This file is indexed.

/usr/share/gap/lib/meataxe.gi is in gap-libs 4r6p5-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
#############################################################################
##
#W  meataxe.gi                   GAP Library                       Derek Holt
#W                                                                 Sarah Rees
#W                                                           Alexander Hulpke
##
##
#Y  Copyright 1994 -- School of Mathematical Sciences, ANU   
#Y  (C) 1998-2001 School Math. Sci., University of St Andrews, Scotland
#Y  Copyright (C)  1996,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
##
##  This file contains the 'Smash'-MeatAxe modified for GAP4 and using the 
##  standard MeatAxe interface.  It defines the MeatAxe SMTX.
##

InstallGlobalFunction(GModuleByMats,function(arg)
local l,f,dim,m;
  l:=arg[1];
  if Length(arg)=1 then
    Error("Usage: GModuleByMats(<mats>,[<id>,]<field>)");
  fi;
  f:=arg[Length(arg)];
  if Size(f)=infinity or Length(l)>0 and
    (Characteristic(l[1])<>Characteristic(f) or not IsFFECollCollColl(l)) then
      Error("matrices and field do not fit together or field is infinite");
  fi;
  l:=List(l,i->ImmutableMatrix(f,i));
  MakeImmutable(l);

  if ForAny(l,i->Length(i)<>Length(i[1])) or
    Length(Set(List(l,Length)))>1 then
    Error("<l> must be a list of square matrices of the same dimension");
  fi;
  m:=rec(field:=f,
	 isMTXModule:=true);
  if Length(l)>0 then
    dim:=Length(l[1][1]);
  elif Length(arg)=2 then
    Error("if no generators are given the dimension must be given explicitly");
  else
    dim:=arg[2];
    l:=[ ImmutableMatrix(f, IdentityMat(dim,f) ) ];
    m.smashMeataxe:=rec(isZeroGens:=true);
  fi;
  m.dimension:=dim;
  m.generators:=l;

  return m;
end);

#############################################################################
##
#F  TrivialGModule ( g, F ) . . . trivial G-module
##
##  g is a finite group, F a finite field, trivial smash G-module computed.
InstallGlobalFunction(TrivialGModule,function (g, F)
local mats;
  mats:=List(GeneratorsOfGroup(g),i->[[One(F)]]);
  return GModuleByMats(mats,F);
end);

#############################################################################
##
#F  InducedGModule ( g, h, m ) . . . calculate an induced G-module
##
## h should be a subgroup of a finite group g, and m a smash
## GModule for h.
## The induced module for g is calculated.
InstallGlobalFunction(InducedGModule,function (g, h, m)

   local  gensh, mats, ghom, gdim, hdim, F, index, gen, genim,
         gensim, r, i, j, k, l, elt, im;

   if IsGroup (g) = false then
      return Error ("First argument is not a group.");
   fi;
   if SMTX.IsMTXModule (m) = false then
      return Error ("Second argument is not a meataxe module.");
   fi;

   gensh:=GeneratorsOfGroup (h);
   mats:=SMTX.Generators (m);
   if Length (gensh) <> Length (mats) then
      Error ("m does not have same number of generators as h = G1");
   fi;

   hdim:=SMTX.Dimension(m);
   F:=SMTX.Field(m);
   ghom:=GroupHomomorphismByImages(h,GL(hdim,Size(F)),gensh,mats);

   #set up transveral
   r:=RightTransversal (g, h);
   index:=Length (r);

   gdim:=index*hdim;

   #Now calculate images of generators.
   gensim:=[];
   for gen in GeneratorsOfGroup(g) do
      genim:=NullMat (gdim, gdim, F);
      for i in [1..index] do
         j:=PositionCanonical (r, r[i]*gen);
         elt:=r[i]*gen/r[j];
         im:=Image (ghom, elt);
    #Now insert hdim x hdim matrix im in the correct place in the genim.
         for k in [1..hdim] do
            for l in [1..hdim] do
               genim[ (i-1)*hdim+k][ (j-1)*hdim+l]:=im[k][l];
            od;
         od;
      od;
      Add (gensim, genim);
   od;

   return GModuleByMats (gensim, F);

end);

#############################################################################
##
#F PermutationGModule ( g, F) . permutation module
##
## g is a permutation group, F a finite field.
## The corresponding permutation module is output.
InstallGlobalFunction(PermutationGModule,function (g, F)
   local gens, deg;
   gens:=GeneratorsOfGroup(g);
   deg:=LargestMovedPoint(gens);
   return GModuleByMats(List(gens,g->PermutationMat(g,deg,F)),F);
end);

###############################################################################
##
#F  TensorProductGModule ( m1, m2 )  . . tensor product of two G-modules
##
## TensorProductGModule calculates the tensor product of smash
## modules m1 and m2. 
## They are assumed to be modules over the same algebra so, in particular,
## they  should have the same number of generators.
## 
InstallGlobalFunction(TensorProductGModule,function ( m1, m2)

   local mat1, mat2, F1, F2,  gens, i, l;

   mat1:=SMTX.Generators(m1); mat2:=SMTX.Generators(m2);
   F1:=SMTX.Field(m1); F2:=SMTX.Field(m2);
   if (F1 <> F2) then
      Error ("GModules are defined over different fields.\n");
   fi;
   l:=Length (mat1);
   if (l <> Length (mat2)) then
      Error ("GModules have different numbers of generators.");
   fi;

   gens:=[];
   for i in [1..l] do
      gens[i]:=KroneckerProduct (mat1[i], mat2[i]);
   od;

   return GModuleByMats(gens, F1);
end);

