/usr/share/gap/lib/mapphomo.gd is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 | #############################################################################
##
#W mapphomo.gd GAP library Thomas Breuer
#W and Heiko Theißen
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the definitions of properties of mappings preserving
## algebraic structure.
##
## 1. properties and attributes of gen. mappings that respect multiplication
## 2. properties and attributes of gen. mappings that respect addition
## 3. properties and attributes of gen. mappings that respect scalar mult.
## 4. properties and attributes of gen. mappings that respect multiplicative
## and additive structure
## 5. properties and attributes of gen. mappings that transform
## multiplication into addition
## 6. properties and attributes of gen. mappings that transform addition
## into multiplication
##
#############################################################################
##
## 1. properties and attributes of gen. mappings that respect multiplication
##
#############################################################################
##
#P RespectsMultiplication( <mapp> )
##
## <#GAPDoc Label="RespectsMultiplication">
## <ManSection>
## <Prop Name="RespectsMultiplication" Arg='mapp'/>
##
## <Description>
## Let <A>mapp</A> be a general mapping with underlying relation
## <M>F \subseteq S \times R</M>,
## where <M>S</M> and <M>R</M> are the source and the range of <A>mapp</A>,
## respectively.
## Then <Ref Func="RespectsMultiplication"/> returns <K>true</K> if
## <M>S</M> and <M>R</M> are magmas such that
## <M>(s_1,r_1), (s_2,r_2) \in F</M> implies
## <M>(s_1 * s_2,r_1 * r_2) \in F</M>,
## and <K>false</K> otherwise.
## <P/>
## If <A>mapp</A> is single-valued then
## <Ref Func="RespectsMultiplication"/> returns <K>true</K>
## if and only if the equation
## <C><A>s1</A>^<A>mapp</A> * <A>s2</A>^<A>mapp</A> =
## (<A>s1</A> * <A>s2</A>)^<A>mapp</A></C>
## holds for all <A>s1</A>, <A>s2</A> in <M>S</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "RespectsMultiplication", IsGeneralMapping );
#############################################################################
##
#P RespectsOne( <mapp> )
##
## <#GAPDoc Label="RespectsOne">
## <ManSection>
## <Prop Name="RespectsOne" Arg='mapp'/>
##
## <Description>
## Let <A>mapp</A> be a general mapping with underlying relation
## <M>F \subseteq <A>S</A> \times <A>R</A></M>,
## where <A>S</A> and <A>R</A> are the source and the range of <A>mapp</A>,
## respectively.
## Then <Ref Func="RespectsOne"/> returns <K>true</K> if
## <A>S</A> and <A>R</A> are magmas-with-one such that
## <M>( </M><C>One(<A>S</A>)</C><M>, </M><C>One(<A>R</A>)</C><M> ) \in F</M>,
## and <K>false</K> otherwise.
## <P/>
## If <A>mapp</A> is single-valued then <Ref Func="RespectsOne"/> returns
## <K>true</K> if and only if the equation
## <C>One( <A>S</A> )^<A>mapp</A> = One( <A>R</A> )</C>
## holds.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "RespectsOne", IsGeneralMapping );
#############################################################################
##
#P RespectsInverses( <mapp> )
