/usr/share/gap/lib/mapphomo.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 | #############################################################################
##
#W mapphomo.gi GAP library Thomas Breuer
#W and Heiko Theißen
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the methods for properties of mappings preserving
## algebraic structure.
##
## 1. methods for general mappings that respect multiplication
## 2. methods for general mappings that respect addition
## 3. methods for general mappings that respect scalar multiplication
## 4. properties and attributes of gen. mappings that respect multiplicative
## and additive structure
## 5. default equality tests for structure preserving mappings
##
#############################################################################
##
## 1. methods for general mappings that respect multiplication
##
#############################################################################
##
#M RespectsMultiplication( <mapp> ) . . . . . for a finite general mapping
##
InstallMethod( RespectsMultiplication,
"method for a general mapping",
[ IsGeneralMapping ],
function( map )
local S, R, enum, pair1, pair2;
S:= Source( map );
R:= Range( map );
if not ( IsMagma( S ) and IsMagma( R ) ) then
return false;
fi;
map:= UnderlyingRelation( map );
if not IsFinite( map ) then
TryNextMethod();
fi;
enum:= Enumerator( map );
for pair1 in enum do
for pair2 in enum do
if not DirectProductElement( [ pair1[1] * pair2[1], pair1[2] * pair2[2] ] )
in map then
return false;
fi;
od;
od;
return true;
end );
#############################################################################
##
#M RespectsOne( <mapp> ) . . . . . . . . . . . for a finite general mapping
##
InstallMethod( RespectsOne,
"method for a general mapping",
[ IsGeneralMapping ],
function( map )
local S, R;
S:= Source( map );
R:= Range( map );
return IsMagmaWithOne( S )
and IsMagmaWithOne( R )
and One( R ) in ImagesElm( map, One( S ) );
end );
#############################################################################
##
#M RespectsInverses( <mapp> ) . . . . . . . . for a finite general mapping
##
InstallMethod( RespectsInverses,
"method for a general mapping",
[ IsGeneralMapping ],
function( map )
local S, R, enum, pair;
S:= Source( map );
R:= Range( map );
if not ( IsMagmaWithInverses( S ) and IsMagmaWithInverses( R ) ) then
return false;
fi;
map:= UnderlyingRelation( map );
if not IsFinite( map ) then
TryNextMethod();
fi;
enum:= Enumerator( map );
for pair in enum do
if not DirectProductElement( [ Inverse( pair[1] ), Inverse( pair[2] ) ] )
in map then
return false;
fi;
od;
return true;
end );
#############################################################################
##
#M KernelOfMultiplicativeGeneralMapping( <mapp> ) . for finite gen. mapping
##
InstallMethod( KernelOfMultiplicativeGeneralMapping,
"method for a finite general mapping",
[ IsGeneralMapping and RespectsMultiplication and RespectsOne ],
function( mapp )
local S, oneR, kernel, pair;
S:= Source( mapp );
if IsFinite( S ) then
oneR:= One( Range( mapp ) );
kernel:= Filtered( Enumerator( S ),
s -> oneR in ImagesElm( mapp, s ) );
elif IsFinite( UnderlyingRelation( mapp ) ) then
oneR:= One( Range( mapp ) );
kernel:= [];
for pair in Enumerator( UnderlyingRelation( mapp ) ) do
if pair[2] = oneR then
Add( kernel, pair[1] );
fi;
od;
else
TryNextMethod();
fi;
if IsMagmaWithInverses( S )
and HasRespectsInverses( mapp ) and RespectsInverses( mapp ) then
return SubmagmaWithInversesNC( S, kernel );
else
return SubmagmaWithOneNC( S, kernel );
fi;
end );
#############################################################################
##
#M KernelOfMultiplicativeGeneralMapping( <map> )
#M . . . for injective gen. mapping that respects mult. and one
##
InstallMethod( KernelOfMultiplicativeGeneralMapping,
"method for an injective gen. mapping that respects mult. and one",
[ IsGeneralMapping and RespectsMultiplication
and RespectsOne and IsInjective ],
SUM_FLAGS,# can't do better in injective case
map -> TrivialSubmagmaWithOne( Source( map ) ) );
#############################################################################
##
#M CoKernelOfMultiplicativeGeneralMapping( <mapp> ) for finite gen. mapping
##
InstallMethod( CoKernelOfMultiplicativeGeneralMapping,
"method for a finite general mapping",
[ IsGeneralMapping and RespectsMultiplication and RespectsOne ],
function( mapp )
local R, oneS, cokernel, rel, pair;
R:= Range( mapp );
if IsFinite( R ) then
oneS:= One( Source( mapp ) );
rel:= UnderlyingRelation( mapp );
cokernel:= Filtered( Enumerator( R ),
r -> DirectProductElement( [ oneS, r ] ) in rel );
elif IsFinite( UnderlyingRelation( mapp ) )
