/usr/share/gap/lib/meatauto.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 | #############################################################################
##
#W meatauto.gi GAP Library Michael Smith
#W Alexander Hulpke
##
##
#Y Copyright 1996 -- School of Mathematical Sciences, ANU
#Y Copyright (C) 2004, The GAP Group
##
## This file contains meataxe type routines to compute module homomorphisms
## for modules that are not necessarily irreducible. They are mainly a
## conversion of the module routines in the GAP3 package `autag' by the
## first author.
##
InstallGlobalFunction(TestModulesFitTogether,function(m1,m2);
if m1.field<>m2.field then
Error("different fields");
fi;
if Length(m1.generators)<>Length(m2.generators) then
Error("generators are different lengths");
fi;
end);
# basis for homomorphism space, efficient only for small dimensions
BindGlobal("SmalldimHomomorphismsModules",function(m1,m2)
local f, d1, d2, e, z, g1, g2, r, b, n, a, gp, i, j, k;
f:=m1.field;
d1:=m1.dimension;
d2:=m2.dimension;
e:=[];
z:=ListWithIdenticalEntries(d1*d2,Zero(f));
ConvertToVectorRep(z,f);
for gp in [1..Length(m1.generators)] do
g1:=m1.generators[gp];
g2:=m2.generators[gp];
for i in [1..d1] do
for j in [1..d2] do
# calculate equation for i-th row, j-th column
r:=ShallowCopy(z);
# the entry in g*hom is the i-th row of g with the variables in the
# j-th column
for k in [1..d1] do
b:=(k-1)*d2+j;
r[b]:=r[b]+g1[i][k];
od;
# the entry in hom*g is the variables in the i-th row of hom with the
# j-th column of g
for k in [1..d2] do
b:=(i-1)*d2+k;
r[b]:=r[b]-g2[k][j];
od;
Add(e,r);
od;
od;
od;
n:=NullspaceMat(TransposedMat(e));
b:=[];
for i in n do
# convert back to d1 x d2 matrix
a:=[];
for j in [1..d1] do
Add(a,i{[(j-1)*d2+1..(j-1)*d2+d2]});
od;
a:=ImmutableMatrix(f,a);
Add(b,a);
od;
return b;
end);
# the following code is essentially due to Michael Smith
# These routines are designed to accumulate a system of linear equations
#
# M_1 X = V_1, M_2 X = V_2 ... M_t X = V_t
#
# Where each M_i is an m_i*n matrix, X is the unknown length n vector, and
# each V is an length m_i vector. The equations can be added as each batch
# is calculated. Here is some pseudo-code to demonstrate:
#
# eqns := newEqns (n, field);
# i := 1;
# repeat
# <calculate M_i and V_i>
# addEqns(M_i, V_i)
# increment i;
# until i > t or eqns.failed;
# if not eqns.failed then
# S := solveEqns(eqns);
# fi;
#
# As demonstrated by the example, an early notification of failure is
# available by checking ".failed". All new equations are sifted with respect
# to the current set, and only added if they are independent of the current
# set. If a new equation reduces to the zero row and a nonzero vector
# entry, then there is no solution and this is immediately returned by
# setting eqns.failed to true. The function solveEqns has an already
# triangulised system of equations, so it simply reduces above the pivots
# and returns the solution vector.
BindGlobal("SMTX_AddEqns",function ( eqns, newmat, newvec)
local n, zero, weights, mat, vec, NextPositionProperty, ReduceRow, t,
newweight, newrow, newrhs, i, l, k;
# Add a bunch of equations to the system of equations in <eqns>. Each
# row of <newmat> is the left-hand side of a new equation, and the
# corresponding row of <newvec> the right-hand side. Each equation in
# filtered against the current echelonised system stored in <eqns> and
# then added if it is independent of the system. As soon as a
# left-hand side reduces to 0 with a non-zero right-hand side, the flag
# <eqns.failed> is set.
Info(InfoMtxHom,6,"addEqns: entering" );
n := eqns.dim;
zero := Zero(eqns.field);
weights := eqns.weights;
mat := eqns.mat;
vec := eqns.vec;
NextPositionProperty := function (list, func, start )
local i;
for i in [ start .. Length( list ) ] do
if func( list[ i ] ) then
return i;
fi;
od;
return fail;
end;
# reduce the (lhs,rhs) against the semi-echelonised current matrix,
# and return either: (1) the reduced rhs if the lhs reduces to zero,
# or (2) a list containing the new echelon weight, the new row and
# the new rhs for the system, and the row number that this
# equation should placed.
ReduceRow := function (lhs, rhs)
local lead, i, z;
lead := PositionProperty(lhs, i->i<>zero);
if lead = fail then
return rhs;
fi;
for i in [1..Length(weights)] do
if weights[i] = lead then
z := lhs[lead];
lhs := lhs - z * mat[i]; rhs := rhs - z * vec[i];
lead := NextPositionProperty(lhs, i->i<>zero, lead);
if lead = fail then
return rhs;
fi;
elif weights[i] > lead then
return [lead, lhs, rhs, i];
fi;
od;
return [lead, lhs, rhs, Length(weights)+1];
end;
for k in [1..Length(newmat)] do
t := ReduceRow(newmat[k], newvec[k]);
if IsList(t) then
# new equation
newweight := t[1];
newrow := t[2];
newrhs := t[3];
i := t[4]; # position for new row
# normalise so that leading entry is 1
newrhs := newrhs / newrow[newweight];
newrow := newrow / newrow[newweight]; # NB: in this order
if i = Length(mat)+1 then
# add new equation to end of list
Add(mat, newrow);
Add(vec, newrhs);
Add(weights, newweight);
else
l := Length(mat);
# move down other rows to make space for this new one...
mat{[i+1..l+1]} := mat{[i..l]};
vec{[i+1..l+1]} := vec{[i..l]};
# and then slot it in
mat[i] := newrow;
vec[i] := newrhs;
weights{[i+1..l+1]} := weights{[i..l]};
weights[i] := newweight;
fi;
else
# no new equation, check whether inconsistent due to
# nonzero rhs reduction
if not IsZero(t) then
Info(InfoMtxHom,6,"addEqns: FAIL!" );
eqns.failed := true;
return eqns; # return immediately
fi;
fi;
od;
end);
BindGlobal("SMTX_NewEqns",function (arg)
local X, n, F, V, eqns;
if Length(arg) <2 then
Error("NewEqns(dim, field) or NewEqns(X, V)");
fi;
if IsInt(arg[1]) then
X := false;
n := arg[1];
F := arg[2];
else
X := arg[1];
V := arg[2];
n := Length(X[1]);
F := Field(X[1][1]); # Note: prime field only
fi;
eqns := rec();
eqns.dim := n; # number of variables
eqns.field := F; # field over which the equation hold
eqns.mat := []; # left-hand sides of system
eqns.weights := []; # echelon weights for lhs matrix
eqns.vec := []; # right-hand sides of system
eqns.failed := false; # flag to indicate inconsistent system
eqns.index := []; # index for row ordering
if IsMatrix(X) then
SMTX_AddEqns(eqns, X, V);
fi;
return eqns;
end);
BindGlobal("SMTX_KillAbovePivotsEqns",function (eqns)