##
## <#GAPDoc Label="RespectsInverses">
## <ManSection>
## <Prop Name="RespectsInverses" Arg='mapp'/>
##
## <Description>
## Let <A>mapp</A> be a general mapping with underlying relation
## <M>F \subseteq <A>S</A> \times <A>R</A></M>,
## where <A>S</A> and <A>R</A> are the source and the range of <A>mapp</A>,
## respectively.
## Then <Ref Func="RespectsInverses"/> returns <K>true</K> if
## <A>S</A> and <A>R</A> are magmas-with-inverses such that,
## for <M>s \in <A>S</A></M> and <M>r \in <A>R</A></M>,
## <M>(s,r) \in F</M> implies <M>(s^{{-1}},r^{{-1}}) \in F</M>,
## and <K>false</K> otherwise.
## <P/>
## If <A>mapp</A> is single-valued then <Ref Func="RespectsInverses"/>
## returns <K>true</K> if and only if the equation
## <C>Inverse( <A>s</A> )^<A>mapp</A> = Inverse( <A>s</A>^<A>mapp</A> )</C>
## holds for all <A>s</A> in <M>S</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "RespectsInverses", IsGeneralMapping );
#############################################################################
##
#M RespectsOne( <mapp> )
##
InstallTrueMethod( RespectsOne,
RespectsMultiplication and RespectsInverses );
#############################################################################
##
#P IsGroupGeneralMapping( <mapp> )
#P IsGroupHomomorphism( <mapp> )
##
## <#GAPDoc Label="IsGroupGeneralMapping">
## <ManSection>
## <Prop Name="IsGroupGeneralMapping" Arg='mapp'/>
## <Prop Name="IsGroupHomomorphism" Arg='mapp'/>
##
## <Description>
## A <E>group general mapping</E> is a mapping which respects multiplication
## and inverses.
## If it is total and single valued it is called a
## <E>group homomorphism</E>.
## <P/>
## Chapter <Ref Chap="Group Homomorphisms"/> explains
## group homomorphisms in more detail.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonymAttr( "IsGroupGeneralMapping",
IsGeneralMapping and RespectsMultiplication and RespectsInverses );
DeclareSynonymAttr( "IsGroupHomomorphism",
IsGroupGeneralMapping and IsMapping );
#############################################################################
##
#A KernelOfMultiplicativeGeneralMapping( <mapp> )
##
## <#GAPDoc Label="KernelOfMultiplicativeGeneralMapping">
## <ManSection>
## <Attr Name="KernelOfMultiplicativeGeneralMapping" Arg='mapp'/>
##
## <Description>
## Let <A>mapp</A> be a general mapping.
## Then <Ref Func="KernelOfMultiplicativeGeneralMapping"/> returns
## the set of all elements in the source of <A>mapp</A> that have
## the identity of the range in their set of images.
## <P/>
## (This is a monoid if <A>mapp</A> respects multiplication and one,
## and if the source of <A>mapp</A> is associative.)
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "KernelOfMultiplicativeGeneralMapping",
IsGeneralMapping );
#############################################################################
##
#A CoKernelOfMultiplicativeGeneralMapping( <mapp> )
##
## <#GAPDoc Label="CoKernelOfMultiplicativeGeneralMapping">
## <ManSection>
## <Attr Name="CoKernelOfMultiplicativeGeneralMapping" Arg='mapp'/>
##
## <Description>
## Let <A>mapp</A> be a general mapping.
## Then <Ref Func="CoKernelOfMultiplicativeGeneralMapping"/> returns
## the set of all elements in the range of <A>mapp</A> that have
## the identity of the source in their set of preimages.
## <P/>
## (This is a monoid if <A>mapp</A> respects multiplication and one,
## and if the range of <A>mapp</A> is associative.)
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "CoKernelOfMultiplicativeGeneralMapping",
IsGeneralMapping );
#############################################################################
##
## 2. properties and attributes of gen. mappings that respect addition
##
#############################################################################
##
#P RespectsAddition( <mapp> )
##
## <#GAPDoc Label="RespectsAddition">
## <ManSection>
## <Prop Name="RespectsAddition" Arg='mapp'/>
##
## <Description>
## Let <A>mapp</A> be a general mapping with underlying relation
## <M>F \subseteq S \times R</M>,
## where <M>S</M> and <M>R</M> are the source and the range of <A>mapp</A>,
## respectively.
## Then <Ref Func="RespectsAddition"/> returns <K>true</K> if
## <M>S</M> and <M>R</M> are additive magmas such that
## <M>(s_1,r_1), (s_2,r_2) \in F</M> implies
## <M>(s_1 + s_2,r_1 + r_2) \in F</M>,
## and <K>false</K> otherwise.
## <P/>
## If <A>mapp</A> is single-valued then <Ref Func="RespectsAddition"/>
## returns <K>true</K> if and only if the equation
## <C><A>s1</A>^<A>mapp</A> + <A>s2</A>^<A>mapp</A> =
## (<A>s1</A>+<A>s2</A>)^<A>mapp</A></C>
## holds for all <A>s1</A>, <A>s2</A> in <M>S</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "RespectsAddition", IsGeneralMapping );
#############################################################################
##
#P RespectsZero( <mapp> )
