/usr/share/gap/lib/mat8bit.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 | #############################################################################
##
#W mat8bit.gi GAP Library Steve Linton
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file is a first stab at a special posobj-based representation
## for 8 bit matrices, mimicking the one for GF(2)
##
## all rows must be the same length and written over the same field
##
#############################################################################
##
#V TYPES_MAT8BIT . . . . . . . prepared types for compressed GF(q) matrices
##
## A length 2 list of length 257 lists. TYPES_MAT8BIT[0][q] will be the type
## of mutable matrices over GF(q), TYPES_MAT8BIT[1][q] is the type of
## immutable matrices. The 257th position is bound to 1 to stop the lists
## shrinking.
##
## It may later accessed directly by the kernel, so the format cannot be changed
## without changing the kernel.
##
InstallValue(TYPES_MAT8BIT , [[],[]]);
TYPES_MAT8BIT[1][257] := 1;
TYPES_MAT8BIT[2][257] := 1;
#############################################################################
##
#F TYPE_MAT8BIT( <q>, <mut> ) . . computes type of compressed GF(q) matrices
##
## Normally called by the kernel, caches results in TYPES_MAT8BIT,
## which is directly accessed by the kernel
##
InstallGlobalFunction(TYPE_MAT8BIT,
function( q, mut)
local col,filts;
if mut then col := 1; else col := 2; fi;
if not IsBound(TYPES_MAT8BIT[col][q]) then
filts := IsHomogeneousList and IsListDefault and IsCopyable and
Is8BitMatrixRep and IsSmallList and IsOrdinaryMatrix and
IsRingElementTable and IsNoImmediateMethodsObject and
HasIsRectangularTable and IsRectangularTable;
if mut then filts := filts and IsMutable; fi;
TYPES_MAT8BIT[col][q] := NewType(CollectionsFamily(FamilyObj(GF(q))),filts);
fi;
return TYPES_MAT8BIT[col][q];
end);
#############################################################################
##
#M Length( <mat> )
##
InstallOtherMethod( Length, "For a compressed MatFFE",
true, [IsList and Is8BitMatrixRep], 0, m->m![1]);
#############################################################################
##
#M <mat> [ <pos> ]
##
InstallOtherMethod( \[\], "For a compressed MatFFE",
true, [IsList and Is8BitMatrixRep, IsPosInt], 0, function(m,i)
return m![i+1]; end);
#############################################################################
##
#M <mat> [ <pos> ] := <val>
##
## This may involve turning <mat> into a plain list, if <mat> does
## not lie in the appropriate field.
##
InstallOtherMethod( \[\]\:\=, "For a compressed MatFE",
true, [IsMutable and IsList and Is8BitMatrixRep, IsPosInt, IsObject],
0,
ASS_MAT8BIT
);
#############################################################################
##
#M Unbind( <mat> [ <pos> ] )
##
## Unless the last position is being unbound, this will result in <mat>
## turning into a plain list
##
InstallOtherMethod( Unbind\[\], "For a compressed MatFFE",
true, [IsMutable and IsList and Is8BitMatrixRep, IsPosInt],
0, function(m,p)
if p = 1 or p <> m![1] then
PLAIN_MAT8BIT(m);
Unbind(m[p]);
else
m![1] := p-1;
Unbind(m![p+1]);
fi;
end);
#############################################################################
##
#M ViewObj( <mat> )
##
## Up to 25 entries, GF(q) matrices are viewed in full, over that a
## description is printed
##
InstallMethod( ViewObj, "For a compressed MatFFE",
true, [Is8BitMatrixRep and IsSmallList], 0,
function( m )
local r,c;
r := m![1];
c := LEN_VEC8BIT(m![2]);
if r*c > 25 then
Print("< ");
if not IsMutable(m) then
Print("im");
fi;
Print("mutable compressed matrix ",r,"x",c," over GF(",Q_VEC8BIT(m![2]),") >");
else
PrintObj(m);
fi;
end);
#############################################################################
##
#M PrintObj( <mat> )