# Eliminate entries above pivots. Note that the pivot entries are
# all 1 courtesy of SMTX_AddEqns.
local m, n, zero, i, c, j, factor;
Info(InfoMtxHom,6,"killAbovePivotsEqns: entering" );
m := Length(eqns.mat);
n := eqns.dim;
if m > 0 then
zero := Zero(eqns.field);
for i in [1..m] do
c := eqns.weights[i];
for j in [1..i-1] do
if eqns.mat[j][c] <> zero then
Info(InfoMtxHom,6,"solveEqns: kill mat[",j,",",c,"]");
factor := eqns.mat[j][c];
eqns.mat[j] := eqns.mat[j] - factor*eqns.mat[i];
eqns.vec[j] := eqns.vec[j] - factor*eqns.vec[i];
fi;
od;
od;
fi;
Info(InfoMtxHom,6,"killAbovePivotsEqns: leaving" );
end);
BindGlobal("SMTX_NullspaceEqns",function(e)
# Take the matrix stored in equation record <e> and compute a basis
# for its nullspace, ie x such that mat * x = 0. Note that the
# vector is on the other side of the matrix from GAP's NullspaceMat.
# This means we get to skip the Transposing that occurs at the top
# of that function (a bonus!).
#
# This function is a modified version NullspaceMat in matrix.g
local mat, m, n, zero, one, empty, i, k, nullspace, row,mi;
SMTX_KillAbovePivotsEqns(e);
mat := e.mat;
m := Length(mat);
n := e.dim;
zero := Zero(e.field);
one := One(e.field);
# insert empty rows to bring the leading term of each row on the diagonal
empty := ListWithIdenticalEntries(n,zero);
ConvertToVectorRep(empty,e.field);
i := 1;
while i <= Length(mat) do
if i < n and mat[i][i] = zero then
mi:=Minimum(Length(mat),n-1);
for k in [mi,mi-1..i] do
mat[k+1] := mat[k];
od;
mat[i] := empty;
fi;
i := i+1;
od;
for i in [ Length(mat)+1 .. n ] do
mat[i] := empty;
od;
# The following comment from NullspaceMat:
# 'mat' now looks like [ [1,2,0,2], [0,0,0,0], [0,0,1,3], [0,0,0,0] ],
# and the solutions can be read in those columns with a 0 on the diagonal
# by replacing this 0 by a -1, in this example [2,-1,0,0], [2,0,3,-1].
nullspace := [];
for k in [1..n] do
if mat[k][k] = zero then
row := [];
for i in [1..k-1] do row[i] := -mat[i][k]; od;
row[k] := one;
for i in [k+1..n] do row[i] := zero; od;
Add( nullspace, row );
fi;
od;
return nullspace;
end);
BindGlobal("EchResidueCoeffs",function (base, ech, v,mode)
local n, coeffs, x, zero, z, i;
#
# Take a semi-ech basis <base>, with ech weights <ech>, and a vector
# <v> in the subspace spanned by <base>. Returns:
# if mode>2:
# a record containing the
# residue after removing projection of <v> onto subspace spanned by
# <base>, as well as the coefficients of the linear combination of
# <base> elements used to obtain the projection. Also return the
# projection.
# if mode =1 returns only the coefficients
# if mode=2 returns only the residue
# Note that the pivots of <base> must be set to 1.
n:=Length(base);
if n = 0 then
coeffs:=[];
x:=v;
else
x:=v;
zero:=x[1]*0;
coeffs:=ListWithIdenticalEntries(n, zero);
for i in [1..n] do
z:=x[ech[i]];
if z <> zero then
x:=x - z * base[i];
coeffs[i]:=z;
fi;
od;
fi;
if mode=1 then
return coeffs;
elif mode=2 then
return x;
else
return rec(coeffs:=coeffs,
residue:=x,
projection:=v - x
);
fi;
end);
BindGlobal("SpinSpaceVector",function (V, U, ech, v,zero)
local gens, pos, settled, oldlen, i, j;
# Take <U> a semi-ech basis for a submodule of <V>, with ech-weights
# <ech>, and a vector <v> in <V>. Return a semi-ech basis for the
# submodule generated by <U> and <v>.
U:=ShallowCopy(U);
ech:=ShallowCopy(ech);
gens:=V.generators;
v:=EchResidueCoeffs(U, ech, v,2);
pos:=PositionProperty(v, i->i<>zero);
if pos = fail then
return U;
fi;
Add(U, v/v[pos]); Add(ech, pos);
settled:=Maximum(Length(U),1); # <U> is a submodule
repeat
oldlen:=Length(U);
for i in [settled+1..Length(U)] do
for j in [1..Length(gens)] do
v:=EchResidueCoeffs(U, ech, (U[i] * gens[j]),2);
pos:=PositionProperty(v, i->i<>zero);
if pos <> fail then
Add(U, v/v[pos]); Add(ech, pos);
fi;
od;
od;
settled:=oldlen;
until oldlen = Length(U);
return U;
end);
BindGlobal("SpinHomFindVector",function (r)
local V, nv, W, nw, U, echu, F, matsV, matsW, k, g1, g2, max_stack_len, _t,
newstack, v0, extradim, N, count, look_lim, done, grpalg, i, M, pos, A,
j,zero;
