActingRingOfIdeal"/>, respectively.
## Note that ideals are detected from known values of these attributes,
## especially it is assumed that whenever a domain has both a left and a
## right acting ring then these two are equal.
## <P/>
## Note that we cannot use <Ref Func="LeftActingDomain"/> and
## <C>RightActingDomain</C> here,
## since ideals in algebras are themselves vector spaces, and such a space
## can of course also be a module for an action from the right.
## In order to make the usual vector space functionality automatically
## available for ideals, we have to distinguish the left and right module
## structure from the additional closure properties of the ideal.
## <P/>
## Further note that the attributes denoting ideal generators and acting
## ring are used to create ideals if this is explicitly wanted, but the
## ideal relation in the sense of <Ref Func="IsTwoSidedIdeal"/> is of course
## independent of the presence of the attribute values.
## <P/>
## Ideals are constructed with <Ref Func="LeftIdeal"/>,
## <Ref Func="RightIdeal"/>, <Ref Func="TwoSidedIdeal"/>.
## Principal ideals of the form <M>x * R</M>, <M>R * x</M>, <M>R * x * R</M>
## can also be constructed with a simple multiplication.
## <P/>
## Currently many methods for dealing with ideals need linear algebra to
## work, so they are mainly applicable to ideals in algebras.
## <P/>
## <#/GAPDoc>
#T The sum of two left/right/two-sided ideals with same acting ring can be
#T formed, it is again an ideal.
#T The product of two ideals ...
##
#############################################################################
##
#F TwoSidedIdeal( <R>, <gens>[, "basis"] )
#F Ideal( <R>, <gens>[, "basis"] )