and HasAsList( UnderlyingRelation( mapp ) ) then
# Note that we must not call 'Enumerator' for the underlying
# relation since this is allowed to call (functions that may call)
# 'CoKernelOfMultiplicativeGeneralMapping'.
oneS:= One( Source( mapp ) );
cokernel:= [];
for pair in AsList( UnderlyingRelation( mapp ) ) do
if pair[1] = oneS then
Add( cokernel, pair[2] );
fi;
od;
else
TryNextMethod();
fi;
if IsMagmaWithInverses( R )
and HasRespectsInverses( mapp ) and RespectsInverses( mapp ) then
return SubmagmaWithInversesNC( R, cokernel );
else
return SubmagmaWithOneNC( R, cokernel );
fi;
end );
#############################################################################
##
#M CoKernelOfMultiplicativeGeneralMapping( <map> )
#M . . for single-valued gen. mapping that respects mult. and one
##
InstallMethod( CoKernelOfMultiplicativeGeneralMapping,
"method for a single-valued gen. mapping that respects mult. and one",
[ IsGeneralMapping and RespectsMultiplication
and RespectsOne and IsSingleValued ],
SUM_FLAGS,# can't do better in single-valued case
#T SUM_FLAGS ?
map -> TrivialSubmagmaWithOne( Range( map ) ) );
#############################################################################
##
#M IsSingleValued( <map> ) . . for gen. mapping that respects mult. and one
##
InstallMethod( IsSingleValued,
"method for a gen. mapping that respects mult. and inverses",
[ IsGeneralMapping and RespectsMultiplication and RespectsInverses ],
map -> IsTrivial( CoKernelOfMultiplicativeGeneralMapping( map ) ) );
#############################################################################
##
#M IsInjective( <map> ) . for gen. mapping that respects mult. and inverses
##
InstallMethod( IsInjective,
"method for a gen. mapping that respects mult. and one",
[ IsGeneralMapping and RespectsMultiplication and RespectsInverses ],
map -> IsTrivial( KernelOfMultiplicativeGeneralMapping( map ) ) );
#############################################################################
##
#M ImagesElm( <map>, <elm> ) . . . for s.p. gen. mapping resp. mult. & inv.
##
InstallMethod( ImagesElm,
"method for s.p. general mapping respecting mult. & inv., and element",
FamSourceEqFamElm,
[ IsSPGeneralMapping and RespectsMultiplication and RespectsInverses,
IsObject ],
function( map, elm )
local img;
img:= ImagesRepresentative( map, elm );
if img = fail then
return [];
else
return RightCoset( CoKernelOfMultiplicativeGeneralMapping(map), img );
fi;
end );
#############################################################################
##
#M ImagesSet( <map>, <elms> ) . . for s.p. gen. mapping resp. mult. & inv.
##
InstallMethod( ImagesSet,
"method for s.p. general mapping respecting mult. & inv., and group",
CollFamSourceEqFamElms,
[ IsSPGeneralMapping and RespectsMultiplication and RespectsInverses,
IsGroup ],
function( map, elms )
local genimages, img;
# Try to map a generating set of elms; this works if and only if map
# is defined on all of elms.
genimages:= List( GeneratorsOfMagmaWithInverses( elms ),
gen -> ImagesRepresentative( map, gen ) );
if fail in genimages then
TryNextMethod();
fi;
img := SubgroupNC( Range( map ), Concatenation(
GeneratorsOfMagmaWithInverses(
CoKernelOfMultiplicativeGeneralMapping( map ) ),
genimages ) );
if IsSingleValued(map) then
# At this point we know that the restriction of map to elms is a
# group homomorphism. Hence we can transfer some knowledge about
# elms to img.
if HasIsInjective(map) and IsInjective(map) then
UseIsomorphismRelation( elms, img );
else
UseFactorRelation( elms, fail, img );
fi;
fi;
return img;
end );
InstallMethod( ImagesSet,
"method for injective s.p. mapping respecting mult. & inv., and group",
CollFamSourceEqFamElms,
[ IsSPGeneralMapping and IsMapping and IsInjective and
RespectsMultiplication and RespectsInverses,
IsGroup ],
function( map, elms )
local img;
img := SubgroupNC( Range( map ),
List( GeneratorsOfMagmaWithInverses( elms ),
gen -> ImagesRepresentative( map, gen ) ) );
UseIsomorphismRelation( elms, img );
if IsActionHomomorphism( map )
and HasBaseOfGroup( UnderlyingExternalSet( map ) )
and not HasBaseOfGroup( img )
and not HasStabChainMutable( img ) then
if not IsBound( UnderlyingExternalSet( map )!.basePermImage ) then
UnderlyingExternalSet( map )!.basePermImage :=
List(BaseOfGroup(UnderlyingExternalSet(map)),
b->PositionCanonical(HomeEnumerator(
UnderlyingExternalSet( map ) ), b ) );
fi;
SetBaseOfGroup( img, UnderlyingExternalSet( map )!.basePermImage );
#T is this the right place?