# <r> contains information about modules <V> and <W>, and a submodule
# <U> of <V> with semi-ech information <echu>. The routine selects
# an element of <V> lying outside of <U> that will be used to spin
# up to a new submodule U'.
#
# It returns a list [<v0>, <M>] where <v0> is the element of <V>
# and <M> is a basis for a submodule of <W> which <v0> must map into
# under any hom.
V:=r.V; nv:=V.dimension;
W:=r.W; nw:=W.dimension;
U:=r.U; echu:=r.echu;
F:=V.field;
zero:=Zero(F);
if not IsBound(r.mats) then
matsV:=V.generators;
matsW:=W.generators;
k:=Length(matsV);
r.mats:=List([1..k], i -> [matsV[i], matsW[i]]);
# do preprocessing to make random matrices list in parallel
for i in [1..10] do
g1:=Random([1..k]);
g2:=g1;
while g2 = g1 and Length(r.mats)>1 do
g2:=Random([1..k]);
od;
Add(r.mats,[r.mats[g1][1]*r.mats[g2][1],
r.mats[g1][2]*r.mats[g2][2]]);
k:=k + 1;
od;
r.zero:=[ ImmutableMatrix(F,NullMat(nv,nv,F)),
ImmutableMatrix(F,NullMat(nw,nw,F)) ];
# we build a stack of good grpalg elements to use for choosing
# elements <v0> --- an element <A> in <stack> is of the form:
# A[1] = v0
# A[2] = grpalg element whose nullspace contains v0
# A[3] = Dim(<U,v0>^G)-Dim(U) i.e. increase in dim by adding
# <v0> to <U>
r.stack:=[];
else
k:=Length(r.mats);
fi;
max_stack_len:=10;
# adjust the elements of the stack to account for the larger
# submodule <U> we now have
_t:=Runtime();
newstack:=[];
for A in r.stack do
v0:=A[1];
extradim:=Length(SpinSpaceVector(V, U, echu, v0,zero))
- Length(U);
if extradim > 0 then
Add(newstack, [v0, A[2], extradim]);
fi;
od;
r.stack:=newstack;
Info(InfoMtxHom,2,"stack reduced to length ", Length(r.stack), " (",
Runtime()-_t, ")");
# <N> contains the nullspace in <V> of a group algebra element ---
# initialise it to the empty list for the following repeat loop
N:=[];
count:=0;
look_lim:=5; # give up after this many random grpalg elements
_t:=Runtime();
if Length(r.stack) > 0 then
# if we have something left, don't bother generating any new
# grpalg elements (?)
count:=look_lim + 1;
fi;
done:=false;
while count < look_lim and Length(r.stack) < max_stack_len and not done do
# we look for a while and take the best element found
# We are looking for an element <v0> of a nullspace that lies
# outside of <U>
repeat
# Take a work record <r> containing the information about the two
# modules <V> and <W>, and return a random group algebra element
# record containing its action on each of the modules.
# first take two elements of the list and multiply them
# together
g1:=Random([1..k]);
repeat
g2:=Random([1..k]);
until g2 <> g1 or Length(r.mats)=1;
Add(r.mats,[r.mats[g1][1]*r.mats[g2][1],
r.mats[g1][2]*r.mats[g2][2]]);
k:=k + 1;
# Now take a random linear sum of the existing generators as new
# generator. Record the sum in coefflist
grpalg:=ShallowCopy(r.zero);
for g1 in [1..k] do
g2:=Random(F);
if not IsZero(g2) then
grpalg[1]:=grpalg[1] + g2*r.mats[g1][1];
grpalg[2]:=grpalg[2] + g2*r.mats[g1][2];
fi;
od;
N:=TriangulizedNullspaceMat(grpalg[1]);
count:=count + 1;
until Length(N) > 0 or count >= look_lim;
if Length(N) > 0 then
# now find best element of <N> for adding to <stack>
extradim:=List(N, y ->
Length(SpinSpaceVector(V, U, echu, y,zero))
- Length(U));
i:=1;
for j in [2..Length(extradim)] do
if extradim[j] > extradim[i] then
i:=j;
fi;
od;
if extradim[i] > 0 then
# exit early if we have found an element that gets use all
# of <V> after spinning
done:=extradim[i] = nv - Length(U);
if done then
r.stack:=[[N[i], grpalg, extradim[i]]];
else
Add(r.stack, [N[i], grpalg, extradim[i]]);
fi;
fi;
fi;
od;
Info(InfoMtxHom,2,"stack loop done, stack now length ", Length(r.stack), " (",
Runtime()-_t, ")");
if Length(r.stack) > 0 then
#
# find best element in r.stack and use it
i:=1;
for j in [2..Length(r.stack)] do
if r.stack[j][3] > r.stack[i][3] then
i:=j;
fi;
od;
v0:=r.stack[i][1];
M:=TriangulizedNullspaceMat(r.stack[i][2][2]);
else
# we haven't found a good grpalg element, so just choose
# something outside of <U> and use it
Info(InfoMtxHom,1,"too many random grpalg elements...");
M:=IdentityMat(nw,F);
pos:=Difference([1..nv], echu)[1];
v0:=ListWithIdenticalEntries(nv,zero);
ConvertToVectorRep(v0,F);
v0[pos]:=One(F);
fi;
return [v0, M];
end);
# compute a semi-echelonised basis for a matrix algebra
# If a linearly dependent set of elements is supplied, this
# routine will trim it down to a basis.
BindGlobal("SMTX_EcheloniseMats",function (gens, F)
local n, m, zero, ech, k, i, j, found, l;
if Length(gens) = 0 then
return [ [], [] ];
fi;
# copy the list to avoid destroying the original list
gens:=List(gens,i->List(i,ShallowCopy));
n:=Length(gens[1]);
m:=Length(gens[1][1]);
zero:=Zero(F);
ech:=[];
k:=1;
while k <= Length(gens) do
i:=1; j:=1;
found:=false;
while not found and i <= n do
if (gens[k][i][j] <> zero) then
found:=true;
else
j:=j + 1;
if (j > m) then
j:=1; i:=i + 1;
fi;
fi;
od;
if found then
# Now basis element k will have echelonisation index [i,j]
Add(ech, [i,j]);
# First normalise the [i,j] position to 1
gens[k]:=gens[k] / gens[k][i][j];
# Now zero position [i,j] in all further generators
for l in [k+1..Length(gens)] do
if (gens[l][i][j] <> zero) then
gens[l]:=gens[l] - gens[k] * gens[l][i][j];
fi;
od;
k:=k + 1;
else
# no non-zero element found, delete from list
gens{[k..Length(gens)-1]}:=gens{[k+1..Length(gens)]};
Unbind(gens[Length(gens)]);
# WAS: gens:=gens{ Cat([1..k-1], [k+1..Length(gens)])};
fi;
od;
return [List(gens,i->ImmutableMatrix(F,i)), ech];
end);
