This file is indexed.

/usr/share/gap/lib/matint.gd is in gap-libs 4r6p5-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
#############################################################################
##
#W  matint.gd                GAP library                        A. Storjohann
#W                                                              R. Wainwright
#W                                                                  A. Hulpke
##
##
#Y  Copyright (C) 2003 The GAP Group
##
##  This file contains declarations for the operations of normal forms for
##  integral matrices.
##

#############################################################################
##
#V  InfoMatInt
##
##  <ManSection>
##  <InfoClass Name="InfoMatInt"/>
##
##  <Description>
##  The info class for Integer matrix operations is <C>InfoMatInt</C>.
##  </Description>
##  </ManSection>
##
DeclareInfoClass( "InfoMatInt" );

#############################################################################
##
#O  TriangulizedIntegerMat(<mat>)
##
##  <#GAPDoc Label="TriangulizedIntegerMat">
##  <ManSection>
##  <Oper Name="TriangulizedIntegerMat" Arg='mat'/>
##
##  <Description>
##  Computes an upper triangular form of a matrix with integer entries.
##  It returns a immutable matrix in upper triangular form.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("TriangulizedIntegerMat",[IsMatrix]);

#############################################################################
##
#O  TriangulizeIntegerMat(<mat>)
##
##  <#GAPDoc Label="TriangulizeIntegerMat">
##  <ManSection>
##  <Oper Name="TriangulizeIntegerMat" Arg='mat'/>
##
##  <Description>
##  Changes <A>mat</A> to be in upper triangular form.
##  (The result is the same as that of <Ref Func="TriangulizedIntegerMat"/>,
##  but <A>mat</A> will be modified, thus using less memory.)
##  If <A>mat</A> is immutable an error will be triggered.
##  <Example><![CDATA[
##  gap> m:=[[1,15,28],[4,5,6],[7,8,9]];;
##  gap> TriangulizedIntegerMat(m);
##  [ [ 1, 15, 28 ], [ 0, 1, 1 ], [ 0, 0, 3 ] ]
##  gap> n:=TriangulizedIntegerMatTransform(m);
##  rec( normal := [ [ 1, 15, 28 ], [ 0, 1, 1 ], [ 0, 0, 3 ] ], 
##    rank := 3, rowC := [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ], 
##    rowQ := [ [ 1, 0, 0 ], [ 1, -30, 17 ], [ -3, 97, -55 ] ], 
##    rowtrans := [ [ 1, 0, 0 ], [ 1, -30, 17 ], [ -3, 97, -55 ] ], 
##    signdet := 1 )
##  gap> n.rowtrans*m=n.normal;
##  true
##  gap> TriangulizeIntegerMat(m); m;
##  [ [ 1, 15, 28 ], [ 0, 1, 1 ], [ 0, 0, 3 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("TriangulizeIntegerMat",[IsMatrix]);

#############################################################################
##
#O  TriangulizedIntegerMatTransform(<mat>)
##
##  <#GAPDoc Label="TriangulizedIntegerMatTransform">
##  <ManSection>
##  <Oper Name="TriangulizedIntegerMatTransform" Arg='mat'/>
##
##  <Description>
##  Computes an upper triangular form of a matrix with integer entries.
##  It returns a record with a component <C>normal</C> (an immutable matrix
##  in upper triangular form) and a component <C>rowtrans</C> that gives the
##  transformations done to the original matrix to bring it into upper
##  triangular form.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("TriangulizedIntegerMatTransform",[IsMatrix]);
DeclareSynonym("TriangulizedIntegerMatTransforms",
  TriangulizedIntegerMatTransform);

#############################################################################
##
#O  HermiteNormalFormIntegerMat(<mat>)
##
##  <#GAPDoc Label="HermiteNormalFormIntegerMat">
##  <ManSection>
##  <Oper Name="HermiteNormalFormIntegerMat" Arg='mat'/>
##
##  <Description>
##  This operation computes the Hermite normal form of a matrix <A>mat</A>
##  with integer entries. It returns a immutable matrix in HNF.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("HermiteNormalFormIntegerMat",[IsMatrix]);