#F LeftIdeal( <R>, <gens>[, "basis"] ) . . left ideal in <R> gen. by <gens>
#F RightIdeal( <R>, <gens>[, "basis"] ) . right ideal in <R> gen. by <gens>
##
## <#GAPDoc Label="TwoSidedIdeal">
## <ManSection>
## <Func Name="TwoSidedIdeal" Arg='R, gens[, "basis"]'/>
## <Func Name="Ideal" Arg='R, gens[, "basis"]'/>
## <Func Name="LeftIdeal" Arg='R, gens[, "basis"]'/>
## <Func Name="RightIdeal" Arg='R, gens[, "basis"]'/>
##
## <Description>
## Let <A>R</A> be a ring, and <A>gens</A> a list of collection of elements
## in <A>R</A>.
## <Ref Func="TwoSidedIdeal"/>, <Ref Func="LeftIdeal"/>,
## and <Ref Func="RightIdeal"/> return the two-sided,
## left, or right ideal, respectively,
## <M>I</M> in <A>R</A> that is generated by <A>gens</A>.
## The ring <A>R</A> can be accessed as <Ref Func="LeftActingRingOfIdeal"/>
## or <Ref Func="RightActingRingOfIdeal"/> (or both) of <M>I</M>.
## <P/>
## If <A>R</A> is a left <M>F</M>-module then also <M>I</M> is a left
## <M>F</M>-module,
## in particular the <Ref Func="LeftActingDomain"/> values of
## <A>R</A> and <M>I</M> are equal.
## <P/>
## If the optional argument <C>"basis"</C> is given then <A>gens</A> are
## assumed to be a list of basis vectors of
## <M>I</M> viewed as a free <M>F</M>-module.
## (This is mainly applicable to ideals in algebras.)
## In this case, it is <E>not</E> checked whether <A>gens</A> really is
## linearly independent and whether <A>gens</A> is a subset of <A>R</A>.
## <P/>
## <Ref Func="Ideal"/> is simply a synonym of <Ref Func="TwoSidedIdeal"/>.
## <P/>
## <Example><![CDATA[
## gap> R:= Integers;;
## gap> I:= Ideal( R, [ 2 ] );
## <two-sided ideal in Integers, (1 generators)>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "TwoSidedIdeal" );
DeclareSynonym( "Ideal", TwoSidedIdeal );
DeclareGlobalFunction( "LeftIdeal" );
DeclareGlobalFunction( "RightIdeal" );
#############################################################################
##
#F TwoSidedIdealNC( <R>, <gens>[, "basis"] )
#F IdealNC( <R>, <gens>[, "basis"] )
#F LeftIdealNC( <R>, <gens>[, "basis"] )
#F RightIdealNC( <R>, <gens>[, "basis"] )
##
## <#GAPDoc Label="TwoSidedIdealNC">
## <ManSection>
## <Func Name="TwoSidedIdealNC" Arg='R, gens[, "basis"]'/>
## <Func Name="IdealNC" Arg='R, gens[, "basis"]'/>
## <Func Name="LeftIdealNC" Arg='R, gens[, "basis"]'/>
## <Func Name="RightIdealNC" Arg='R, gens[, "basis"]'/>
##
## <Description>
## The effects of <Ref Func="TwoSidedIdealNC"/>, <Ref Func="LeftIdealNC"/>,
## and <Ref Func="RightIdealNC"/> are the same as
## <Ref Func="TwoSidedIdeal"/>, <Ref Func="LeftIdeal"/>,
## and <Ref Func="RightIdeal"/>, respectively,
## but they do not check whether all entries of <A>gens</A> lie in <A>R</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "TwoSidedIdealNC" );
DeclareSynonym( "IdealNC", TwoSidedIdealNC );
DeclareGlobalFunction( "LeftIdealNC" );
DeclareGlobalFunction( "RightIdealNC" );
#############################################################################
##
#O IsTwoSidedIdeal( <R>, <I> )
#O IsLeftIdeal( <R>, <I> )
#O IsRightIdeal( <R>, <I> )
#P IsTwoSidedIdealInParent( <I> )
#P IsLeftIdealInParent( <I> )
#P IsRightIdealInParent( <I> )
##
## <#GAPDoc Label="IsTwoSidedIdeal">
## <ManSection>
## <Oper Name="IsTwoSidedIdeal" Arg='R, I'/>
## <Oper Name="IsLeftIdeal" Arg='R, I'/>
## <Oper Name="IsRightIdeal" Arg='R, I'/>
## <Prop Name="IsTwoSidedIdealInParent" Arg='I'/>
## <Prop Name="IsLeftIdealInParent" Arg='I'/>
## <Prop Name="IsRightIdealInParent" Arg='I'/>
##
## <Description>
## The properties <Ref Func="IsTwoSidedIdealInParent"/> etc., are attributes
## of the ideal, and once known they are stored in the ideal.
## <Example><![CDATA[
## gap> A:= FullMatrixAlgebra( Rationals, 3 );
## ( Rationals^[ 3, 3 ] )
## gap> I:= Ideal( A, [ Random( A ) ] );
## <two-sided ideal in ( Rationals^[ 3, 3 ] ), (1 generators)>
## gap> IsTwoSidedIdeal( A, I );
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
InParentFOA( "IsTwoSidedIdeal", IsRing, IsRing, DeclareProperty );
InParentFOA( "IsLeftIdeal", IsRing, IsRing, DeclareProperty );
InParentFOA( "IsRightIdeal", IsRing, IsRing, DeclareProperty );
DeclareSynonym( "IsIdeal", IsTwoSidedIdeal );
DeclareSynonym( "IsIdealOp", IsTwoSidedIdealOp );
DeclareSynonymAttr( "IsIdealInParent", IsTwoSidedIdealInParent );
InstallTrueMethod( IsLeftIdealInParent, IsTwoSidedIdealInParent );
InstallTrueMethod( IsRightIdealInParent, IsTwoSidedIdealInParent );
InstallTrueMethod( IsTwoSidedIdealInParent,
IsLeftIdealInParent and IsRightIdealInParent );
#############################################################################
##
#O TwoSidedIdealByGenerators( <R>, <gens> ) . . ideal in <R> gen. by <gens>
#O IdealByGenerators( <R>, <gens> )
##
## <#GAPDoc Label="TwoSidedIdealByGenerators">
## <ManSection>
## <Oper Name="TwoSidedIdealByGenerators" Arg='R, gens'/>
## <Oper Name="IdealByGenerators" Arg='R, gens'/>
##
## <Description>
## <Ref Func="TwoSidedIdealByGenerators"/> returns the ring that is
## generated by the elements of the collection <A>gens</A> under addition,
## multiplication, and multiplication with elements of the ring <A>R</A>
## from the left and from the right.
## <P/>
## <A>R</A> can be accessed by <Ref Func="LeftActingRingOfIdeal"/> or
## <Ref Func="RightActingRingOfIdeal"/>,
## <A>gens</A> can be accessed by <Ref Func="GeneratorsOfTwoSidedIdeal"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "TwoSidedIdealByGenerators", [ IsRing, IsCollection ] );
DeclareSynonym( "IdealByGenerators", TwoSidedIdealByGenerators );
#############################################################################
##
#O LeftIdealByGenerators( <R>, <gens> )
##
## <#GAPDoc Label="LeftIdealByGenerators">
## <ManSection>
## <Oper Name="LeftIdealByGenerators" Arg='R, gens'/>
##
## <Description>
## <Ref Func="LeftIdealByGenerators"/> returns the ring that is generated by
## the elements of the collection <A>gens</A> under addition,
## multiplication, and multiplication with elements of the ring <A>R</A>
## from the left.
## <P/>
## <A>R</A> can be accessed by <Ref Func="LeftActingRingOfIdeal"/>,
## <A>gens</A> can be accessed by <Ref Func="GeneratorsOfLeftIdeal"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "LeftIdealByGenerators", [ IsRing, IsCollection ] );
#############################################################################
##
#O RightIdealByGenerators( <R>, <gens> )