# The SpinHom routine in this file was written during August 1996. The
# basic idea comes from a discussion I had with Charles Leedham-Green early
# in 1995. He gave me a rough sketch of the algorithm that he and John
# Cannon developed for Magma. Some details were missing, and this is my
# attempt at filling in some of them.
#
# Many improvements were made on my earlier version, in large part due to a
# discussion I had with Alice Niemeyer in early 1996. She relayed to me
# some comments of Klaus Lux on my earlier version. This is a combination
# of the suggestions of Klaus and Alice and my own ideas.
#
# Note: This provides an enormous speed-up on the the default GAP routine,
# and on my own naive intertwining routine, especially when the module is
# large enough and/or it is irreducible. However, this routine is nowhere
# near as good as the Magma algorithm, and I do not know how to improve it.
#
# The code is heavily commented, and I appreciate suggestions on how to
# improve it (particularly bits of code).
BindGlobal("SpinHom",function (V, W)
local nv, nw, F, zero, zeroW, gV, gW, k, U, echu, r, homs, s, work, ans, v0,
M, x, pos, z, echm, t, v, echv, a, u, e, start, oldlen, ag, m, uu, ret,
c, s1, X, mat, uuc, uic, newhoms, hom, Uhom, imv0, imv0c, image, i, j, l;
# Compute Hom(V,W) for G-modules <V> and <W>. The algorithm starts with
# the trivial submodule <U> of <V> for which Hom(U,V) is trivial. It
# then computes Hom(U',W) for U' a submodule generated by <U> and a
# single element <v0> in <V>. This U' becomes the next <U> as the process
# is iterated, ending when <U'> = <V>. The element <v0> is chosen in a
# nullspace of a group algebra element in order to restrict it possible
# images in <W>.
nv:=V.dimension;
nw:=W.dimension;
F:=V.field;
if F<>W.field then
Error("different fields");
fi;
zero:=Zero(F);
zeroW:=ListWithIdenticalEntries(nw,zero);
ConvertToVectorRep(zeroW,F);
# group generating sets acting on each module
gV:=V.generators;
gW:=W.generators;
# <k> is the number of generators of the acting group
k:=Length(gV);
if k<>Length(gW) then
Error("generator lengths");
fi;
# <U> is the semi-ech basis for the currently known submodule, of
# dimension <r>
U:=[];
echu:=[];
r:=0;
# <homs> contains a basis for Hom(U,W), of dimension <s>
homs:=[];
s:=0;
# define a record which stores information about the modules <V>, <W>
# and <U> for passing into a routine that selects a new vector <v0>
# for spinning up to a larger submodule U'.
work:=rec(V:=V, W:=W, U:=U, echu:=echu);
repeat
# we loop until <U> is the whole of <V>
ans:=SpinHomFindVector(work);
v0:=ans[1];
M:=ans[2];
# find residue of <v0> modulo current submodule <U>
x:=EchResidueCoeffs(U, echu, v0,2);
# normalise <x> (ie get a 1 in leading position)
pos:=PositionProperty(x, i->i<>zero);
z:=x[pos];
x:=x / z;
v0:=v0 / z;
# we know that <v0> has to map into the subspace <M> of <W>.
echm:=List(M, y -> PositionProperty(y, i->i<>zero));
t:=Length(M);
# now we start building extension of semi-echelonised basis for
# the submodule U' generated by <U> and <v0>
#
# new elements of semi-ech basis will be stored in <v>, with
# echelon weights stored in <echv>
v:=[ x ];
echv:=[ pos ];
# we need to keep track of how each new element of the semi-ech
# basis was obtained from <v0> --- new basis element <v[i]> will
# satisfy:
#
# v[i] = v0*a[i] + u[i]
#
# where <a[i]> is an element of the group algebra FG, and <u[i]> is
# the element of <U> that was subtracted during semi-ech reduction
a:=[ M ];
u:=[ x - v0 ];
# we will accumulate the homogeneous linear system in <e>
#
# the first <s> variables are the coefficients of basis elements of
# Hom(U,W), which describes how a hom of U' acts on submodule <U>
#
# the other <t> variables are the coefficients of basis elements of
# <M>, which describes the image of <v0> under a hom
#
e:=SMTX_NewEqns(s + t, F);
# we will close the submodule by spinning <v0> --- the variable
# <start> will trim off the elements of <v> that we have already
# used
start:=1;
repeat
# take an element <v[i]> of <v> and a group generator <g[j]>
# and check whether <v[i]^g[j]> is a new basis element.
#
# if it is, add it to the basis, with its definition.
#
# if it isn't, we get an equation which an element of Hom(U',W)
# must satisfy
oldlen:=Length(v);
for i in [start..oldlen] do ### loop on vectors in <v>
for j in [1..k] do ### loop on generators of G
if Length(a[i])=0 then
#T: special treatment 0-dimensional
ag:=[];
else
ag:=a[i] * gW[j];
fi;
# create new element <x>, with its definition as the
# difference between <v0^m> and <uu> in <U>.
x:=v[i] * gV[j];
m:=ag;
uu:=u[i] * gV[j];
ret:=EchResidueCoeffs(U, echu, x,3);
x:=ret.residue;
uu:=uu - ret.projection;
# reduce modulo the new semi-ech basis elements in <v>,
# storing the coefficients in <c>
#
c:=ListWithIdenticalEntries(Length(v),zero);
ConvertToVectorRep(c,F);
for l in [1..Length(v)] do
z:=x[echv[l]];
if z <> zero then
x:=x - z * v[l];
if Length(m) > 0 then
m:=m - z * a[l];
fi;
c[l]:=c[l] + z;
uu:=uu - z * u[l];
fi;
od;
# Note: at this point, <x> has been reduced modulo the
# semi-ech basis <U> union <v>, and that
#
# x = v0 * a[i] + uu
pos:=PositionProperty(x, i->i<>zero);
if pos <> fail then
# new semi-ech basis element <x>
z:=x[pos];
Add(v, x/z);
Add(echv, pos);
Add(a, m/z);
Add(u, uu/z);