##
## Same method as for lists in internal rep.
##
InstallMethod( PrintObj, "For a compressed MatFFE",
true, [Is8BitMatrixRep and IsSmallList], 0,
function( mat )
local i,l;
Print("\>\>[ \>\>");
l := mat![1];
if l <> 0 then
PrintObj(mat![2]);
for i in [2..l] do
Print("\<,\< \>\>");
PrintObj(mat![i+1]);
od;
fi;
Print(" \<\<\<\<]");
end);
#############################################################################
##
#M ShallowCopy(<mat>)
##
##
InstallMethod(ShallowCopy, "For a compressed MatFFE",
true, [Is8BitMatrixRep and IsSmallList], 0,
function(m)
local c,i,l;
l := m![1];
c := [l];
for i in [2..l+1] do
c[i] := m![i];
od;
Objectify(TYPE_MAT8BIT(Q_VEC8BIT(m![2]), true),c);
return c;
end );
#############################################################################
##
#M PositionCanonical( <mat> , <vec> )
##
InstallMethod( PositionCanonical,
"for 8bit matrices lists, fall back on `Position'",
true, # the list may be non-homogeneous.
[ IsList and Is8BitMatrixRep, IsObject ], 0,
function( list, obj )
return Position( list, obj, 0 );
end );
#############################################################################
##
#M <mat1> + <mat2>
##
InstallMethod( \+, "For two 8 bit matrices in same characteristic",
IsIdenticalObj, [IsMatrix and Is8BitMatrixRep,
IsMatrix and Is8BitMatrixRep], 0,
SUM_MAT8BIT_MAT8BIT
);
#############################################################################
##
#M <mat1> - <mat2>
##
InstallMethod( \-, "For two 8 bit matrices in same characteristic",
IsIdenticalObj, [IsMatrix and Is8BitMatrixRep,
IsMatrix and Is8BitMatrixRep], 0,
DIFF_MAT8BIT_MAT8BIT
);
#############################################################################
##
#M `PlainListCopyOp( <mat> )
##
## Make the matrix into a plain list
##
InstallMethod( PlainListCopyOp, "For an 8 bit vector",
true, [IsSmallList and Is8BitMatrixRep], 0,
function (m)
PLAIN_MAT8BIT(m);
return m;
end);
#############################################################################
##
#M ELM0_LIST( <mat> )
##
## alternative element access interface, returns fail when unbound
##
InstallMethod(ELM0_LIST, "For an 8 bit matrix",
true, [IsList and Is8BitMatrixRep, IsPosInt], 0,
function(m,p)
if p > m![1] then
return fail;
fi;
return m![p+1];
end);
#############################################################################
##
#M ConvertToMatrixRepNC( <list>, <fieldsize )
#M ConvertToMatrixRep( <list>[, <fieldsize> | <field>])
##
InstallGlobalFunction(ConvertToMatrixRep,
function( arg )
local m,qs, v, q, givenq, q1, LeastCommonPower, lens;
LeastCommonPower := function(qs)
local p, d, x, i;
if Length(qs) = 0 then
return fail;
fi;
x := Z(qs[1]);
p := Characteristic(x);
d := DegreeFFE(x);
for i in [2..Length(qs)] do
x := Z(qs[i]);
if p <> Characteristic(x) then
return fail;
fi;
d := Lcm(d, DegreeFFE(x));
od;
return p^d;
end;
qs := [];
m := arg[1];
if Length(arg) > 1 then
q1 := arg[2];
if not IsInt(q1) then
if IsField(q1) then
if Characteristic(q1) = 0 then
return fail;
fi;
q1 := Size(q1);
else
return; # not a field -- exit
fi;
fi;
givenq := true;
Add(qs,q1);
else
givenq := false;
fi;
if Length(m) = 0 then
if givenq then
return q1;
else
return fail;
fi;
fi;
#
# If we are already compressed, then our rows are certainly
# locked, so we will not be able to change representation
#
if Is8BitMatrixRep(m) then