##
## <#GAPDoc Label="RespectsZero">
## <ManSection>
## <Prop Name="RespectsZero" Arg='mapp'/>
##
## <Description>
## Let <A>mapp</A> be a general mapping with underlying relation
## <M>F \subseteq <A>S</A> \times <A>R</A></M>,
## where <A>S</A> and <A>R</A> are the source and the range of <A>mapp</A>,
## respectively.
## Then <Ref Func="RespectsZero"/> returns <K>true</K> if
## <A>S</A> and <A>R</A> are additive-magmas-with-zero such that
## <M>( </M><C>Zero(<A>S</A>)</C><M>,
## </M><C>Zero(<A>R</A>)</C><M> ) \in F</M>,
## and <K>false</K> otherwise.
## <P/>
## If <A>mapp</A> is single-valued then <Ref Func="RespectsZero"/> returns
## <K>true</K> if and only if the equation
## <C>Zero( <A>S</A> )^<A>mapp</A> = Zero( <A>R</A> )</C>
## holds.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "RespectsZero", IsGeneralMapping );
#############################################################################
##
#P RespectsAdditiveInverses( <mapp> )
##
## <#GAPDoc Label="RespectsAdditiveInverses">
## <ManSection>
## <Prop Name="RespectsAdditiveInverses" Arg='mapp'/>
##
## <Description>
## Let <A>mapp</A> be a general mapping with underlying relation
## <M>F \subseteq S \times R</M>,
## where <M>S</M> and <M>R</M> are the source and the range of <A>mapp</A>,
## respectively.
## Then <Ref Func="RespectsAdditiveInverses"/> returns <K>true</K> if
## <M>S</M> and <M>R</M> are additive-magmas-with-inverses such that
## <M>(s,r) \in F</M> implies <M>(-s,-r) \in F</M>,
## and <K>false</K> otherwise.
## <P/>
## If <A>mapp</A> is single-valued then
## <Ref Func="RespectsAdditiveInverses"/> returns <K>true</K>
## if and only if the equation
## <C>AdditiveInverse( <A>s</A> )^<A>mapp</A> =
## AdditiveInverse( <A>s</A>^<A>mapp</A> )</C>
## holds for all <A>s</A> in <M>S</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "RespectsAdditiveInverses", IsGeneralMapping );
#############################################################################
##
#M RespectsZero( <mapp> )
##
InstallTrueMethod( RespectsZero,
RespectsAddition and RespectsAdditiveInverses );
#############################################################################
##
#P IsAdditiveGroupGeneralMapping( <mapp> )
#P IsAdditiveGroupHomomorphism( <mapp> )
##
## <#GAPDoc Label="IsAdditiveGroupGeneralMapping">
## <ManSection>
## <Prop Name="IsAdditiveGroupGeneralMapping" Arg='mapp'/>
## <Prop Name="IsAdditiveGroupHomomorphism" Arg='mapp'/>
##
## <Description>
## <Ref Prop="IsAdditiveGroupGeneralMapping"/>
## specifies whether a general mapping <A>mapp</A> respects
## addition (see <Ref Prop="RespectsAddition"/>) and respects
## additive inverses (see <Ref Prop="RespectsAdditiveInverses"/>).
## <P/>
## <Ref Prop="IsAdditiveGroupHomomorphism"/> is a synonym for the meet of
## <Ref Prop="IsAdditiveGroupGeneralMapping"/> and <Ref Prop="IsMapping"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonymAttr( "IsAdditiveGroupGeneralMapping",
IsGeneralMapping and RespectsAddition and RespectsAdditiveInverses );
DeclareSynonymAttr( "IsAdditiveGroupHomomorphism",
IsAdditiveGroupGeneralMapping and IsMapping );
#############################################################################
##
#A KernelOfAdditiveGeneralMapping( <mapp> )
##
## <#GAPDoc Label="KernelOfAdditiveGeneralMapping">
## <ManSection>
## <Attr Name="KernelOfAdditiveGeneralMapping" Arg='mapp'/>
##
## <Description>
## Let <A>mapp</A> be a general mapping.
## Then <Ref Func="KernelOfAdditiveGeneralMapping"/> returns
## the set of all elements in the source of <A>mapp</A> that have
## the zero of the range in their set of images.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "KernelOfAdditiveGeneralMapping", IsGeneralMapping );
#############################################################################
##
#A CoKernelOfAdditiveGeneralMapping( <mapp> )