else
# we get some equations !
s1:=Sum([1..Length(v)], y -> c[y] * v[y]);
uu:=v[i] * gV[j] - s1;
X:=NullMat(t, nw, F);
for l in [1..Length(v)] do
if c[l] <> zero then
if Length(X) > 0 then
X:=X + c[l] * a[l];
fi;
uu:=uu + c[l] * u[l];
fi;
od;
if Length(X) > 0 then
X:=X - ag;
fi;
mat:=[];
uuc:=EchResidueCoeffs(U, echu, uu,1);
uic:=EchResidueCoeffs(U, echu, u[i],1);
for l in [1..s] do
Add(mat, uuc * homs[l] - uic * homs[l] * gW[j]);
od;
Append(mat, X);
SMTX_AddEqns(e, TransposedMat(mat), zeroW);
fi;
od;
od;
start:=oldlen+1;
# exit when no new elements were added --- i.e. the subspace
# is closed under action of G and is therefore a submodule
until oldlen = Length(v);
# we have the system of equations, so find its solution space
ans:=SMTX_NullspaceEqns(e);
# Now build the homomorphisms
newhoms:=[];
for i in [1..Length(ans)] do
# Each row of ans is of the form:
#
# [ b_1, b_2, ..., b_s, c_1, c_2, ..., c_t ]
#
# where the action of this hom on <U> is as \Sum{b_l homs[l]}
# and the hom sends <v0> to Sum{c_l M[l]}
hom:=[];
if r > 0 then
Uhom:=NullMat(r, nw, F);
for l in [1..s] do
if ans[i][l] <> zero then
Uhom:=Uhom + ans[i][l] * homs[l];
fi;
od;
for l in [1..r] do
Add(hom, Uhom[l]);
od;
fi;
imv0:=zeroW * zero;
for l in [1..t] do
if ans[i][s+l] <> zero then
imv0:=imv0 + ans[i][s+l] * M[l];
fi;
od;
imv0c:=EchResidueCoeffs(M, echm, imv0,1);
for l in [1..Length(v)] do
image:=imv0c * a[l];
if r > 0 then
image:=image + EchResidueCoeffs(U, echu, u[l],1) * Uhom;
fi;
Add(hom, image);
od;
hom:=ImmutableMatrix(F,hom);
Assert(1,hom<>0*hom);
Add(newhoms, hom);
od;
# now update <U> to be the now larger submodule
Append(U,v);
Append(echu, echv);
homs:=newhoms;
r:=Length(U);
s:=Length(homs);
Info(InfoMtxHom,1,"U is now dimension ", r, " and dim(Hom(U,W)) = ", s);
until r = nv; # i.e. <U> = <V>
if Length(homs)=0 then
return homs;
fi;
# We must change basis on <V> from <U> to the usual one before returning
U:=ImmutableMatrix(F,U);
return U^-1 * homs;
end);
# module isomorphism and decomposition routines
#
# These are functions for computing with modules, including:
#
# (1) computing a direct sum decomposition of a module into
# indecomposable summands.
#
# (2) deciding module isomorphism using the decomposition.
#
# The algorithm for deciding indecomposability is based on the algorithm
# described by G. Schneider in the Journal of Symbolic Computation,
# Volume 9, Numbers 5 & 6, 1990
# Take a Fitting element and use it to split M into a direct sum
# of submodules. Return the submodules.
# r is the rank of a (which migth be known before
BindGlobal("FittingSplitModule",function (a,r,F)
local n, ro;
# do we have a fitting matrix?
# a matrix is a fitting matrix if it is singular but not nilpotent.
# case
n:=Length(a);
if r=n or r=0 then
# not singular or zero.
return fail;
fi;
# now square repeatedly until the rank stays the same and >0
repeat
ro:=r;
a:=a^2;
r:=RankMat(a);
until ro=r or r=0;
if r=0 then
return fail;
fi;
# otherwise a is a power of a fitting matrix, the space will split in
# Kern(a) \oplus Image(a)
Info(InfoMeatAxe,2,"Decomposition ",r,":",n-r," found");
return [ImmutableMatrix(F,BaseMat(a)),NullspaceMat(a)];
end);
# Take a module and break it into two pieces if possible.
# The function searches for a decomposition of the module M while
# attempting to prove indecomposability at the same time. Of course,
# only one of these will succeed.
BindGlobal("ProperModuleDecomp",function (M)
local proveIndecomposability, addnilpotent, n, F, zero, basis, enddim,
echelon, nildim, p, maxorder, maxa, nilbase, nilech, cnt, remain,
used, coeffs, a, rk, order, fit, pos, newa, lastdim, i;
# Check whether we have found the indecomposability proof. That is,
# see whether our regular element generates a subalgebra which
# complements the current nilpotent ideal (the approximation to
# radical)
proveIndecomposability:=function ()
local maxaord;
# NB: <maxa> is not local
if enddim - nildim = LogInt(maxorder + 1,p) then
# Yes, found the residue field root and proved indecomposability!
maxaord:=Order(maxa);
while maxaord > maxorder do
maxa:=maxa^p;
maxaord:=maxaord / p;
od;
SMTX.SetEndAlgResidue(M, [maxa, maxaord]);
Info(InfoMtxHom,3,"proved ",Length(nilbase));
SMTX.SetBasisEndomorphismsRadical(M, nilbase);
return true;
fi;
return false;
end;
# take a new nilpotent element and sift against current nilpotent
# ideal basis. If it does not lie in the space spanned so far,
# add it to nilbasis
addnilpotent:=function (a)
local i, r, c, k, done, l;
# NB: <remain> and <nildim> and <cnt> are not local
for i in [1..nildim] do
r:=echelon[nilech[i]][1]; c:=echelon[nilech[i]][2];
if a[r][c] <> zero then
a:=a - a[r][c] * nilbase[i] / nilbase[i][r][c];
fi;
od;
# find which echelon index to remove due to this new element
k:=1; done:=false;
while not done and k <= Length(remain) do
l:=remain[k];
r:=echelon[l][1]; c:=echelon[l][2];
if a[r][c] <> zero then
done:=true;
else
k:=k + 1;
fi;
od;
if k > Length(remain) then
# in nilpotent ideal already, return
return false;
fi;
# We now know this nilpotent element is a new one
Add(nilbase, a);
# the k-th basis element was used to make the new element a. So
# remove it from future random element calculations
#
Add(nilech, remain[k]);
remain:=Difference(remain, [remain[k]]);
nildim:=nildim + 1;
cnt:=1;
return true;
end;
n:=M.dimension;
F:=M.field;
zero:=Zero(F);
Info(InfoMtxHom,2,"ProperModuleDecomp for module of dimension ", n);
if n = 1 then
# A 1-dimensional module is always indecomposable
Info(InfoMtxHom,3,"1dimensional");
SMTX.SetEndAlgResidue(M, [[[ PrimitiveElement(F) ]], Size(F) - 1]);
SMTX.SetBasisEndomorphismsRadical(M, []);
return fail;
fi;
basis:=SMTX.BasisModuleEndomorphisms(M);
if Length(basis) = 1 then
# if endomorphism algebra has dimension 1 then indecomposable
#SMTX.SetEndAlgResidueFlag(M, F.root * GModOps.EndAlgBasisFlag(M)[1], F.size - 1);
SMTX.SetEndAlgResidue(M, [PrimitiveElement(F)*basis[1], Size(F) - 1]);
Info(InfoMtxHom,3,"basislength 1");
SMTX.SetBasisEndomorphismsRadical(M, []);
return fail;
fi;
enddim:=Length(basis); # dim of endo algebra
echelon:=SMTX_EcheloniseMats(basis,F)[2]; # echelon indices for endalg basis
nildim:=0; # dim of current approx to radical
p:=Size(F);
maxorder:=1; # order of largest order regular elmt
# found so far
maxa:=IdentityMat(n,F); # the regular elmt with order maxorder
nilbase:=[]; # basis for approx to radical
nilech:=[];
cnt:=1;