q := Q_VEC8BIT(m![2]);
if not givenq or q = q1 then
return q;
else
return fail;
fi;
fi;
if IsGF2MatrixRep(m) then
if not givenq or q1 = 2 then
return 2;
else
return fail;
fi;
fi;
#
# Pass 1, get all rows compressed, and find out what fields we have
#
# mut := false;
lens := [];
for v in m do
if IsGF2VectorRep(v) then
AddSet(qs,2);
elif Is8BitVectorRep(v) then
AddSet(qs,Q_VEC8BIT(v));
elif givenq then
AddSet(qs,ConvertToVectorRepNC(v,q1));
else
AddSet(qs,ConvertToVectorRepNC(v));
fi;
AddSet(lens, Length(v));
# mut := mut or IsMutable(v);
od;
#
# We may know that there is no common field
# or that we can't win for some other reason
#
if
# mut or
Length(lens) > 1 or lens[1] = 0 or
fail in qs or true in qs then
return fail;
fi;
#
# or it may be easy
#
if Length(qs) = 1 then
q := qs[1];
else
#
# Now work out the common field
#
q := LeastCommonPower(qs);
if q = fail then
return fail;
fi;
if givenq and q1 <> q then
Error("ConvertTo8BitMatrixRep( <mat>, <q> ): not all entries of <mat> written over <q>");
fi;
#
# Now try and rewrite all the rows over this field
# this may fail if some rows are locked over a smaller field
#
for v in m do
if q <> ConvertToVectorRepNC(v,q) then
return fail;
fi;
od;
fi;
if q <= 256 then
ConvertToMatrixRepNC(m,q);
fi;
return q;
end);
InstallGlobalFunction(ConvertToMatrixRepNC, function(arg)
local v, m, q, result;
if Length(arg) = 1 then
return ConvertToMatrixRep(arg[1]);
else
m := arg[1];
q := arg[2];
fi;
if Length(m)=0 then
return ConvertToMatrixRep(m,q);
fi;
if not IsInt(q) then
q := Size(q);
fi;
if Is8BitMatrixRep(m) then
return Q_VEC8BIT(m[1]);
fi;
if IsGF2MatrixRep(m) then
return 2;
fi;
for v in m do
result := ConvertToVectorRepNC(v,q);
if result <> q then
Error("ConvertToMatrixRep: Failed to convert a row");
fi;
od;
if q = 2 then
CONV_GF2MAT(m);
elif q <= 256 then
CONV_MAT8BIT(m, q);
fi;
return q;
end);
#############################################################################
##
#M <vec> * <mat>
##
InstallMethod( \*, "8 bit vector * 8 bit matrix", IsElmsColls,
[ Is8BitVectorRep and IsRowVector and IsRingElementList,
Is8BitMatrixRep and IsMatrix
], 0,
PROD_VEC8BIT_MAT8BIT);
#############################################################################
##
#M <mat> * <vec>
##
InstallMethod( \*, "8 bit matrix * 8 bit vector", IsCollsElms,
[ Is8BitMatrixRep and IsMatrix,
Is8BitVectorRep and IsRowVector and IsRingElementList
], 0,
PROD_MAT8BIT_VEC8BIT);
#############################################################################
##
#M <mat> * <mat>
##
InstallMethod( \*, "8 bit matrix * 8 bit matrix", IsIdenticalObj,
[ Is8BitMatrixRep and IsMatrix,
Is8BitMatrixRep and IsMatrix
], 0,
PROD_MAT8BIT_MAT8BIT);
#############################################################################
##
#M <scal> * <mat>
##
InstallMethod( \*, "scalar * 8 bit matrix", IsElmsCollColls,
[ IsFFE,
Is8BitMatrixRep and IsMatrix
], 0,
function(s,m)
local q,i,l,r,pv;
q := Q_VEC8BIT(m![2]);
if not s in GF(q) then
TryNextMethod();
fi;
l := m![1];
r := [l];
for i in [2..l+1] do
pv := s*m![i];
SetFilterObj(pv, IsLockedRepresentationVector);
r[i] := pv;
od;
Objectify(TYPE_MAT8BIT(q, IsMutable(m)),r);
return r;
end);
#############################################################################
##
#M <mat> * <scal>
##
InstallMethod( \*, "scalar * 8 bit matrix", IsCollCollsElms,