##
## <#GAPDoc Label="CoKernelOfAdditiveGeneralMapping">
## <ManSection>
## <Attr Name="CoKernelOfAdditiveGeneralMapping" Arg='mapp'/>
##
## <Description>
## Let <A>mapp</A> be a general mapping.
## Then <Ref Func="CoKernelOfAdditiveGeneralMapping"/> returns
## the set of all elements in the range of <A>mapp</A> that have
## the zero of the source in their set of preimages.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "CoKernelOfAdditiveGeneralMapping", IsGeneralMapping );
#############################################################################
##
## 3. properties and attributes of gen. mappings that respect scalar mult.
##
#############################################################################
##
#P RespectsScalarMultiplication( <mapp> )
##
## <#GAPDoc Label="RespectsScalarMultiplication">
## <ManSection>
## <Prop Name="RespectsScalarMultiplication" Arg='mapp'/>
##
## <Description>
## Let <A>mapp</A> be a general mapping, with underlying relation
## <M>F \subseteq S \times R</M>,
## where <M>S</M> and <M>R</M> are the source and the range of <A>mapp</A>,
## respectively.
## Then <Ref Func="RespectsScalarMultiplication"/> returns <K>true</K> if
## <M>S</M> and <M>R</M> are left modules with the left acting domain
## <M>D</M> of <M>S</M> contained in the left acting domain of <M>R</M>
## and such that
## <M>(s,r) \in F</M> implies <M>(c * s,c * r) \in F</M> for all
## <M>c \in D</M>, and <K>false</K> otherwise.
## <P/>
## If <A>mapp</A> is single-valued then
## <Ref Func="RespectsScalarMultiplication"/> returns
## <K>true</K> if and only if the equation
## <C><A>c</A> * <A>s</A>^<A>mapp</A> =
## (<A>c</A> * <A>s</A>)^<A>mapp</A></C>
## holds for all <A>c</A> in <M>D</M> and <A>s</A> in <M>S</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "RespectsScalarMultiplication", IsGeneralMapping );
InstallTrueMethod( RespectsAdditiveInverses, RespectsScalarMultiplication );
#############################################################################
##
#P IsLeftModuleGeneralMapping( <mapp> )
#P IsLeftModuleHomomorphism( <mapp> )
##
## <#GAPDoc Label="IsLeftModuleGeneralMapping">
## <ManSection>
## <Prop Name="IsLeftModuleGeneralMapping" Arg='mapp'/>
## <Prop Name="IsLeftModuleHomomorphism" Arg='mapp'/>
##
## <Description>
## <Ref Prop="IsLeftModuleGeneralMapping"/>
## specifies whether a general mapping <A>mapp</A> satisfies the property
## <Ref Prop="IsAdditiveGroupGeneralMapping"/> and respects scalar
## multiplication (see <Ref Prop="RespectsScalarMultiplication"/>).
## <P/>
## <Ref Prop="IsLeftModuleHomomorphism"/> is a synonym for the meet of
## <Ref Prop="IsLeftModuleGeneralMapping"/> and <Ref Prop="IsMapping"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonymAttr( "IsLeftModuleGeneralMapping",
IsAdditiveGroupGeneralMapping and RespectsScalarMultiplication );
DeclareSynonymAttr( "IsLeftModuleHomomorphism",
IsLeftModuleGeneralMapping and IsMapping );
#############################################################################
##
#O IsLinearMapping( <F>, <mapp> )
##
## <#GAPDoc Label="IsLinearMapping">
## <ManSection>
## <Oper Name="IsLinearMapping" Arg='F, mapp'/>
##
## <Description>
## For a field <A>F</A> and a general mapping <A>mapp</A>,
## <Ref Func="IsLinearMapping"/> returns <K>true</K> if <A>mapp</A> is an
## <A>F</A>-linear mapping, and <K>false</K> otherwise.
## <P/>
## A mapping <M>f</M> is a linear mapping (or vector space homomorphism)
## if the source and range are vector spaces over the same division ring
## <M>D</M>, and if
## <M>f( a + b ) = f(a) + f(b)</M> and <M>f( s * a ) = s * f(a)</M> hold
## for all elements <M>a</M>, <M>b</M> in the source of <M>f</M>
## and <M>s \in D</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "IsLinearMapping", [ IsDomain, IsGeneralMapping ] );
#############################################################################
##
## 4. properties and attributes of gen. mappings that respect multiplicative
## and additive structure
##
#############################################################################
##
#P IsRingGeneralMapping( <mapp> )
#P IsRingHomomorphism( <mapp> )