#############################################################################
##
#O  HermiteNormalFormIntegerMatTransform(<mat>)
##
##  <#GAPDoc Label="HermiteNormalFormIntegerMatTransform">
##  <ManSection>
##  <Oper Name="HermiteNormalFormIntegerMatTransform" Arg='mat'/>
##
##  <Description>
##  This operation computes the Hermite normal form of a matrix <A>mat</A>
##  with integer entries.
##  It returns a record with components <C>normal</C> (a matrix <M>H</M>) and
##  <C>rowtrans</C> (a matrix <M>Q</M>) such that <M>Q A = H</M>.
##  <Example><![CDATA[
##  gap> m:=[[1,15,28],[4,5,6],[7,8,9]];;
##  gap> HermiteNormalFormIntegerMat(m);          
##  [ [ 1, 0, 1 ], [ 0, 1, 1 ], [ 0, 0, 3 ] ]
##  gap> n:=HermiteNormalFormIntegerMatTransform(m);
##  rec( normal := [ [ 1, 0, 1 ], [ 0, 1, 1 ], [ 0, 0, 3 ] ], rank := 3, 
##    rowC := [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ], 
##    rowQ := [ [ -2, 62, -35 ], [ 1, -30, 17 ], [ -3, 97, -55 ] ], 
##    rowtrans := [ [ -2, 62, -35 ], [ 1, -30, 17 ], [ -3, 97, -55 ] ], 
##    signdet := 1 )
##  gap> n.rowtrans*m=n.normal;
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("HermiteNormalFormIntegerMatTransform",[IsMatrix]);
DeclareSynonym("HermiteNormalFormIntegerMatTransforms",
  HermiteNormalFormIntegerMatTransform);


#############################################################################
##
#O  SmithNormalFormIntegerMat(<mat>)
##
##  <#GAPDoc Label="SmithNormalFormIntegerMat">
##  <ManSection>
##  <Oper Name="SmithNormalFormIntegerMat" Arg='mat'/>
##
##  <Description>
##  This operation computes the Smith normal form of a matrix <A>mat</A> with
##  integer entries. It returns a new immutable matrix in the Smith normal
##  form.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("SmithNormalFormIntegerMat",[IsMatrix]);

#############################################################################
##
#O  SmithNormalFormIntegerMatTransforms(<mat>)
##
##  <#GAPDoc Label="SmithNormalFormIntegerMatTransforms">
##  <ManSection>
##  <Oper Name="SmithNormalFormIntegerMatTransforms" Arg='mat'/>
##
##  <Description>
##  This operation computes the Smith normal form of a matrix <A>mat</A> with
##  integer entries.
##  It returns a record with components <C>normal</C> (a matrix <M>S</M>),
##  <C>rowtrans</C> (a matrix <M>P</M>),
##  and <C>coltrans</C> (a matrix <M>Q</M>) such that <M>P A Q = S</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("SmithNormalFormIntegerMatTransforms",[IsMatrix]);


#############################################################################
##
#O  DiagonalizeIntMat(<mat>)
##
##  <#GAPDoc Label="DiagonalizeIntMat">
##  <ManSection>
##  <Oper Name="DiagonalizeIntMat" Arg='mat'/>
##
##  <Description>
##  This function changes <A>mat</A> to its SNF.
##  (The result is the same as
##  that of <Ref Func="SmithNormalFormIntegerMat"/>,
##  but <A>mat</A> will be modified, thus using less memory.)
##  If <A>mat</A> is immutable an error will be triggered.
##  <Example><![CDATA[
##  gap> m:=[[1,15,28],[4,5,6],[7,8,9]];;
##  gap> SmithNormalFormIntegerMat(m);          
##  [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 3 ] ]
##  gap> n:=SmithNormalFormIntegerMatTransforms(m);  
##  rec( colC := [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ], 
##    colQ := [ [ 1, 0, -1 ], [ 0, 1, -1 ], [ 0, 0, 1 ] ], 
##    coltrans := [ [ 1, 0, -1 ], [ 0, 1, -1 ], [ 0, 0, 1 ] ], 
##    normal := [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 3 ] ], rank := 3, 
##    rowC := [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ], 
##    rowQ := [ [ -2, 62, -35 ], [ 1, -30, 17 ], [ -3, 97, -55 ] ], 
##    rowtrans := [ [ -2, 62, -35 ], [ 1, -30, 17 ], [ -3, 97, -55 ] ], 
##    signdet := 1 )
##  gap> n.rowtrans*m*n.coltrans=n.normal;
##  true
##  gap> DiagonalizeIntMat(m);m;
##  [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 3 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "DiagonalizeIntMat" );