# We will "quotient" out the nilpotent subspace as we go. The elements
# of remain tell us which (echelonised) basis elements of the
# endomorphism algebra we will take use in our random linear
# combination.
#
remain:=[1..enddim];
used:=[];
repeat
# we will loop until too many passes without an improvement in knowledge
repeat
# randomly sample endomorphism algebra
repeat
coeffs:=List([1..enddim], x -> Random(F));
until ForAny(remain,x->not IsZero(coeffs[x]));
a:=LinearCombination(basis,coeffs);
rk:=RankMat(a);
if rk=n then
# a regular element, check to see whether its order is
# larger than previously known, and if so whether it
# generates the residue field modulo current nilpotent ideal
order:=Order(a);
while (order mod p = 0) do
order:=order / p;
od;
if order > maxorder then
maxorder:=order;
maxa:=a;
if proveIndecomposability() then
return fail;
fi;
cnt:=1;
else
cnt:=cnt + 1;
fi;
else
fit:=FittingSplitModule(a,rk,F);
if fit<>fail then
return fit;
elif addnilpotent(a) then
# new nilpotent element, added to nilbasis. Now close nilbasis to
# basis for an ideal.
# keep a pointer to the first new element added to nilbase
pos:=nildim; # a was just added
# first add powers of a
newa:=a^2;
repeat
lastdim:=nildim;
addnilpotent(newa);
newa:=newa * a;
until lastdim = nildim or IsZero(newa);
# now close nilbase to make ideal basis
repeat
for i in [1..enddim] do
a:=nilbase[pos] * basis[i];
fit:=FittingSplitModule(a,RankMat(a),F);
if fit <> fail then
return fit;
fi;
addnilpotent(a);
od;
pos:=pos + 1;
until pos = nildim + 1;
fi;
fi;
if proveIndecomposability() then
return fail;
fi;
until (cnt >= 2000);
Error("Unable to ascertain module decomposition within time limits.\n",
"Call `return;' to try again.");
until false;
end);
BindGlobal("SMTX_Indecomposition",function(m)
local n, F, stack, i, d, d2, md, b, endo, sel, e1, e2;
if not IsBound(m.indecomposition) then
n:=m.dimension;
F:=m.field;
stack:=[[IdentityMat(n,F),m]];
i:=1;
while i<=Length(stack) do
d:=ProperModuleDecomp(stack[i][2]);
if d<>fail then
if Length(stack[i][1])<n then
d2:=List(d,j->j*stack[i][1]);
else
d2:=d;
fi;
md:=List(d2,i->SMTX.InducedActionSubmodule(m,i));
Assert(1,ForAll(md,i->i<>fail));
# Translate endomorphism rings
b:=Concatenation(d[1],d[2]); # local new basis
# basechange
endo:=List(stack[i][2].basisModuleEndomorphisms,
i->b*i/b);
sel:=[1..Length(d[1])];
e1:=List(endo,i->i{sel}{sel});
e1:=SMTX_EcheloniseMats(e1,F)[1];
Assert(1,ForAll(md[1].generators,i->ForAll(e1,j->i*j=j*i)));
md[1].basisModuleEndomorphisms:=e1;
sel:=[Length(d[1])+1..stack[i][2].dimension];
e2:=List(endo,i->i{sel}{sel});
e2:=SMTX_EcheloniseMats(e2,F)[1];
Assert(1,ForAll(md[2].generators,i->ForAll(e2,j->i*j=j*i)));
md[2].basisModuleEndomorphisms:=e2;
stack[i]:=[d2[1],md[1]];
Add(stack,[d2[2],md[2]]);
else
SMTX.SetIsIndecomposable(stack[i][2],true);
i:=i+1;
fi;
od;
m.indecomposition:=stack;
fi;
return m.indecomposition;
end);
SMTX.Indecomposition:=SMTX_Indecomposition;
# Check isomorphism of indecomposable modules.
#
# If they are isomorphic then the homomorphism space between them is a
# disguised copy of the endomorphism algebra. This is a local algebra,
# and hence all singular elements are nilpotent. Certainly it cannot
# have a basis consisting entirely of nilpotent elements (a theorem of
# Wedderburn), so at least one basis element for Hom(M1,M2) must be an
# isomorphism if they are isomorphic.
BindGlobal("IsomIndecModules",function (M1, M2)
local base, i,n;
if not (SMTX.IsIndecomposable(M1) and SMTX.IsIndecomposable(M2)) then
Error("IsomIndecModules: requires indecomposable modules");
fi;
n:=M1.dimension;
# module dimensions certainly must match
if n<>M2.dimension or
# their endomorphism algebras must have same dimension
Length(SMTX.BasisModuleEndomorphisms(M1)) <>
Length(SMTX.BasisModuleEndomorphisms(M2)) or
(SMTX.BasisEndomorphismsRadical(M1)<>fail and
SMTX.BasisEndomorphismsRadical(M2)<>fail and
Length(SMTX.BasisEndomorphismsRadical(M1))<>
Length(SMTX.BasisEndomorphismsRadical(M2)) ) then
return fail;
fi;