##
## <#GAPDoc Label="IsRingGeneralMapping">
## <ManSection>
## <Prop Name="IsRingGeneralMapping" Arg='mapp'/>
## <Prop Name="IsRingHomomorphism" Arg='mapp'/>
##
## <Description>
## <Ref Prop="IsRingGeneralMapping"/> specifies whether a general mapping
## <A>mapp</A> satisfies the property
## <Ref Prop="IsAdditiveGroupGeneralMapping"/> and respects multiplication
## (see <Ref Prop="RespectsMultiplication"/>).
## <P/>
## <Ref Prop="IsRingHomomorphism"/> is a synonym for the meet of
## <Ref Prop="IsRingGeneralMapping"/> and <Ref Prop="IsMapping"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonymAttr( "IsRingGeneralMapping",
IsGeneralMapping and RespectsMultiplication
and IsAdditiveGroupGeneralMapping );
DeclareSynonymAttr( "IsRingHomomorphism",
IsRingGeneralMapping and IsMapping );
#############################################################################
##
#P IsRingWithOneGeneralMapping( <mapp> )
#P IsRingWithOneHomomorphism( <mapp> )
##
## <#GAPDoc Label="IsRingWithOneGeneralMapping">
## <ManSection>
## <Prop Name="IsRingWithOneGeneralMapping" Arg='mapp'/>
## <Prop Name="IsRingWithOneHomomorphism" Arg='mapp'/>
##
## <Description>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonymAttr( "IsRingWithOneGeneralMapping",
IsRingGeneralMapping and RespectsOne );
DeclareSynonymAttr( "IsRingWithOneHomomorphism",
IsRingWithOneGeneralMapping and IsMapping );
#############################################################################
##
#P IsAlgebraGeneralMapping( <mapp> )
#P IsAlgebraHomomorphism( <mapp> )
##
## <#GAPDoc Label="IsAlgebraGeneralMapping">
## <ManSection>
## <Prop Name="IsAlgebraGeneralMapping" Arg='mapp'/>
## <Prop Name="IsAlgebraHomomorphism" Arg='mapp'/>
##
## <Description>
## <Ref Prop="IsAlgebraGeneralMapping"/> specifies whether a general
## mapping <A>mapp</A> satisfies both properties
## <Ref Prop="IsRingGeneralMapping"/> and
## (see <Ref Prop="IsLeftModuleGeneralMapping"/>).
## <P/>
## <Ref Prop="IsAlgebraHomomorphism"/> is a synonym for the meet of
## <Ref Prop="IsAlgebraGeneralMapping"/> and <Ref Prop="IsMapping"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonymAttr( "IsAlgebraGeneralMapping",
IsRingGeneralMapping and IsLeftModuleGeneralMapping );
DeclareSynonymAttr( "IsAlgebraHomomorphism",
IsAlgebraGeneralMapping and IsMapping );
#############################################################################
##
#P IsAlgebraWithOneGeneralMapping( <mapp> )
#P IsAlgebraWithOneHomomorphism( <mapp> )