#T and is it allowed to access `!.basePermImage'?
fi;
return img;
end );
#############################################################################
##
#M PreImagesElm( <map>, <elm> ) . for s.p. gen. mapping resp. mult. & inv.
##
InstallMethod( PreImagesElm,
"method for s.p. general mapping respecting mult. & inv., and element",
FamRangeEqFamElm,
[ IsSPGeneralMapping and RespectsMultiplication and RespectsInverses,
IsObject ],
function( map, elm )
local pre;
pre:= PreImagesRepresentative( map, elm );
if pre = fail then
return [];
else
return RightCoset( KernelOfMultiplicativeGeneralMapping( map ), pre );
fi;
end );
#############################################################################
##
#M PreImagesSet( <map>, <elms> ) . for s.p. gen. mapping resp. mult. & inv.
##
InstallMethod( PreImagesSet,
"method for s.p. general mapping respecting mult. & inv., and group",
CollFamRangeEqFamElms,
[ IsSPGeneralMapping and RespectsMultiplication and RespectsInverses,
IsGroup ],
function( map, elms )
local genpreimages, pre;
genpreimages:=GeneratorsOfMagmaWithInverses( elms );
if Length(genpreimages)>0 and CanEasilyCompareElements(genpreimages[1]) then
# remove identities
genpreimages:=Filtered(genpreimages,i->i<>One(i));
fi;
genpreimages:= List(genpreimages,
gen -> PreImagesRepresentative( map, gen ) );
if fail in genpreimages then
TryNextMethod();
fi;
pre := SubgroupNC( Source( map ), Concatenation(
GeneratorsOfMagmaWithInverses(
KernelOfMultiplicativeGeneralMapping( map ) ),
genpreimages ) );
if HasSize( KernelOfMultiplicativeGeneralMapping( map ) )
and HasSize( elms ) then
SetSize( pre, Size( KernelOfMultiplicativeGeneralMapping( map ) )
* Size( elms ) );
fi;
return pre;
end );
InstallMethod( PreImagesSet,
"method for injective s.p. mapping respecting mult. & inv., and group",
CollFamRangeEqFamElms,
[ IsSPGeneralMapping and IsMapping and IsInjective and
RespectsMultiplication and RespectsInverses,
IsGroup ],
function( map, elms )
local pre;
pre := SubgroupNC( Source( map ),
List( GeneratorsOfMagmaWithInverses( elms ),
gen -> PreImagesRepresentative( map, gen ) ) );
UseIsomorphismRelation( elms, pre );
return pre;
end );
#############################################################################
##
## 2. methods for general mappings that respect addition
##
#############################################################################
##
#M RespectsAddition( <mapp> ) . . . . . . . . for a finite general mapping
##
InstallMethod( RespectsAddition,
"method for a general mapping",
[ IsGeneralMapping ],
function( map )
local S, R, enum, pair1, pair2;
S:= Source( map );
R:= Range( map );
if not ( IsAdditiveMagma( S ) and IsAdditiveMagma( R ) ) then
return false;
fi;
map:= UnderlyingRelation( map );
if not IsFinite( map ) then
TryNextMethod();
fi;
enum:= Enumerator( map );
for pair1 in enum do
for pair2 in enum do
if not DirectProductElement( [ pair1[1] + pair2[1], pair1[2] + pair2[2] ] )
in map then
return false;
fi;
od;
od;
return true;
end );
#############################################################################
##
#M RespectsZero( <mapp> ) . . . . . . . . . . for a finite general mapping
##
InstallMethod( RespectsZero,
"method for a general mapping",
[ IsGeneralMapping ],
function( map )
local S, R;
S:= Source( map );
R:= Range( map );
return IsAdditiveMagmaWithZero( S )
and IsAdditiveMagmaWithZero( R )
and Zero( R ) in ImagesElm( map, Zero( S ) );
end );
#############################################################################
##
#M RespectsAdditiveInverses( <mapp> ) . . . . for a finite general mapping
##
InstallMethod( RespectsAdditiveInverses,
"method for a general mapping",
[ IsGeneralMapping ],
function( map )
local S, R, enum, pair;
S:= Source( map );
R:= Range( map );
if not ( IsAdditiveGroup( S )
and IsAdditiveGroup( R ) ) then
return false;
fi;
map:= UnderlyingRelation( map );
if not IsFinite( map ) then
TryNextMethod();
fi;
enum:= Enumerator( map );