##
## <#GAPDoc Label="RightIdealByGenerators">
## <ManSection>
## <Oper Name="RightIdealByGenerators" Arg='R, gens'/>
##
## <Description>
## <Ref Func="RightIdealByGenerators"/> returns the ring that is generated
## by the elements of the collection <A>gens</A> under addition,
## multiplication, and multiplication with elements of the ring <A>R</A>
## from the right.
## <P/>
## <A>R</A> can be accessed by <Ref Func="RightActingRingOfIdeal"/>,
## <A>gens</A> can be accessed by <Ref Func="GeneratorsOfRightIdeal"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "RightIdealByGenerators", [ IsRing, IsCollection ] );
#############################################################################
##
#A GeneratorsOfTwoSidedIdeal( <I> )
#A GeneratorsOfIdeal( <I> )
##
## <#GAPDoc Label="GeneratorsOfTwoSidedIdeal">
## <ManSection>
## <Attr Name="GeneratorsOfTwoSidedIdeal" Arg='I'/>
## <Attr Name="GeneratorsOfIdeal" Arg='I'/>
##
## <Description>
## is a list of generators for the ideal <A>I</A>, with respect to
## the action of the rings that are stored as the values of
## <Ref Func="LeftActingRingOfIdeal"/> and
## <Ref Func="RightActingRingOfIdeal"/>, from the left and from the right,
## respectively.
## <P/>
## <Example><![CDATA[
## gap> A:= FullMatrixAlgebra( Rationals, 3 );;
## gap> I:= Ideal( A, [ One( A ) ] );;
## gap> GeneratorsOfIdeal( I );
## [ [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "GeneratorsOfTwoSidedIdeal", IsRing );
DeclareSynonymAttr( "GeneratorsOfIdeal", GeneratorsOfTwoSidedIdeal );
#############################################################################
##
#A GeneratorsOfLeftIdeal( <I> )
##
## <#GAPDoc Label="GeneratorsOfLeftIdeal">
## <ManSection>
## <Attr Name="GeneratorsOfLeftIdeal" Arg='I'/>
##
## <Description>
## is a list of generators for the left ideal <A>I</A>, with respect to the
## action from the left of the ring that is stored as the value of
## <Ref Func="LeftActingRingOfIdeal"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "GeneratorsOfLeftIdeal", IsRing );
#############################################################################
##
#A GeneratorsOfRightIdeal( <I> )
##
## <#GAPDoc Label="GeneratorsOfRightIdeal">
## <ManSection>
## <Attr Name="GeneratorsOfRightIdeal" Arg='I'/>
##
## <Description>
## is a list of generators for the right ideal <A>I</A>, with respect to the
## action from the right of the ring that is stored as the value of
## <Ref Func="RightActingRingOfIdeal"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "GeneratorsOfRightIdeal", IsRing );
#############################################################################
##
#A LeftActingRingOfIdeal( <I> )
#A RightActingRingOfIdeal( <I> )
##
## <#GAPDoc Label="LeftActingRingOfIdeal">
## <ManSection>
## <Attr Name="LeftActingRingOfIdeal" Arg='I'/>
## <Attr Name="RightActingRingOfIdeal" Arg='I'/>
##
## <Description>
## returns the left (resp. right) acting ring of an ideal <A>I</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "LeftActingRingOfIdeal", IsRing );
DeclareAttribute( "RightActingRingOfIdeal", IsRing );
#############################################################################
##
#O AsLeftIdeal( <R>, <S> )
#O AsRightIdeal( <R>, <S> )
#O AsTwoSidedIdeal( <R>, <S> )
##
## <#GAPDoc Label="AsLeftIdeal">
## <ManSection>
## <Oper Name="AsLeftIdeal" Arg='R, S'/>
## <Oper Name="AsRightIdeal" Arg='R, S'/>
## <Oper Name="AsTwoSidedIdeal" Arg='R, S'/>
##
## <Description>
## Let <A>S</A> be a subring of the ring <A>R</A>.
## <P/>
## If <A>S</A> is a left ideal in <A>R</A> then <Ref Func="AsLeftIdeal"/>
## returns this left ideal, otherwise <K>fail</K> is returned.
## <P/>
## If <A>S</A> is a right ideal in <A>R</A> then <Ref Func="AsRightIdeal"/>
## returns this right ideal, otherwise <K>fail</K> is returned.
## <P/>
## If <A>S</A> is a two-sided ideal in <A>R</A> then
## <Ref Func="AsTwoSidedIdeal"/> returns this two-sided ideal,
## otherwise <K>fail</K> is returned.
## <P/>
## <Example><![CDATA[
## gap> A:= FullMatrixAlgebra( Rationals, 3 );;
## gap> B:= DirectSumOfAlgebras( A, A );
## <algebra over Rationals, with 6 generators>
## gap> C:= Subalgebra( B, Basis( B ){[1..9]} );
## <algebra over Rationals, with 9 generators>
## gap> I:= AsTwoSidedIdeal( B, C );
## <two-sided ideal in <algebra of dimension 18 over Rationals>,
## (9 generators)>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "AsLeftIdeal", [ IsRing, IsRing ] );
DeclareOperation( "AsRightIdeal", [ IsRing, IsRing ] );
DeclareOperation( "AsTwoSidedIdeal", [ IsRing, IsRing ] );
#############################################################################
##
#E
|