# the easy options have run out
# Last case, both modules are idecomposable but not necessarily irreducible.
# In this case, compute Hom and look for isom in the basis.
base:=SMTX.BasisModuleHomomorphisms(M1, M2);
for i in base do
if RankMat(i) = n then
return i;
fi;
od;
return fail;
end);
BindGlobal("SMTX_HomogeneousComponents",function(m)
local d, h, found, i, m1, idx, imgs, hom, j;
d:=SMTX.Indecomposition(m);
h:=[];
found:=[];
i:=1;
while Length(found)<Length(d) do
if not i in found then
m1:=d[i][2];
idx:=[i];
AddSet(found,i);
imgs:=[];
for j in [i+1..Length(d)] do
if not j in found and m1.dimension=d[j][2].dimension then
hom:=IsomIndecModules(d[j][2],m1);
if hom<>fail then
Add(idx,j);
AddSet(found,j);
Add(imgs,rec(component:=d[j],isomorphism:=hom^-1));
fi;
fi;
od;
Add(h,rec(component:=d[i],images:=imgs,indices:=idx));
fi;
i:=i+1;
od;
return h;
end);
SMTX.HomogeneousComponents:=SMTX_HomogeneousComponents;
# Test for isomorphism of modules. Will return one of:
#
# (1) the isomorphism as an F-matrix between M1 and M2
# (2) fail if the two modules are definitely not isomorphic
#
# Note that the isomorphism X is such that conjugating each generator
# acting on M1 by X gives the corresponding action on M2. Therefore
# X^-1 is a matrix whose rows correspond to a new basis of M1 that
# duplicates the action of M2 on M1.
#
# If necessary, uses the decomposition into indecomposable summands. A
# homogeneous component is a direct sum of multiple copies of a single
# indecomposable summand. The homogeneous components must match between
# each module, with their multiplicities.
BindGlobal("SMTX_IsomorphismModules",function (M1, M2)
local F, n, hc1, hc2, nc, b1, b2, map, remain, j, found, hom, i, k;
TestModulesFitTogether(M1,M2);
F:=M1.field;
n:=M1.dimension;
if n <> M2.dimension then
# Modules have different dimensions
return fail;
elif (SMTX.BasisEndomorphismsRadical(M1)<>fail and
SMTX.BasisEndomorphismsRadical(M2)<>fail and
Length(SMTX.BasisEndomorphismsRadical(M1))<>
Length(SMTX.BasisEndomorphismsRadical(M2)) ) then
# different endomorphism algebra dimensions
return fail;
fi;
hc1:=SMTX.HomogeneousComponents(M1);
hc2:=SMTX.HomogeneousComponents(M2);
nc:=Length(hc1);
if nc <> Length(hc2) then
return fail;
fi;
# build bases that must be mapped to each other iteratively
b1:=[];
b2:=[];
map:=[];
remain:=[1..nc];
for i in [1..nc] do
j:=1;found:=false;
while j<=nc and not found do
if j in remain and Length(hc1[i].indices)=Length(hc2[j].indices) then
# test: i isomorphic j?
hom:=IsomIndecModules(hc1[i].component[2],hc2[j].component[2]);
if hom<>fail then
# the homogeneous components are isomorphic
found:=true;
Append(b1,hc1[i].component[1]);
Append(b2,hc2[j].component[1]);
Add(map,hom);
for k in [1..Length(hc1[i].images)] do
Append(b1,hc1[i].images[k].component[1]);
Append(b2,hc2[j].images[k].component[1]);
Add(map,hc1[i].images[k].isomorphism^-1*hom*
hc2[j].images[k].isomorphism);
od;
fi;
fi;
j:=j+1;
od;
if found=false then
# one homogeneous component has no image -- the modules cannot be
# isomorphic
return fail;
fi;
od;
b1:=ImmutableMatrix(M1.field,b1);
b2:=ImmutableMatrix(M1.field,b2);
return b1^-1*ImmutableMatrix(M1.field,DirectSumMat(map))*b2;
end);
SMTX.IsomorphismModules:=SMTX_IsomorphismModules;
# Note: matalg is a basis for a nilpotent matrix algebra whose elements
# are all in lower diagonal form (zeros on the main diagonal).
#
# Echelonisation indices are chosen as the earliest non-zero entries
# running down diagonals below the main diagonal:
# [2,1], [3,2], [4,3], ..., [3,1], [4,2], ..., [n-1,1], [n, 2], [n,1]
BindGlobal("SMTX_EcheloniseNilpotentMatAlg",function (matalg, F)
local zero, n, flags, base, ech, k, diff, i, j, found, l;
zero:=Zero(F);
n := Length(matalg[1][1]);
flags := NullMat(n,n);
base := matalg;
ech := [];
k := 1;
while k <= Length(base) do
diff := 1;
i := 2; j := i - diff;
found := false;
while not found and diff < n do
if (base[k][i][j] <> zero) and
(flags[i][j] = 0) then
found := true;
else
i := i + 1;
j := i - diff;
if (i > n) then
diff := diff + 1;
i := diff + 1;
j := i - diff;
fi;
fi;
od;
if found then
# Now basis element k will have echelonisation index [i,j]
Add(ech, [i,j]);
# First normalise the [i,j] position to 1
base[k] := base[k] / base[k][i][j];
# Now zero position [i,j] in all other basis elements
for l in [1..Length(base)] do
if (l <> k) and (base[l][i][j] <> zero) then
base[l] := base[l] - base[k] * base[l][i][j];
fi;
od;
k := k + 1;
else
# no non-zero element found, delete from list
base := base{ Concatenation([1..k-1], [k+1..Length(base)])};
fi;
od;
return [base, ech];
end);