##
## <#GAPDoc Label="IsAlgebraWithOneGeneralMapping">
## <ManSection>
## <Prop Name="IsAlgebraWithOneGeneralMapping" Arg='mapp'/>
## <Prop Name="IsAlgebraWithOneHomomorphism" Arg='mapp'/>
##
## <Description>
## <Ref Prop="IsAlgebraWithOneGeneralMapping"/>
## specifies whether a general mapping <A>mapp</A> satisfies both
## properties <Ref Prop="IsAlgebraGeneralMapping"/> and
## <Ref Prop="RespectsOne"/>.
## <P/>
## <Ref Prop="IsAlgebraWithOneHomomorphism"/> is a synonym for the meet of
## <Ref Prop="IsAlgebraWithOneGeneralMapping"/> and <Ref Prop="IsMapping"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonymAttr( "IsAlgebraWithOneGeneralMapping",
IsAlgebraGeneralMapping and RespectsOne );
DeclareSynonymAttr( "IsAlgebraWithOneHomomorphism",
IsAlgebraWithOneGeneralMapping and IsMapping );
#############################################################################
##
#P IsFieldHomomorphism( <mapp> )
##
## <#GAPDoc Label="IsFieldHomomorphism">
## <ManSection>
## <Prop Name="IsFieldHomomorphism" Arg='mapp'/>
##
## <Description>
## A general mapping is a field homomorphism if and only if it is
## a ring homomorphism with source a field.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsFieldHomomorphism", IsGeneralMapping );
InstallTrueMethod( IsAlgebraHomomorphism, IsFieldHomomorphism );
#############################################################################
##
#F InstallEqMethodForMappingsFromGenerators( <IsStruct>,
#F <GeneratorsOfStruct>, <respects>, <infostring> )
##
## <ManSection>
## <Func Name="InstallEqMethodForMappingsFromGenerators"
## Arg='IsStruct, GeneratorsOfStruct, respects, infostring'/>
##
## <Description>
## </Description>
## </ManSection>
##
InstallEqMethodForMappingsFromGenerators := function( IsStruct,
GeneratorsOfStruct, respects, infostring )
InstallMethod( \=,
Concatenation( "method for two s.v. gen. mappings", infostring ),
IsIdenticalObj,
[ IsGeneralMapping and IsSingleValued and respects,
IsGeneralMapping and IsSingleValued and respects ],
0,
function( map1, map2 )
local preim, gen;
if not IsStruct( Source( map1 ) ) then
TryNextMethod();
elif HasIsInjective( map1 ) and HasIsInjective( map2 )
and IsInjective( map1 ) <> IsInjective( map2 ) then
return false;
elif HasIsSurjective( map1 ) and HasIsSurjective( map2 )
and IsSurjective( map1 ) <> IsSurjective( map2 ) then
return false;
elif HasIsTotal( map1 ) and HasIsTotal( map2 )
and IsTotal( map1 ) <> IsTotal( map2 ) then
return false;
elif Source( map1 ) <> Source( map2 )
or Range ( map1 ) <> Range ( map2 ) then
return false;
fi;
preim:= PreImagesRange( map1 );
if not IsStruct( preim ) then
TryNextMethod();
fi;
for gen in GeneratorsOfStruct( preim ) do
if ImagesRepresentative( map1, gen )
<> ImagesRepresentative( map2, gen ) then
return false;
fi;
od;
return true;
end );
InstallMethod(IsOne,
Concatenation( "method for s.v. gen. mapping", infostring ),
true,
[ IsGeneralMapping and IsSingleValued and respects ],
0,
function( map )
local preim, gen;
if not IsStruct( Source( map ) ) then
TryNextMethod();
elif HasIsInjective( map ) and not IsInjective( map ) then
return false;
elif HasIsSurjective( map ) and not IsSurjective( map ) then
return false;
elif HasIsTotal( map ) and not IsTotal( map ) then
return false;
elif Source( map ) <> Range( map ) then
return false;
fi;
for gen in GeneratorsOfStruct( Source(map) ) do
if gen<>ImagesRepresentative( map, gen ) then
return false;
fi;
od;
return true;
end );
end;
#############################################################################
##
## 5. properties and attributes of gen. mappings that transform
## multiplication into addition
##
#############################################################################
##
#P TransformsMultiplicationIntoAddition( <mapp> )