for pair in enum do
if not DirectProductElement( [ AdditiveInverse( pair[1] ),
AdditiveInverse( pair[2] ) ] )
in map then
return false;
fi;
od;
return true;
end );
#############################################################################
##
#M KernelOfAdditiveGeneralMapping( <mapp> ) . for a finite general mapping
##
InstallMethod( KernelOfAdditiveGeneralMapping,
"method for a finite general mapping",
[ IsGeneralMapping and RespectsAddition and RespectsZero ],
function( mapp )
local S, zeroR, rel, kernel, pair;
S:= Source( mapp );
if IsFinite( Source( mapp ) ) then
zeroR:= Zero( Range( mapp ) );
rel:= UnderlyingRelation( mapp );
kernel:= Filtered( Enumerator( S ),
s -> DirectProductElement( [ s, zeroR ] ) in rel );
elif IsFinite( UnderlyingRelation( mapp ) ) then
zeroR:= Zero( Range( mapp ) );
kernel:= [];
for pair in Enumerator( UnderlyingRelation( mapp ) ) do
if pair[2] = zeroR then
Add( kernel, pair[1] );
fi;
od;
else
TryNextMethod();
fi;
if IsAdditiveGroup( S )
and HasRespectsAdditiveInverses( mapp )
and RespectsAdditiveInverses( mapp ) then
return SubadditiveMagmaWithInversesNC( S, kernel );
else
return SubadditiveMagmaWithZeroNC( S, kernel );
fi;
end );
#############################################################################
##
#M KernelOfAdditiveGeneralMapping( <map> )
#M . . . for injective gen. mapping that respects add. and zero
##
InstallMethod( KernelOfAdditiveGeneralMapping,
"method for an injective gen. mapping that respects add. and zero",
[ IsGeneralMapping and RespectsAddition
and RespectsZero and IsInjective ],
SUM_FLAGS,# can't do better in injective case
map -> TrivialSubadditiveMagmaWithZero( Source( map ) ) );
#############################################################################
##
#M KernelOfAdditiveGeneralMapping( <map> ) . . . . . . . . for zero mapping
##
InstallMethod( KernelOfAdditiveGeneralMapping,
"method for zero mapping",
[ IsGeneralMapping and RespectsAddition and RespectsZero and IsZero ],
SUM_FLAGS,# can't do better for zero mapping
Source );
#############################################################################
##
#M CoKernelOfAdditiveGeneralMapping( <mapp> ) . for finite general mapping
##
InstallMethod( CoKernelOfAdditiveGeneralMapping,
"method for a finite general mapping",
[ IsGeneralMapping and RespectsAddition and RespectsZero ],
function( mapp )
local R, zeroS, rel, cokernel, pair;
R:= Range( mapp );
if IsFinite( R ) then
zeroS:= Zero( Source( mapp ) );
rel:= UnderlyingRelation( mapp );
cokernel:= Filtered( Enumerator( R ),
r -> DirectProductElement( [ zeroS, r ] ) in rel );
elif IsFinite( UnderlyingRelation( mapp ) )
and HasAsList( UnderlyingRelation( mapp ) ) then
# Note that we must not call 'Enumerator' for the underlying
# relation since this is allowed to call (functions that may call)
# 'CoKernelOfAdditiveGeneralMapping'.
zeroS:= Zero( Source( mapp ) );
cokernel:= [];
for pair in AsList( UnderlyingRelation( mapp ) ) do
if pair[1] = zeroS then
Add( cokernel, pair[2] );
fi;
od;
else
TryNextMethod();
fi;
if IsAdditiveGroup( R )
and HasRespectsAdditiveInverses( mapp )
and RespectsAdditiveInverses( mapp ) then
return SubadditiveMagmaWithInversesNC( R, cokernel );
else
return SubadditiveMagmaWithZeroNC( R, cokernel );
fi;
end );
#############################################################################
##
#M CoKernelOfAdditiveGeneralMapping( <map> )
#M . . for single-valued gen. mapping that respects add. and zero
##
InstallMethod( CoKernelOfAdditiveGeneralMapping,
"method for a single-valued gen. mapping that respects add. and zero",
[ IsGeneralMapping and RespectsAddition
and RespectsZero and IsSingleValued ],
SUM_FLAGS,# can't do better in single-valued case
#T SUM_FLAGS ?
map -> TrivialSubadditiveMagmaWithZero( Range( map ) ) );
#############################################################################
##
#M IsSingleValued( <map> ) . for gen. mapping that respects add. & add. inv.