[
Is8BitMatrixRep and IsMatrix,
IsFFE
], 0,
function(m,s)
local q,i,l,r,pv;
q := Q_VEC8BIT(m![2]);
if not s in GF(q) then
TryNextMethod();
fi;
l := m![1];
r := [l];
for i in [2..l+1] do
pv := m![i]*s;
SetFilterObj(pv, IsLockedRepresentationVector);
r[i] := pv;
od;
Objectify(TYPE_MAT8BIT(q, IsMutable(m)),r);
return r;
end);
#############################################################################
##
#M Additive Inverse
##
InstallMethod(AdditiveInverseMutable, "8 bit matrix", true,
[Is8BitMatrixRep and IsMatrix and IsAdditiveElementWithZero
and IsSmallList ],
0,
function(mat)
local neg,i,negv;
neg := [mat![1]];
for i in [2..mat![1]+1] do
negv := AdditiveInverseMutable(mat![i]);
SetFilterObj(negv, IsLockedRepresentationVector);
neg[i] := negv;
od;
Objectify(TYPE_MAT8BIT(Q_VEC8BIT(mat![2]),true), neg);
return neg;
end);
InstallMethod(AdditiveInverseImmutable, "8 bit matrix", true,
[Is8BitMatrixRep and IsMatrix and IsAdditiveElementWithZero
and IsSmallList ],
0,
function(mat)
local neg,i,negv;
neg := [mat![1]];
for i in [2..mat![1]+1] do
negv := AdditiveInverseImmutable(mat![i]);
SetFilterObj(negv, IsLockedRepresentationVector);
neg[i] := negv;
od;
Objectify(TYPE_MAT8BIT(Q_VEC8BIT(mat![2]),false), neg);
return neg;
end);
InstallMethod(AdditiveInverseSameMutability, "8 bit matrix", true,
[Is8BitMatrixRep and IsMatrix and IsAdditiveElementWithZero
and IsSmallList ],
0,
function(mat)
local neg,i,negv;
neg := [mat![1]];
for i in [2..mat![1]+1] do
negv := AdditiveInverseSameMutability(mat![i]);
SetFilterObj(negv, IsLockedRepresentationVector);
neg[i] := negv;
od;
if IsMutable(mat) then
Objectify(TYPE_MAT8BIT(Q_VEC8BIT(mat![2]),true), neg);
else
Objectify(TYPE_MAT8BIT(Q_VEC8BIT(mat![2]),false), neg);
fi;
return neg;
end);
#############################################################################
##
#M Zero
InstallMethod( ZeroMutable, "8 bit matrix", true,
[Is8BitMatrixRep and IsMatrix and IsAdditiveElementWithZero
and IsSmallList ],
0,
function(mat)
local z, i,zv;
z := [mat![1]];
for i in [2..mat![1]+1] do
zv := ZERO_VEC8BIT(mat![i]);
SetFilterObj(zv, IsLockedRepresentationVector);
z[i] := zv;
od;
Objectify(TYPE_MAT8BIT(Q_VEC8BIT(mat![2]),true), z);
return z;
end);
InstallMethod( ZeroImmutable, "8 bit matrix", true,
[Is8BitMatrixRep and IsMatrix and IsAdditiveElementWithZero
and IsSmallList ],
0,
function(mat)
local z, i,zv;
z := [mat![1]];
zv := ZERO_VEC8BIT(mat![2]);
SetFilterObj(zv, IsLockedRepresentationVector);
MakeImmutable(zv);
for i in [2..mat![1]+1] do
z[i] := zv;
od;
Objectify(TYPE_MAT8BIT(Q_VEC8BIT(mat![2]),false), z);
return z;
end);
InstallMethod( ZeroSameMutability, "8 bit matrix", true,
[Is8BitMatrixRep and IsMatrix and IsAdditiveElementWithZero
and IsSmallList ],
0,
function(mat)
local z, i,zv;
z := [mat![1]];
if not IsMutable(mat![2]) then
zv := ZERO_VEC8BIT(mat![2]);
SetFilterObj(zv, IsLockedRepresentationVector);
MakeImmutable(zv);
for i in [2..mat![1]+1] do
z[i] := zv;
od;
else
for i in [2..mat![1]+1] do
zv := ZERO_VEC8BIT(mat![i]);
SetFilterObj(zv,IsLockedRepresentationVector);
z[i] := zv;
od;
fi;
if IsMutable(mat) then
Objectify(TYPE_MAT8BIT(Q_VEC8BIT(mat![2]),true), z);
else
Objectify(TYPE_MAT8BIT(Q_VEC8BIT(mat![2]),false), z);
fi;
return z;
end);
#############################################################################