##
## <ManSection>
## <Prop Name="TransformsMultiplicationIntoAddition" Arg='mapp'/>
##
## <Description>
## Let <A>mapp</A> be a general mapping with underlying relation
## <M>F \subseteq S \times R</M>,
## where <M>S</M> and <M>R</M> are the source and the range of <A>mapp</A>,
## respectively.
## Then <Ref Func="TransformsMultiplicationIntoAddition"/> returns
## <K>true</K> if <M>S</M> is a magma and <M>R</M> an additive magma
## such that <M>(s_1,r_1), (s_2,r_2) \in F</M> implies
## <M>(s_1 * s_2,r_1 + r_2) \in F</M>,
## and <K>false</K> otherwise.
## <P/>
## If <A>mapp</A> is single-valued then
## <Ref Func="TransformsMultiplicationIntoAddition"/>
## returns <K>true</K> if and only if the equation
## <C><A>s1</A>^<A>mapp</A> + <A>s2</A>^<A>mapp</A> =
## (<A>s1</A> * <A>s2</A>)^<A>mapp</A></C> holds for all
## <A>s1</A>, <A>s2</A> in <M>S</M>.
## </Description>
## </ManSection>
##
DeclareProperty( "TransformsMultiplicationIntoAddition", IsGeneralMapping );
#############################################################################
##
#P TranformsOneIntoZero( <mapp> )
##
## <ManSection>
## <Prop Name="TranformsOneIntoZero" Arg='mapp'/>
##
## <Description>
## Let <A>mapp</A> be a general mapping with underlying relation
## <M>F \subseteq S \times R</M>,
## where <M>S</M> and <M>R</M> are the source and the range of <A>mapp</A>,
## respectively.
## Then <Ref Func="TranformsOneIntoZero"/> returns <K>true</K> if
## <M>S</M> is a magma-with-one and <M>R</M> an additive-magma-with-zero
## such that
## <M>( </M><C>One(</C><M>S</M><C>), Zero(</C><M>R</M><C>) )</C><M> \in F</M>,
## and <K>false</K> otherwise.
## <P/>
## If <A>mapp</A> is single-valued then
## <Ref Func="TranformsOneIntoZero"/> returns <K>true</K>
## if and only if the equation
## <C>One( S )^<A>mapp</A> = Zero( R )</C>
## holds.
## </Description>
## </ManSection>
##
DeclareProperty( "TranformsOneIntoZero", IsGeneralMapping );
#############################################################################
##
#P TransformsInversesIntoAdditiveInverses( <mapp> )
##
## <ManSection>
## <Prop Name="TransformsInversesIntoAdditiveInverses" Arg='mapp'/>
##
## <Description>
## Let <A>mapp</A> be a general mapping with underlying relation
## <M>F \subseteq S \times R</M>,
## where <M>S</M> and <M>R</M> are the source and the range of <A>mapp</A>,
## respectively.
## Then <Ref Func="RespectsInverses"/> returns <K>true</K> if
## <M>S</M> and <M>R</M> are magmas-with-inverses such that
## <M>S</M> is a magma-with-inverses
## and <M>R</M> an additive-magma-with-inverses
## such that <M>(s,r) \in F</M> implies <M>(s^{-1},-r) \in F</M>,
## and <K>false</K> otherwise.
## <P/>
## If <A>mapp</A> is single-valued then
## <Ref Func="TransformsInversesIntoAdditiveInverses"/>
## returns <K>true</K> if and only if the equation
## <C>Inverse( <A>s</A> )^<A>mapp</A> =
## AdditiveInverse( <A>s</A>^<A>mapp</A> )</C>
## holds for all <A>s</A> in <M>S</M>.
## </Description>
## </ManSection>
##
DeclareProperty( "TransformsInversesIntoAdditiveInverses", IsGeneralMapping );
#############################################################################
##
#M RespectsOne( <mapp> )
##
InstallTrueMethod( TranformsOneIntoZero,
TransformsMultiplicationIntoAddition and
TransformsInversesIntoAdditiveInverses );
#############################################################################
##
#P IsGroupToAdditiveGroupGeneralMapping( <mapp> )
#P IsGroupToAdditiveGroupHomomorphism( <mapp> )
##
## <ManSection>
## <Prop Name="IsGroupToAdditiveGroupGeneralMapping" Arg='mapp'/>
## <Prop Name="IsGroupToAdditiveGroupHomomorphism" Arg='mapp'/>
##
## <Description>
## A <C>GroupToAdditiveGroupGeneralMapping</C> is a mapping which transforms
## multiplication into addition and transforms
## inverses into additive inverses. If it is total and single valued it is
## called a group-to-additive-group
## homomorphism.
## </Description>
## </ManSection>
##
DeclareSynonymAttr( "IsGroupToAdditiveGroupGeneralMapping",
IsGeneralMapping and TransformsMultiplicationIntoAddition and
TransformsInversesIntoAdditiveInverses );
DeclareSynonymAttr( "IsGroupToAdditiveGroupHomomorphism",
IsGroupToAdditiveGroupGeneralMapping and IsMapping );
#############################################################################
##
## 6. properties and attributes of gen. mappings that transform addition
## into multiplication
##
#############################################################################
##
#P TransformsAdditionIntoMultiplication( <mapp> )