##
InstallMethod( IsSingleValued,
"method for a gen. mapping that respects add. and add. inverses",
[ IsGeneralMapping and RespectsAddition and RespectsAdditiveInverses ],
map -> IsTrivial( CoKernelOfAdditiveGeneralMapping(map) ) );
#############################################################################
##
#M IsInjective( <map> ) . . for gen. mapping that respects add. & add. inv.
##
InstallMethod( IsInjective,
"method for a gen. mapping that respects add. and add. inverses",
[ IsGeneralMapping and RespectsAddition and RespectsAdditiveInverses ],
map -> IsTrivial( KernelOfAdditiveGeneralMapping(map) ) );
#############################################################################
##
#M ImagesElm( <map>, <elm> ) . . for s.p. gen. mapping resp. add. & add.inv.
##
InstallMethod( ImagesElm,
"method for s.p. gen. mapping respecting add. & add.inv., and element",
FamSourceEqFamElm,
[ IsSPGeneralMapping and RespectsAddition and RespectsAdditiveInverses,
IsObject ],
function( map, elm )
local img;
img:= ImagesRepresentative( map, elm );
if img = fail then
return [];
else
return AdditiveCoset( CoKernelOfAdditiveGeneralMapping( map ), img );
fi;
end );
#############################################################################
##
#M ImagesSet( <map>, <elms> ) . for s.p. gen. mapping resp. add. & add.inv.
##
InstallMethod( ImagesSet,
"method for s.p. gen. mapping resp. add. & add.inv., and add. group",
CollFamSourceEqFamElms,
[ IsSPGeneralMapping and RespectsAddition and RespectsAdditiveInverses,
IsAdditiveGroup ],
function( map, elms )
local genimages;
genimages:= List( GeneratorsOfAdditiveGroup( elms ),
gen -> ImagesRepresentative( map, gen ) );
if fail in genimages then
TryNextMethod();
fi;
return SubadditiveGroupNC( Range( map ), Concatenation(
GeneratorsOfAdditiveGroup(
CoKernelOfAdditiveGeneralMapping( map ) ),
genimages ) );
end );
#############################################################################
##
#M PreImagesElm( <map>, <elm> ) for s.p. gen. mapping resp. add. & add.inv.
##
InstallMethod( PreImagesElm,
"method for s.p. gen. mapping respecting add. & add.inv., and element",
FamRangeEqFamElm,
[ IsSPGeneralMapping and RespectsAddition and RespectsAdditiveInverses,
IsObject ],
function( map, elm )
local pre;
pre:= PreImagesRepresentative( map, elm );
if pre = fail then
return [];
else
return AdditiveCoset( KernelOfAdditiveGeneralMapping( map ), pre );
fi;
end );
#############################################################################
##
#M PreImagesSet( <map>, <elms> ) for s.p. gen. mapping resp. add. & add.inv.
##
InstallMethod( PreImagesSet,
"method for s.p. gen. mapping resp. add. & add.inv., and add. group",
CollFamRangeEqFamElms,
[ IsSPGeneralMapping and RespectsAddition and RespectsAdditiveInverses,
IsAdditiveGroup ],
function( map, elms )
local genpreimages;
genpreimages:= List( GeneratorsOfAdditiveGroup( elms ),
gen -> PreImagesRepresentative( map, gen ) );
if fail in genpreimages then
TryNextMethod();
fi;
return SubadditiveGroupNC( Source( map ), Concatenation(
GeneratorsOfAdditiveGroup(
KernelOfAdditiveGeneralMapping( map ) ),
genpreimages ) );
end );
#############################################################################
##
## 3. methods for general mappings that respect scalar multiplication
##
#############################################################################
##
#M RespectsScalarMultiplication( <mapp> ) . . for a finite general mapping
##
InstallMethod( RespectsScalarMultiplication,
"method for a general mapping",
[ IsGeneralMapping ],
function( map )
local S, R, D, pair, c;
S:= Source( map );
R:= Range( map );
if not ( IsLeftModule( S ) and IsLeftModule( R ) ) then
return false;
fi;
D:= LeftActingDomain( S );
if not IsSubset( LeftActingDomain( R ), D ) then
#T subset is allowed?