#############################################################################
##
#O  NormalFormIntMat(<mat>, <options>)
##
##  <#GAPDoc Label="NormalFormIntMat">
##  <ManSection>
##  <Oper Name="NormalFormIntMat" Arg='mat, options'/>
##
##  <Description>
##  This general operation for computation of various Normal Forms
##  is probably the most efficient.  
##  <P/>
##  Options bit values:
##  <List>
##  <Mark>0/1</Mark>
##  <Item>
##   Triangular Form / Smith Normal Form.
##  </Item>
##  <Mark>2</Mark>
##  <Item>
##     Reduce off diagonal entries.
##  </Item>
##  <Mark>4</Mark>
##  <Item>
##     Row Transformations.
##  </Item>
##  <Mark>8</Mark>
##  <Item>
##     Col Transformations.
##  </Item>
##  <Mark>16</Mark>
##  <Item>
##     Destructive (the original matrix may be destroyed)
##  </Item>
##  </List>
##  <P/>
##  Compute a Triangular, Hermite or Smith form of the <M>n \times m</M> 
##  integer input matrix <M>A</M>.  Optionally, compute <M>n \times n</M> and 
##  <M>m \times m</M> unimodular transforming matrices <M>Q, P</M>
##  which satisfy  <M>Q A = H</M> or <M>Q A P = S</M>.
##  <!-- %The routines used are based on work by Arne Storjohann -->
##  <!-- %and were implemented in &GAP;&nbsp;4 by A.&nbsp;Storjohann and R.&nbsp;Wainwright. -->
##  <P/>
##  Note option is a value ranging from 0 to 15 but not all options make sense 
##  (e.g., reducing off diagonal entries with SNF option selected already).  
##  If an option makes no sense it is ignored.
##  <P/>
##  Returns a record with component <C>normal</C> containing the
##  computed normal form and optional components <C>rowtrans</C> 
##  and/or <C>coltrans</C> which hold the respective transformation matrix.
##  Also in the record are components holding the sign of the determinant, 
##  <C>signdet</C>, and the rank of the matrix, <C>rank</C>.
##  <Example><![CDATA[
##  gap> m:=[[1,15,28],[4,5,6],[7,8,9]];;
##  gap> NormalFormIntMat(m,0);  # Triangular, no transforms
##  rec( normal := [ [ 1, 15, 28 ], [ 0, 1, 1 ], [ 0, 0, 3 ] ], 
##    rank := 3, signdet := 1 )
##  gap> NormalFormIntMat(m,6);  # Hermite Normal Form with row transforms
##  rec( normal := [ [ 1, 0, 1 ], [ 0, 1, 1 ], [ 0, 0, 3 ] ], rank := 3, 
##    rowC := [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ], 
##    rowQ := [ [ -2, 62, -35 ], [ 1, -30, 17 ], [ -3, 97, -55 ] ], 
##    rowtrans := [ [ -2, 62, -35 ], [ 1, -30, 17 ], [ -3, 97, -55 ] ], 
##    signdet := 1 )
##  gap> NormalFormIntMat(m,13); # Smith Normal Form with both transforms
##  rec( colC := [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ], 
##    colQ := [ [ 1, 0, -1 ], [ 0, 1, -1 ], [ 0, 0, 1 ] ], 
##    coltrans := [ [ 1, 0, -1 ], [ 0, 1, -1 ], [ 0, 0, 1 ] ], 
##    normal := [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 3 ] ], rank := 3, 
##    rowC := [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ], 
##    rowQ := [ [ -2, 62, -35 ], [ 1, -30, 17 ], [ -3, 97, -55 ] ], 
##    rowtrans := [ [ -2, 62, -35 ], [ 1, -30, 17 ], [ -3, 97, -55 ] ], 
##    signdet := 1 )
##  gap> last.rowtrans*m*last.coltrans;
##  [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 3 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("NormalFormIntMat");

#############################################################################
##
#A  BaseIntMat( <mat> )
##
##  <#GAPDoc Label="BaseIntMat">
##  <ManSection>
##  <Attr Name="BaseIntMat" Arg='mat'/>
##
##  <Description>
##  If <A>mat</A> is a matrix with integral entries, this function returns a
##  list of vectors that forms a basis of the integral row space of <A>mat</A>, 
##  i.e. of the set of integral linear combinations of the rows of <A>mat</A>.
##  <Example><![CDATA[
##  gap> mat:=[[1,2,7],[4,5,6],[10,11,19]];;
##  gap> BaseIntMat(mat);                  
##  [ [ 1, 2, 7 ], [ 0, 3, 7 ], [ 0, 0, 15 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "BaseIntMat", 
  IsMatrix and IsCyclotomicCollColl );