##
## <ManSection>
## <Prop Name="TransformsAdditionIntoMultiplication" Arg='mapp'/>
##
## <Description>
## Let <A>mapp</A> be a general mapping with underlying relation
## <M>F \subseteq S \times R</M>,
## where <M>S</M> and <M>R</M> are the source and the range of <A>mapp</A>,
## respectively.
## Then <Ref Func="TransformsAdditionIntoMultiplication"/> returns
## <K>true</K> if
## <M>S</M> is an additive magma and <M>R</M> a magma such that
## <M>(s_1,r_1), (s_2,r_2) \in F</M> implies <M>(s_1 + s_2,r_1 * r_2) \in F</M>,
## and <K>false</K> otherwise.
## <P/>
## If <A>mapp</A> is single-valued then
## <Ref Func="TransformsAdditionIntoMultiplication"/>
## returns <K>true</K> if and only if the equation
## <C><A>s1</A>^<A>mapp</A> * <A>s2</A>^<A>mapp</A> =
## (<A>s1</A>+<A>s2</A>)^<A>mapp</A></C>
## holds for all <A>s1</A>, <A>s2</A> in <M>S</M>.
## </Description>
## </ManSection>
##
DeclareProperty( "TransformsAdditionIntoMultiplication", IsGeneralMapping );
#############################################################################
##
#P TransformsZeroIntoOne( <mapp> )
##
## <ManSection>
## <Prop Name="TransformsZeroIntoOne" Arg='mapp'/>
##
## <Description>
## Let <A>mapp</A> be a general mapping with underlying relation
## <M>F \subseteq S \times R</M>,
## where <M>S</M> and <M>R</M> are the source and the range of <A>mapp</A>,
## respectively.
## Then <Ref Func="TransformsZeroIntoOne"/> returns <K>true</K> if
## <M>S</M> is an additive-magma-with-zero and <M>R</M> a magma-with-one
## such that
## <M>( </M><C>Zero(</C><M>S</M><C>), One(</C><M>R</M><C>) )</C><M> \in F</M>,
## and <K>false</K> otherwise.
## <P/>
## If <A>mapp</A> is single-valued then
## <Ref Func="TransformsZeroIntoOne"/> returns <K>true</K>
## if and only if the equation
## <C>Zero( S )^<A>mapp</A> = One( R )</C>
## holds.
## </Description>
## </ManSection>
##
DeclareProperty( "TransformsZeroIntoOne", IsGeneralMapping );
#############################################################################
##
#P TransformsAdditiveInversesIntoInverses( <mapp> )
##
## <ManSection>
## <Prop Name="TransformsAdditiveInversesIntoInverses" Arg='mapp'/>
##
## <Description>
## Let <A>mapp</A> be a general mapping with underlying relation
## <M>F \subseteq S \times R</M>,
## where <M>S</M> and <M>R</M> are the source and the range of <A>mapp</A>,
## respectively.
## Then <Ref Func="TransformsAdditiveInversesIntoInverses"/> returns
## <K>true</K> if <M>S</M> is an additive-magma-with-inverses and
## <M>R</M> a magma-with-inverses such that
## <M>(s,r) \in F</M> implies <M>(-s,r^{-1}) \in F</M>,
## and <K>false</K> otherwise.
## <P/>
## If <A>mapp</A> is single-valued then
## <Ref Func="TransformsAdditiveInversesIntoInverses"/>
## returns <K>true</K> if and only if the equation
## <C>AdditiveInverse( <A>s</A> )^<A>mapp</A> =
## Inverse( <A>s</A>^<A>mapp</A> )</C> holds for all <A>s</A> in <M>S</M>.
## </Description>
## </ManSection>
##
DeclareProperty( "TransformsAdditiveInversesIntoInverses", IsGeneralMapping );
#############################################################################
##
#M TransformsAdditiveInversesIntoInverses( <mapp> )
##
InstallTrueMethod( TransformsAdditiveInversesIntoInverses,
TransformsAdditionIntoMultiplication and
TransformsAdditiveInversesIntoInverses );
#############################################################################
##
#P IsAdditiveGroupToGroupGeneralMapping( <mapp> )
#P IsAdditiveGroupToGroupHomomorphism( <mapp> )
##
## <ManSection>
## <Prop Name="IsAdditiveGroupToGroupGeneralMapping" Arg='mapp'/>
## <Prop Name="IsAdditiveGroupToGroupHomomorphism" Arg='mapp'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareSynonymAttr( "IsAdditiveGroupToGroupGeneralMapping",
IsGeneralMapping and TransformsAdditionIntoMultiplication and
TransformsAdditiveInversesIntoInverses );
DeclareSynonymAttr( "IsAdditiveGroupToGroupHomomorphism",
IsAdditiveGroupToGroupGeneralMapping and IsMapping );
#############################################################################
##
#E
|