return false;
fi;
map:= UnderlyingRelation( map );
if not IsFinite( D ) or not IsFinite( map ) then
Error( "cannot determine whether the infinite mapping <map> ",
"respects scalar multiplication" );
else
D:= Enumerator( D );
for pair in Enumerator( map ) do
for c in D do
if not DirectProductElement( [ c * pair[1], c * pair[2] ] ) in map then
return false;
fi;
od;
od;
return true;
fi;
end );
#############################################################################
##
#M KernelOfAdditiveGeneralMapping( <mapp> ) . . for a finite linear mapping
##
## We need a special method for being able to return a left module.
##
InstallMethod( KernelOfAdditiveGeneralMapping,
"method for a finite linear mapping",
[ IsGeneralMapping and RespectsAddition and RespectsZero
and RespectsScalarMultiplication ],
function( mapp )
local S, zeroR, rel, kernel, pair;
S:= Source( mapp );
if not IsExtLSet( S ) then
TryNextMethod();
fi;
if IsFinite( S ) then
zeroR:= Zero( Range( mapp ) );
rel:= UnderlyingRelation( mapp );
kernel:= Filtered( Enumerator( S ),
s -> DirectProductElement( [ s, zeroR ] ) in rel );
elif IsFinite( UnderlyingRelation( mapp ) ) then
zeroR:= Zero( Range( mapp ) );
kernel:= [];
for pair in Enumerator( UnderlyingRelation( mapp ) ) do
if pair[2] = zeroR then
Add( kernel, pair[1] );
fi;
od;
else
TryNextMethod();
fi;
return LeftModuleByGenerators( LeftActingDomain( S ), kernel );
end );
#############################################################################
##
#M CoKernelOfAdditiveGeneralMapping( <mapp> ) . . for finite linear mapping
##
## We need a special method for being able to return a left module.
##
InstallMethod( CoKernelOfAdditiveGeneralMapping,
"method for a finite linear mapping",
[ IsGeneralMapping and RespectsAddition and RespectsZero
and RespectsScalarMultiplication ],
function( mapp )
local R, zeroS, rel, cokernel, pair;
R:= Range( mapp );
if not IsExtLSet( R ) then
TryNextMethod();
fi;
if IsFinite( R ) then
zeroS:= Zero( Source( mapp ) );
rel:= UnderlyingRelation( mapp );
cokernel:= Filtered( Enumerator( R ),
r -> DirectProductElement( [ zeroS, r ] ) in rel );
elif IsFinite( UnderlyingRelation( mapp ) ) then
zeroS:= Zero( Source( mapp ) );
cokernel:= [];
for pair in Enumerator( UnderlyingRelation( mapp ) ) do
if pair[1] = zeroS then
Add( cokernel, pair[2] );
fi;
od;
else
TryNextMethod();
fi;
return LeftModuleByGenerators( LeftActingDomain( R ), cokernel );
end );
#############################################################################
##
#M ImagesSet( <map>, <elms> ) . . . . . for linear mapping and left module
##
InstallMethod( ImagesSet,
"method for linear mapping and left module",
CollFamSourceEqFamElms,
[ IsSPGeneralMapping and RespectsAddition and RespectsAdditiveInverses
and RespectsScalarMultiplication,
IsLeftModule ],
function( map, elms )
local genimages;
genimages:= List( GeneratorsOfLeftModule( elms ),
gen -> ImagesRepresentative( map, gen ) );
if fail in genimages then
TryNextMethod();
fi;
return SubmoduleNC( Range( map ), Concatenation(
GeneratorsOfLeftModule(
CoKernelOfAdditiveGeneralMapping( map ) ),
genimages ) );
end );
#############################################################################
##
#M PreImagesSet( <map>, <elms> ) . . . . for linear mapping and left module
##
InstallMethod( PreImagesSet,
"method for linear mapping and left module",
CollFamRangeEqFamElms,
[ IsSPGeneralMapping and RespectsAddition and RespectsAdditiveInverses
and RespectsScalarMultiplication,
IsLeftModule ],
function( map, elms )
local genpreimages;
genpreimages:= List( GeneratorsOfLeftModule( elms ),
gen -> PreImagesRepresentative( map, gen ) );
if fail in genpreimages then
TryNextMethod();
fi;
return SubmoduleNC( Source( map ), Concatenation(
GeneratorsOfLeftModule(
KernelOfAdditiveGeneralMapping( map ) ),
genpreimages ) );
end );
#############################################################################
##
## 4. properties and attributes of gen. mappings that respect multiplicative
## and additive structure
##
#############################################################################
##
#M IsFieldHomomorphism( <mapp> )
##
InstallMethod( IsFieldHomomorphism,
"method for a general mapping",
[ IsGeneralMapping ],
map -> IsRingHomomorphism( map ) and IsField( Source( map ) ) );
#############################################################################
##
#M ImagesSet( <map>, <elms> ) . . . . . . . . . for algebra hom. and FLMLOR
##
InstallMethod( ImagesSet,
"method for algebra hom. and FLMLOR",
CollFamSourceEqFamElms,
[ IsSPGeneralMapping and RespectsAddition and RespectsAdditiveInverses
and RespectsScalarMultiplication and RespectsMultiplication,
IsFLMLOR ],
function( map, elms )
local genimages;
genimages:= List( GeneratorsOfLeftOperatorRing( elms ),
gen -> ImagesRepresentative( map, gen ) );
if fail in genimages then
TryNextMethod();
fi;
return SubFLMLORNC( Range( map ), Concatenation(
GeneratorsOfLeftOperatorRing(
CoKernelOfAdditiveGeneralMapping( map ) ),
genimages ) );
#T handle the case of ideals!