#############################################################################
##
#A  BaseIntersectionIntMats( <m>,<n> )
##
##  <#GAPDoc Label="BaseIntersectionIntMats">
##  <ManSection>
##  <Attr Name="BaseIntersectionIntMats" Arg='m,n'/>
##
##  <Description>
##  If <A>m</A> and <A>n</A> are matrices with integral entries,
##  this function returns a list of vectors that forms a basis of the
##  intersection of the integral row spaces of <A>m</A> and <A>n</A>.
##  <Example><![CDATA[
##  gap> nat:=[[5,7,2],[4,2,5],[7,1,4]];;
##  gap> BaseIntMat(nat);
##  [ [ 1, 1, 15 ], [ 0, 2, 55 ], [ 0, 0, 64 ] ]
##  gap> BaseIntersectionIntMats(mat,nat);
##  [ [ 1, 5, 509 ], [ 0, 6, 869 ], [ 0, 0, 960 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "BaseIntersectionIntMats", 
  [IsMatrix and IsCyclotomicCollColl,
   IsMatrix and IsCyclotomicCollColl] );

#############################################################################
##
#A  ComplementIntMat( <full>, <sub> )
##
##  <#GAPDoc Label="ComplementIntMat">
##  <ManSection>
##  <Attr Name="ComplementIntMat" Arg='full, sub'/>
##
##  <Description>
##  Let <A>full</A> be a list of integer vectors generating an integral row
##  module <M>M</M> and <A>sub</A> a list of vectors defining a submodule
##  <M>S</M> of <M>M</M>.
##  This function computes a free basis for <M>M</M> that extends <M>S</M>. 
##  I.e., if the dimension of <M>S</M> is <M>n</M> it
##  determines a basis
##  <M>B = \{ b_1, \ldots, b_m \}</M> for <M>M</M>,
##  as well as <M>n</M> integers <M>x_i</M> such that the <M>n</M> vectors
##  <M>s_i:= x_i \cdot b_i</M> form a basis for <M>S</M>.
##  <P/>
##  It returns a record with the following components:
##  <List>
##  <Mark><C>complement</C></Mark>
##  <Item>
##     the vectors <M>b_{{n+1}}</M> up to <M>b_m</M>
##     (they generate a complement to <M>S</M>).
##  </Item>
##  <Mark><C>sub</C></Mark>
##  <Item>
##     the vectors <M>s_i</M> (a basis for <M>S</M>).
##  </Item>
##  <Mark><C>moduli</C></Mark>
##  <Item>
##     the factors <M>x_i</M>.
##  </Item>
##  </List>
##  <Example><![CDATA[
##  gap> m:=IdentityMat(3);;
##  gap> n:=[[1,2,3],[4,5,6]];;
##  gap> ComplementIntMat(m,n);
##  rec( complement := [ [ 0, 0, 1 ] ], moduli := [ 1, 3 ], 
##    sub := [ [ 1, 2, 3 ], [ 0, 3, 6 ] ] )
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ComplementIntMat", 
  [IsMatrix and IsCyclotomicCollColl,
   IsMatrix and IsCyclotomicCollColl] );

#############################################################################
##
#A  NullspaceIntMat( <mat> )
##
##  <#GAPDoc Label="NullspaceIntMat">
##  <ManSection>
##  <Attr Name="NullspaceIntMat" Arg='mat'/>
##
##  <Description>
##  If <A>mat</A> is a matrix with integral entries, this function returns a
##  list of vectors that forms a basis of the integral nullspace of
##  <A>mat</A>, i.e., of those vectors in the nullspace of <A>mat</A> that
##  have integral entries.
##  <Example><![CDATA[
##  gap> mat:=[[1,2,7],[4,5,6],[7,8,9],[10,11,19],[5,7,12]];;
##  gap> NullspaceMat(mat);   
##  [ [ -7/4, 9/2, -15/4, 1, 0 ], [ -3/4, -3/2, 1/4, 0, 1 ] ]
##  gap> NullspaceIntMat(mat);                              
##  [ [ 1, 18, -9, 2, -6 ], [ 0, 24, -13, 3, -7 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "NullspaceIntMat", 
  IsMatrix and IsCyclotomicCollColl );