##
#M InverseOp(<mat>)
##
InstallMethod( InverseOp, "8 bit matrix", true,
[Is8BitMatrixRep and IsMatrix and IsMultiplicativeElementWithInverse
# the following are banalities, but they are required to get the
# ranking right
and IsOrdinaryMatrix and IsSmallList and
IsCommutativeElementCollColl and IsRingElementTable and IsFFECollColl
],
0,
INV_MAT8BIT_MUTABLE);
#############################################################################
##
#M <mat>^-1
##
InstallMethod( InverseSameMutability, "8 bit matrix", true,
[Is8BitMatrixRep and IsMatrix and IsMultiplicativeElementWithInverse
# the following are banalities, but they are required to get the
# ranking right
and IsOrdinaryMatrix and IsSmallList and
IsCommutativeElementCollColl and IsRingElementTable and IsFFECollColl
],
0,
INV_MAT8BIT_SAME_MUTABILITY);
#############################################################################
##
#M <mat>^0
##
InstallMethod( OneSameMutability, "8 bit matrix", true,
[Is8BitMatrixRep and IsMatrix and IsMultiplicativeElementWithInverse
# the following are banalities, but they are required to get the
# ranking right
and IsOrdinaryMatrix and IsSmallList and
IsCommutativeElementCollColl and IsRingElementTable and IsFFECollColl
],
0,
function(m)
local v, o, one, i, w;
v := ZeroOp(m![2]);
o := [];
one := Z(Q_VEC8BIT(v))^0;
for i in [1..m![1]] do
w := ShallowCopy(v);
w[i] := one;
Add(o,w);
od;
if not IsMutable(m![2]) then
for i in [1..m![1]] do
MakeImmutable(o[i]);
od;
fi;
if not IsMutable(m) then
MakeImmutable(o);
fi;
ConvertToMatrixRepNC(o, Q_VEC8BIT(v));
return o;
end);
InstallMethod( OneMutable, "8 bit matrix", true,
[Is8BitMatrixRep and IsMatrix and IsMultiplicativeElementWithInverse
# the following are banalities, but they are required to get the
# ranking right
and IsOrdinaryMatrix and IsSmallList and
IsCommutativeElementCollColl and IsRingElementTable and IsFFECollColl
],
0,
function(m)
local v, o, one, i, w;
v := ZeroOp(m![2]);
o := [];
one := Z(Q_VEC8BIT(v))^0;
for i in [1..m![1]] do
w := ShallowCopy(v);
w[i] := one;
Add(o,w);
od;
ConvertToMatrixRepNC(o, Q_VEC8BIT(v));
return o;
end);
#############################################################################
##
#M One(<mat>) -- always immutable
##
InstallMethod( One, "8 bit matrix", true,
[Is8BitMatrixRep and IsMatrix and IsMultiplicativeElementWithInverse
# the following are banalities, but they are required to get the
# ranking right
and IsOrdinaryMatrix and IsSmallList and
IsCommutativeElementCollColl and IsRingElementTable and IsFFECollColl
],
0,
function(m)
local o;
o := OneOp(m);
MakeImmutable(o);
ConvertToMatrixRepNC(o, Q_VEC8BIT(m![2]));
return o;
end );
#############################################################################
##
#F RepresentationsOfMatrix( <mat/vec> )
##
##
InstallGlobalFunction( RepresentationsOfMatrix,
function( m )
if not IsRowVector(m) then
Print("Argument is not a matrix or vector\n");
fi;
if IsMutable(m) then
Print("Mutable ");
else
Print("Immutable ");
fi;
if not IsMatrix(m) then
if IsMutable(m) then
Print("Mutable ");
else
Print("Immutable ");
fi;
Print("Vector: ");
if IsGF2VectorRep(m) then
Print(" compressed over GF(2) ");
elif Is8BitVectorRep(m) then
Print(" compressed over GF(",Q_VEC8BIT(m),") ");
elif IsPlistRep(m) then
Print(" plain list, tnum: ",TNUM_OBJ(m)," ");
if TNUM_OBJ_INT(m) in [54,55] then