end );
#############################################################################
##
#M ImagesSet( <map>, <elms> ) . for alg.-with-one hom. and FLMLOR-with-one
##
InstallMethod( ImagesSet,
"method for algebra-with-one hom. and FLMLOR-with-one",
CollFamSourceEqFamElms,
[ IsSPGeneralMapping and RespectsAddition and RespectsAdditiveInverses
and RespectsScalarMultiplication and RespectsMultiplication
and RespectsOne,
IsFLMLORWithOne ],
function( map, elms )
local genimages;
genimages:= List( GeneratorsOfLeftOperatorRingWithOne( elms ),
gen -> ImagesRepresentative( map, gen ) );
if fail in genimages then
TryNextMethod();
fi;
return SubFLMLORWithOneNC( Range( map ), Concatenation(
GeneratorsOfLeftOperatorRingWithOne(
CoKernelOfAdditiveGeneralMapping( map ) ),
genimages ) );
#T handle the case of ideals!
end );
#############################################################################
##
#M PreImagesSet( <map>, <elms> ) . . . . . . . . for algebra hom. and FLMLOR
##
InstallMethod( PreImagesSet,
"method for algebra hom. and FLMLOR",
CollFamRangeEqFamElms,
[ IsSPGeneralMapping and RespectsAddition and RespectsAdditiveInverses
and RespectsScalarMultiplication and RespectsMultiplication,
IsFLMLOR ],
function( map, elms )
local genpreimages;
genpreimages:= List( GeneratorsOfLeftOperatorRing( elms ),
gen -> PreImagesRepresentative( map, gen ) );
if fail in genpreimages then
TryNextMethod();
fi;
return SubFLMLORNC( Source( map ), Concatenation(
GeneratorsOfLeftOperatorRing(
KernelOfAdditiveGeneralMapping( map ) ),
genpreimages ) );
#T handle the case of ideals!
end );
#############################################################################
##
#M PreImagesSet( <map>, <elms> ) for alg.-with-one hom. and FLMLOR-with-one
##
InstallMethod( PreImagesSet,
"method for algebra-with-one hom. and FLMLOR-with-one",
CollFamRangeEqFamElms,
[ IsSPGeneralMapping and RespectsAddition and RespectsAdditiveInverses
and RespectsScalarMultiplication and RespectsMultiplication
and RespectsOne,
IsFLMLORWithOne ],
function( map, elms )
local genpreimages;
genpreimages:= List( GeneratorsOfLeftOperatorRingWithOne( elms ),
gen -> PreImagesRepresentative( map, gen ) );
if fail in genpreimages then
TryNextMethod();
fi;
return SubFLMLORNC( Source( map ), Concatenation(
GeneratorsOfLeftOperatorRingWithOne(
KernelOfAdditiveGeneralMapping( map ) ),
genpreimages ) );
#T handle the case of ideals!
end );
#############################################################################
##
## 5. default equality tests for structure preserving mappings
##
## The default methods for equality tests of single-valued and structure
## preserving general mappings first check some necessary conditions:
## Source and range of both must be equal, and if both know whether they
## are injective, surjective or total, the values must be equal if the
## general mappings are equal.
##
## In the second step, appropriate generators of the preimage of the general
## mappings are considered.
## If the general mapping respects multiplication, one, inverses, addition,
## zero, additive inverses, scalar multiplication then
## the preimage is a magma, magma-with-one, magma-with-inverses,
## additive-magma, additive-magma-with-zero, additive-magma-with-inverses,
## respectively.
## So the general mappings are equal if the images of the appropriate
## generators are equal.
##
#############################################################################
##
#M \=( <map1>, <map2> ) . . . . . . . . . . . . . . . . for s.v. gen. map.