#############################################################################
##
#O  SolutionIntMat( <mat>, <vec> )
##
##  <#GAPDoc Label="SolutionIntMat">
##  <ManSection>
##  <Oper Name="SolutionIntMat" Arg='mat, vec'/>
##
##  <Description>
##  If <A>mat</A> is a matrix with integral entries and <A>vec</A> a vector
##  with integral entries, this function returns a vector <M>x</M> with
##  integer entries that is a solution of the equation
##  <M>x</M> <C>* <A>mat</A> = <A>vec</A></C>.
##  It returns <K>fail</K> if no such vector exists.
##  <Example><![CDATA[
##  gap> mat:=[[1,2,7],[4,5,6],[7,8,9],[10,11,19],[5,7,12]];;
##  gap> SolutionMat(mat,[95,115,182]);
##  [ 47/4, -17/2, 67/4, 0, 0 ]
##  gap> SolutionIntMat(mat,[95,115,182]);   
##  [ 2285, -5854, 4888, -1299, 0 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "SolutionIntMat", 
  [IsMatrix and IsCyclotomicCollColl,
    IsList and IsCyclotomicCollection]);

#############################################################################
##
#O  SolutionNullspaceIntMat( <mat>,<vec> )
##
##  <#GAPDoc Label="SolutionNullspaceIntMat">
##  <ManSection>
##  <Oper Name="SolutionNullspaceIntMat" Arg='mat,vec'/>
##
##  <Description>
##  This function returns a list of length two, its first entry being the
##  result of a call to <Ref Func="SolutionIntMat"/> with same arguments,
##  the second the result of <Ref Func="NullspaceIntMat"/> applied to the
##  matrix <A>mat</A>.
##  The calculation is performed faster than if two separate calls would be
##  used.
##  <Example><![CDATA[
##  gap> mat:=[[1,2,7],[4,5,6],[7,8,9],[10,11,19],[5,7,12]];;
##  gap> SolutionNullspaceIntMat(mat,[95,115,182]);
##  [ [ 2285, -5854, 4888, -1299, 0 ], 
##    [ [ 1, 18, -9, 2, -6 ], [ 0, 24, -13, 3, -7 ] ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "SolutionNullspaceIntMat", 
  [IsMatrix and IsCyclotomicCollColl,
    IsList and IsCyclotomicCollection]);

#############################################################################
##
#A  AbelianInvariantsOfList( <list> ) . . . . .  abelian invariants of a list
##
##  <#GAPDoc Label="AbelianInvariantsOfList">
##  <ManSection>
##  <Attr Name="AbelianInvariantsOfList" Arg='list'/>
##
##  <Description>
##  Given a list of nonnegative integers, this routine returns a sorted
##  list containing the prime power factors of the positive entries in the
##  original list, as well as all zeroes of the original list.
##  <Example><![CDATA[
##  gap> AbelianInvariantsOfList([4,6,2,0,12]);
##  [ 0, 2, 2, 3, 3, 4, 4 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "AbelianInvariantsOfList", IsCyclotomicCollection );

#############################################################################
##
#O  DeterminantIntMat(<mat>)
##
##  <#GAPDoc Label="DeterminantIntMat">
##  <ManSection>
##  <Oper Name="DeterminantIntMat" Arg='mat'/>
##
##  <Description>
##  <Index Subkey="integer matrix">determinant</Index>
##  Computes the determinant of an integer matrix using the  
##  same strategy as <Ref Func="NormalFormIntMat"/>.
##  This method is 
##  faster in general for matrices greater than <M>20 \times 20</M> but 
##  quite a lot slower for smaller matrices.  It therefore passes 
##  the work to the more general <Ref Func="DeterminantMat"/>
##  for these smaller matrices.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("DeterminantIntMat");

# ``technical'' routines.

#############################################################################
##
#O  SNFofREF(<mat>,<destroy>)
##
##  <ManSection>
##  <Oper Name="SNFofREF" Arg='mat,destroy'/>
##
##  <Description>
##  Computes the Smith Normal Form of an integer matrix in row echelon 
##  (RE) form.
##  If <A>destroy</A> is set to <K>true</K> <A>mat</A> will be changed in-place.
##  Caveat
##  &ndash;No testing is done to ensure that <A>mat</A> is in RE form.  
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("SNFofREF");


#############################################################################
##
#E