# compute a change of basis that exhibits the matrix algebra
# defined by the basis 'matalg' in triangular form.
BindGlobal("SMTX_NilpotentBasis",function (matalg)
local decompose, field, Y, mats, newbase;
decompose := function ( m, b )
local n, subs, vs, vsi,rep, newm,j,ran;
if Length(m) = 0 then
# all action is now zero, so append current full basis and
# finish up
Append(Y, b);
else
n := Length(m[1][1]);
# find the intersection of the nullspaces
subs:=NullspaceMat(m[1]);
for j in [2..Length(m)] do
subs:=SumIntersectionMat(subs,NullspaceMat(m[j]))[2];
od;
# Use matrix group routine to compute action of nilpotent
# matrices on the quotient vectorspace
vs := BaseSteinitzVectors(IdentityMat(n,field),subs);
vs:=Concatenation(vs.subspace,vs.factorspace);
vs:=ImmutableMatrix(field,vs);
vsi:=vs^-1;
ran:=[Length(subs)+1..n];
rep:=List(m,i->vs*i*vsi);
rep:=List(rep,i->i{ran}{ran});
# Take a copy of the non-zero matrices acting on the quotient space
#
newm := Filtered(rep,x->not IsZero(x));
Append(Y, subs * b);
decompose( newm, vs{ran} * b );
fi;
end;
# return empty list if empty matrix list
if Length(matalg) = 0 then return []; fi;
field := DefaultField(matalg[1][1]);
Y := [];
decompose( matalg, IdentityMat(Length(matalg[1][1]), field));
#
# Y is the change of basis matrix
if Length(matalg) > 0 then
mats := Y * matalg / Y;
fi;
#
# mats is now a list of matrices in lower triangular form
# echelonise them along lower diagonals
#
newbase := SMTX_EcheloniseNilpotentMatAlg(mats, field)[1];
return [newbase, Y];
end);
# module automorphism group
BindGlobal("SMTX_ModuleAutomorphisms",function(m)
local f, h, hb, hbi, bas, auts, autorder, dim, nb, nbi, r, q, w, Fqr, gl, a, subm, nilbase, homs, sub, endos, au, aubas, it, coeffs, cnt, ol, ind, i, j, g, k;
f:=m.field;
h:=MTX.HomogeneousComponents(m);
# construct basis for each homogeneous component
hb:=[];
for i in h do
# basis of component
bas:=ShallowCopy(i.component[1]);
for j in i.images do
#Append(bas,LeftQuotient(j.isomorphism,j.component[1]));
Append(bas,j.isomorphism*j.component[1]);
od;
#bas:=MTX.NormedBasisAndBaseChange(bas)[1];
Add(hb,bas);
od;
# each homogeneous component separately
auts:=[];
autorder:=1;
for i in [1..Length(h)] do
# basis of component
bas:=hb[i];
dim:=h[i].component[2].dimension;
nb:=Concatenation(bas,Concatenation(hb{Difference([1..Length(h)],[i])}));
nb:=ImmutableMatrix(f,nb);
nbi:=nb^-1;
# start by building those automorphisms that fix the homogeneous
# components - ie, do not involve maps from M_i to M_j unless
# M_i is the same isomorphism type as M_j
r:=Length(h[i].indices);
# first the subgroup GL(multiplicity, residue field)
q:=SMTX.EndAlgResidue(h[i].component[2]);
w:=q[1];
q:=q[2]+1;
Fqr:=PrimitiveElement(GF(q));
gl:=GL(r,q);
autorder:=autorder*Size(gl);
Info(InfoMtxHom,3,"increase by gl",Size(gl)," ",autorder);
for g in GeneratorsOfGroup(gl) do
a:=IdentityMat(m.dimension,f);
for j in [1..r] do
for k in [1..r] do
if IsZero(g[j][k]) then
subm:=w*0;
else
subm:=w^LogFFE(g[j][k],Fqr);
fi;
a{[(j-1)*dim+1..j*dim]}{[(k-1)*dim+1..k*dim]}:=subm;
od;
od;
a:=nbi*a*nb;
Assert(1,ForAll(m.generators,i->i*a=a*i));
Add(auts,a);
od;
# now the subgroup { I + Y | Y in S } where S generates the radical
# of the endomorphism algebra as a circle group
nilbase:=SMTX.BasisEndomorphismsRadical(h[i].component[2]);
if Length(nilbase)>0 then
nilbase:=SMTX_NilpotentBasis(nilbase);
nilbase:=nilbase[2]^-1*nilbase[1]*nilbase[2];
fi;
a:=(Size(f)^Length(nilbase))^(r^2);
autorder := autorder * a;
Info(InfoMtxHom,3,"increase by radical",a," ",autorder);
for j in nilbase do;
a:=IdentityMat(m.dimension,f);
subm:=IdentityMat(dim,f)+j;
a{[1..dim]}{[1..dim]}:=subm;
a:=nbi*a*nb;
Assert(1,ForAll(m.generators,i->i*a=a*i));
Add(auts,a);
od;
# Now the automorphisms that act trivially when restricted to
# each homogeneous component, but which include action between
# homogeneous components via elements of Hom(M_i, M_j)
for j in [1..Length(h)] do
if i <> j then
homs:=SMTX.BasisModuleHomomorphisms(h[i].component[2],
h[j].component[2]);
if Length(homs) > 0 then
hbi:=0;
for k in [1..j-1] do
hbi:=hbi+Length(hb[k]);
od;
if i>j then
hbi:=hbi+Length(hb[i]);
fi;
hbi:=hbi+[1..h[j].component[2].dimension];
a:=(Size(f)^Length(homs))^(r*Length(h[j].indices));
autorder:=autorder*a;
Info(InfoMtxHom,3,"increase by mixing ",j,":",a," ",autorder);
for k in homs do
a:=IdentityMat(m.dimension,f);
a{[1..dim]}{hbi}:=k;
a:=nbi*a*nb;
Assert(1,ForAll(m.generators,i->i*a=a*i));
Add(auts,a);
od;
fi;
fi;
od;
od;
if Length(auts)=0 then
return Group(auts,IdentityMat(m.dimension,f));
else
a:=Group(auts);
Assert(1,Size(a)=autorder);
SetSize(a,autorder);
return a;
fi;
end);
SMTX.ModuleAutomorphisms:=SMTX_ModuleAutomorphisms;
SMTX.SetIsIndecomposable:=function(m,b)
m.isIndecomposable:=b;
end;
SMTX.HasIsIndecomposable:=function(m)
return IsBound(m.isIndecomposable);
end;
SMTX.IsIndecomposable:=function(m)
if not SMTX.HasIsIndecomposable(m) then
m.isIndecomposable:=Length(SMTX.Indecomposition(m))=1;
fi;
return m.isIndecomposable;
end;
SMTX_BasisModuleHomomorphisms:=function(m1,m2)
local b;
TestModulesFitTogether(m1,m2);
if m1.dimension>5 then
b:= SpinHom(m1,m2);
Assert(1,Length(b)=Length(SmalldimHomomorphismsModules(m1,m2)));
else
b:= SmalldimHomomorphismsModules(m1,m2);
fi;
Assert(1,ForAll([1..Length(m1.generators)],
i->ForAll(b,j->m1.generators[i]*j=j*m2.generators[i])));
return b;
end;
SMTX.BasisModuleHomomorphisms:=SMTX_BasisModuleHomomorphisms;
SMTX_BasisModuleEndomorphisms:=function(m)
if not IsBound(m.basisModuleEndomorphisms) then
m.basisModuleEndomorphisms:=Immutable(SMTX.BasisModuleHomomorphisms(m,m));
fi;
return m.basisModuleEndomorphisms;
end;
SMTX.BasisModuleEndomorphisms:=SMTX_BasisModuleEndomorphisms;
SMTX.SetBasisEndomorphismsRadical:=SMTX.Setter("basisEndoRad");
SMTX.BasisEndomorphismsRadical:=SMTX.Getter("basisEndoRad");
SMTX.SetEndAlgResidue:=SMTX.Setter("endAlgResidue");
SMTX.EndAlgResidue:=SMTX.Getter("endAlgResidue");
|