Print("known to be vecffe over GF(",CHAR_FFE_DEFAULT(m[1]),"^",
DEGREE_FFE_DEFAULT(m[1]),") ");
elif TNUM_OBJ_INT(m) in [48..53] then
Print("known to be vector of cyclotomics ");
else
Print("TNUM: ",TNUM_OBJ(m), " ");
fi;
else
Print(" not a compressed or plain list, representations: ",
RepresentationsOfObject(m)," ");
fi;
if IsLockedRepresentationVector(m) then
Print("locked\n");
else
Print("unlocked\n");
fi;
return;
fi;
if IsMutable(m) then
if ForAll(m, IsMutable) then
Print(" with mutable rows ");
elif not ForAny(m, IsMutable) then
Print(" with immutable rows ");
else
Print(" with mixed mutability rows!! ");
fi;
fi;
if IsGF2MatrixRep(m) then
Print(" Compressed GF2 representation ");
elif Is8BitMatrixRep(m) then
Print(" Compressed 8 bit rep over GF(",Q_VEC8BIT(m[1]),
"), ");
elif IsPlistRep(m) then
Print(" plain list of vectors, tnum: ",TNUM_OBJ(m)," ");
if ForAll(m, IsGF2VectorRep) then
Print(" all rows GF2 compressed ");
elif ForAll(m, Is8BitVectorRep) then
Print(" all rows 8 bit compressed, fields ",
Set(m,Q_VEC8BIT), " ");
elif ForAll(m, IsPlistRep) then
Print(" all rows plain lists, tnums: ", Set(m,
TNUM_OBJ)," ");
else
Print(" mixed row representations or unusual row types ");
fi;
else
Print(" unusual matrix representation: ",
RepresentationsOfObject(m)," ");
fi;
if ForAll(m, IsLockedRepresentationVector) then
Print(" all rows locked\n");
elif not ForAny(m, IsLockedRepresentationVector) then
Print(" no rows locked\n");
else
Print(" mixed lock status\n");
fi;
return;
end
);
#############################################################################
##
#M ASS_LIST( <empty list>, <vec>)
##
#InstallMethod(ASS_LIST, "empty list and 8 bit vector", true,
# [IsEmpty and IsMutable and IsList and IsPlistRep, IsPosInt, Is8BitVectorRep],
# 0,
# function(l,p, v)
# if p <> 1 then
# PLAIN_MAT8BIT(l);
# l[p] := v;
# else
# l[1] := 1;
# l[2] := v;
# SetFilterObj(v,IsLockedRepresentationVector);
# Objectify(TYPE_MAT8BIT(Q_VEC8BIT(v), true), l);
# fi;
#end);
#############################################################################
##
#M DefaultFieldOfMatrix( <ffe-mat> )
##
InstallMethod( DefaultFieldOfMatrix,
"method for a compressed matrix over GF(q)", true,
[ IsMatrix and IsFFECollColl and Is8BitMatrixRep ], 0,
function( mat )
return GF(Q_VEC8BIT(mat![2]));
end );
#############################################################################
##
#M <mat> < <mat>
##
InstallMethod( \<, "for two compressed 8 bit matrices", IsIdenticalObj,
[ IsMatrix and IsFFECollColl and Is8BitMatrixRep, IsMatrix and IsFFECollColl and Is8BitMatrixRep ], 0,
LT_MAT8BIT_MAT8BIT);
#############################################################################
##
#M <mat> = <mat>
##
InstallMethod( \=, "for two compressed 8 bit matrices", IsIdenticalObj,
[ IsMatrix and IsFFECollColl and Is8BitMatrixRep, IsMatrix and IsFFECollColl and Is8BitMatrixRep ], 0,
EQ_MAT8BIT_MAT8BIT);
#############################################################################
##
#M TransposedMat( <mat> )
#M MutableTransposedMat( <mat> )
##
InstallOtherMethod( TransposedMat, "for a compressed 8 bit matrix",
true, [IsMatrix and IsFFECollColl and
Is8BitMatrixRep ], 0,
TRANSPOSED_MAT8BIT);
InstallOtherMethod( MutableTransposedMat, "for a compressed 8 bit matrix",
true, [IsMatrix and IsFFECollColl and