##
InstallEqMethodForMappingsFromGenerators( IsObject,
AsList,
IsObject,
"" );
#############################################################################
##
#M \=( <map1>, <map2> ) . . . . . . . . . . for s.v. gen. map. resp. mult.
##
InstallEqMethodForMappingsFromGenerators( IsMagma,
GeneratorsOfMagma,
RespectsMultiplication,
" that respect mult." );
#############################################################################
##
#M \=( <map1>, <map2> ) . . . . . . for s.v. gen. map. resp. mult. and one
##
InstallEqMethodForMappingsFromGenerators( IsMagmaWithOne,
GeneratorsOfMagmaWithOne,
RespectsMultiplication and RespectsOne,
" that respect mult. and one" );
#############################################################################
##
#M \=( <map1>, <map2> ) . . . . . . for s.v. gen. map. resp. mult. and inv.
##
InstallEqMethodForMappingsFromGenerators( IsMagmaWithInverses,
GeneratorsOfMagmaWithInverses,
RespectsMultiplication and RespectsInverses,
" that respect mult. and inv." );
#############################################################################
##
#M \=( <map1>, <map2> ) . . . . . . . . . . . for s.v. gen. map. resp. add.
##
InstallEqMethodForMappingsFromGenerators( IsAdditiveMagma,
GeneratorsOfAdditiveMagma,
RespectsAddition,
" that respect add." );
#############################################################################
##
#M \=( <map1>, <map2> ) . . . . . . for s.v. gen. map. resp. add. and zero
##
InstallEqMethodForMappingsFromGenerators( IsAdditiveMagmaWithZero,
GeneratorsOfAdditiveMagmaWithZero,
RespectsAddition and RespectsZero,
" that respect add. and zero" );
#############################################################################
##
#M \=( <map1>, <map2> ) . . . . for s.v. gen. map. resp. add. and add. inv.
##
InstallEqMethodForMappingsFromGenerators( IsAdditiveGroup,
GeneratorsOfAdditiveGroup,
RespectsAddition and RespectsAdditiveInverses,
" that respect add. and add. inv." );
#############################################################################
##
#M \=( <map1>, <map2> ) . . . for s.v. gen. map. resp. mult.,add.,add.inv.
##
InstallEqMethodForMappingsFromGenerators( IsRing,
GeneratorsOfRing,
RespectsMultiplication and
RespectsAddition and RespectsAdditiveInverses,
" that respect mult.,add.,add.inv." );
#############################################################################
##
#M \=( <map1>, <map2> ) . for s.v. gen. map. resp. mult.,one,add.,add.inv.
##
InstallEqMethodForMappingsFromGenerators( IsRingWithOne,
GeneratorsOfRingWithOne,
RespectsMultiplication and RespectsOne and
RespectsAddition and RespectsAdditiveInverses,
" that respect mult.,one,add.,add.inv." );
#############################################################################
##
#M \=( <map1>, <map2> ) for s.v. gen. map. resp. add.,add.inv.,scal. mult.
##
InstallEqMethodForMappingsFromGenerators( IsLeftModule,
GeneratorsOfLeftModule,
RespectsAddition and RespectsAdditiveInverses and
RespectsScalarMultiplication,
" that respect add.,add.inv.,scal. mult." );
#############################################################################
##
#M \=( <map1>, <map2> ) for s.v.g.m. resp. add.,add.inv.,mult.,scal. mult.
##
InstallEqMethodForMappingsFromGenerators( IsLeftOperatorRing,
GeneratorsOfLeftOperatorRing,
RespectsAddition and RespectsAdditiveInverses and
RespectsMultiplication and RespectsScalarMultiplication,
" that respect add.,add.inv.,mult.,scal. mult." );
#############################################################################
##
#M \=( <map1>, <map2> ) s.v.g.m. resp. add.,add.inv.,mult.,one,scal. mult.
##
InstallEqMethodForMappingsFromGenerators( IsLeftOperatorRingWithOne,
GeneratorsOfLeftOperatorRingWithOne,
RespectsAddition and RespectsAdditiveInverses and
RespectsMultiplication and RespectsOne and RespectsScalarMultiplication,
" that respect add.,add.inv.,mult.,one,scal. mult." );
#############################################################################
##
#M \=( <map1>, <map2> ) s.v.g.m. resp. add.,add.inv.,mult.,one,scal. mult.
##
InstallEqMethodForMappingsFromGenerators( IsField,
GeneratorsOfField,
IsFieldHomomorphism,
" that is a field homomorphism" );
#############################################################################
##
#E
|