Is8BitMatrixRep ], 0,
TRANSPOSED_MAT8BIT);
#############################################################################
##
#M SemiEchelonMat
##
#
# If mat is in the special representation, then we do
# have to copy it, but we know that the rows of the result will
# already be in special representation, so don't convert
#
InstallMethod(SemiEchelonMat, "shortcut method for 8bit matrices",
true,
[ IsMatrix and Is8BitMatrixRep and IsFFECollColl ],
0,
function( mat )
local copymat, res;
copymat := List(mat, ShallowCopy);
res := SemiEchelonMatDestructive( copymat );
ConvertToMatrixRepNC(res.vectors,Q_VEC8BIT(mat![2]));
return res;
end);
InstallMethod(SemiEchelonMatTransformation, "shortcut method for 8bit matrices",
true,
[ IsMatrix and Is8BitMatrixRep and IsFFECollColl ],
0,
function( mat )
local copymat,res,q;
copymat := List(mat, ShallowCopy);
res := SemiEchelonMatTransformationDestructive( copymat );
q := Q_VEC8BIT(mat![2]);
ConvertToMatrixRepNC(res.vectors,q);
ConvertToMatrixRepNC(res.coeffs,q);
ConvertToMatrixRepNC(res.relations,q);
return res;
end);
InstallMethod(SemiEchelonMatDestructive, "kernel method for plain lists of 8bit vectors",
true,
[ IsPlistRep and IsMatrix and IsMutable and IsFFECollColl ],
0,
SEMIECHELON_LIST_VEC8BITS
);
InstallMethod(SemiEchelonMatTransformationDestructive,
" kernel method for plain lists of 8 bit vectors",
true,
[ IsMatrix and IsFFECollColl and IsPlistRep and IsMutable],
0,
SEMIECHELON_LIST_VEC8BITS_TRANSFORMATIONS);
#############################################################################
##
#M TriangulizeMat( <plain list of GF2 vectors> )
##
InstallMethod(TriangulizeMat,
"kernel method for plain list of GF2 vectors",
true,
[IsMatrix and IsPlistRep and IsFFECollColl and IsMutable],
0,
TRIANGULIZE_LIST_VEC8BITS);
InstallMethod(TriangulizeMat,
"method for compressed matrices",
true,
[IsMutable and IsMatrix and Is8BitMatrixRep and IsFFECollColl],
0,
function(m)
local q,i,imms;
imms := [];
q := Q_VEC8BIT(m![2]);
PLAIN_MAT8BIT(m);
for i in [1..Length(m)] do
if not IsMutable(m[i]) then
m[i] := ShallowCopy(m[i]);
imms[i] := true;
else
imms[i] := false;
fi;
od;
TRIANGULIZE_LIST_VEC8BITS(m);
for i in [1..Length(m)] do
if imms[i] then
MakeImmutable(m[i]);
fi;
od;
CONV_MAT8BIT(m,q);
end);
#############################################################################
##
#M DeterminantMatDestructive ( <plain list of GF2 vectors> )
##
InstallMethod(DeterminantMatDestructive,
"kernel method for plain list of GF2 vectors",
true,
[IsMatrix and IsPlistRep and IsFFECollColl and IsMutable],
0,
DETERMINANT_LIST_VEC8BITS);
#############################################################################
##
#M RankMatDestructive ( <plain list of GF2 vectors> )
##
InstallMethod(RankMatDestructive,
"kernel method for plain list of GF2 vectors",
true,
[IsMatrix and IsPlistRep and IsFFECollColl and IsMutable],
0,
RANK_LIST_VEC8BITS);
InstallMethod(NestingDepthM, [Is8BitMatrixRep], m->2);
InstallMethod(NestingDepthA, [Is8BitMatrixRep], m->2);
InstallMethod(NestingDepthM, [Is8BitVectorRep], m->1);
InstallMethod(NestingDepthA, [Is8BitVectorRep], m->1);
InstallMethod(PostMakeImmutable, [Is8BitMatrixRep],
function(m)
local i;
for i in [2..m![1]] do
MakeImmutable(m![i]);
od;
end);
#############################################################################
##
#E
##
|