###############################################################################
##
#F  WedgeGModule ( module ) . . . . . wedge product of a G-module
##
## WedgeGModule calculates the wedge product of a G-module.
## That is the action on antisymmetrix tensors.
## 
InstallGlobalFunction(WedgeGModule,function ( module)
   local mats, mat, newmat, row, F, gens, dim, nmats, i, j, k, m, n, x;

   mats:=SMTX.Generators(module);
   F:=SMTX.Field(module);
   nmats:=Length (mats);
   dim:=SMTX.Dimension(module);

   gens:=[];
   for i in [1..nmats] do
      mat:=mats[i];
      newmat:=[];
      for j in [1..dim] do
         for k in [1..j - 1] do
            row:=[];
            for m in [1..dim] do
               for n in [1..m - 1] do
                  x:=mat[j][m] * mat[k][n] - mat[j][n] * mat[k][m];
                  Add (row, x);
               od;
            od;
            Add (newmat, row);
         od;
      od;
      Add (gens, newmat);
   od;

   return GModuleByMats(gens, F);
end);

SMTX.Setter:=function(string)
  return function(module,obj)
    if not IsBound(module.smashMeataxe) then
      module.smashMeataxe:=rec();
    fi;
    module.smashMeataxe.(string):=obj;
  end;
end;

SMTX.IsMTXModule:=function(module)
  return IsBound(module.isMTXModule) and
         IsBound(module.field) and
         IsBound(module.generators) and
         IsBound(module.dimension);
end;

SMTX.IsZeroGens:=function(module)
  return IsBound(module.smashMeataxe)
     and IsBound(module.smashMeataxe.isZeroGens)
     and module.smashMeataxe.isZeroGens=true;
end;

SMTX.Dimension:=function(module)
  return module.dimension;
end;

SMTX.Field:=function(module)
  return module.field;
end;

SMTX.Generators:=function(module)
  if SMTX.IsZeroGens(module) then
    return [];
  else
    return module.generators;
  fi;
end;

SMTX.SetIsIrreducible:=function(module,b)
  module.IsIrreducible:=b;
end;

SMTX.HasIsIrreducible:=function(module)
  return IsBound(module.IsIrreducible);
end;


SMTX.IsAbsolutelyIrreducible:=function(module)
  if not IsBound(module.IsAbsolutelyIrreducible) then
    if not SMTX.IsIrreducible(module) then
      return false;
    fi;
    module.IsAbsolutelyIrreducible:=SMTX.AbsoluteIrreducibilityTest(module);
  fi;
  return module.IsAbsolutelyIrreducible;
end;

SMTX.SetIsAbsolutelyIrreducible:=function(module,b)
  module.IsAbsolutelyIrreducible:=b;
end;

SMTX.HasIsAbsolutelyIrreducible:=function(module)
  return IsBound(module.IsAbsolutelyIrreducible);
end;

SMTX.SetSmashRecord:=SMTX.Setter("dummy");
SMTX.Subbasis:=SMTX.Getter("subbasis");
SMTX.SetSubbasis:=SMTX.Setter("subbasis");
SMTX.AlgEl:=SMTX.Getter("algebraElement");
SMTX.SetAlgEl:=SMTX.Setter("algebraElement");
SMTX.AlgElMat:=SMTX.Getter("algebraElementMatrix");
SMTX.SetAlgElMat:=SMTX.Setter("algebraElementMatrix");
SMTX.AlgElCharPol:=SMTX.Getter("characteristicPolynomial");
SMTX.SetAlgElCharPol:=SMTX.Setter("characteristicPolynomial");
SMTX.AlgElCharPolFac:=SMTX.Getter("charpolFactors");
SMTX.SetAlgElCharPolFac:=SMTX.Setter("charpolFactors");
SMTX.AlgElNullspaceVec:=SMTX.Getter("nullspaceVector");
SMTX.SetAlgElNullspaceVec:=SMTX.Setter("nullspaceVector");
SMTX.AlgElNullspaceDimension:=SMTX.Getter("ndimFlag");
SMTX.SetAlgElNullspaceDimension:=SMTX.Setter("ndimFlag");

SMTX.CentMat:=SMTX.Getter("centMat");
SMTX.SetCentMat:=SMTX.Setter("centMat");
SMTX.CentMatMinPoly:=SMTX.Getter("centMatMinPoly");
SMTX.SetCentMatMinPoly:=SMTX.Setter("centMatMinPoly");

SMTX.FGCentMat:=SMTX.Getter("fieldGenCentMat");
SMTX.SetFGCentMat:=SMTX.Setter("fieldGenCentMat");
SMTX.FGCentMatMinPoly:=SMTX.Getter("fieldGenCentMatMinPoly");
SMTX.SetFGCentMatMinPoly:=SMTX.Setter("fieldGenCentMatMinPoly");

SMTX.SetDegreeFieldExt:=SMTX.Setter("degreeFieldExt");

LinearCombinationVecs:=function(v,c)
local i,s;
  s:=ShallowCopy(c[1]*v[1]);
  for i in [2..Length(c)] do
    if not IsZero(c[i]) then
      AddRowVector(s,v[i],c[i]);
    fi;
  od;
  return s;
end;


#############################################################################
##
#F  SMTX.OrthogonalVector( subbasis ) single vector othogonal to a submodule,
##  N.B. subbasis is assumed to consist of normed vectors, 
##  submodule is assumed proper.
##
SMTX_OrthogonalVector:=function ( subbasis )
   local zero, one, v, i, j, k, x, dim, len;
   subbasis:=ShallowCopy(subbasis);
   Sort (subbasis);
   subbasis:=Reversed (subbasis);
   # Now subbasis is in order so that the vector whose leading coefficient
   # comes furthest to the left comes first.
   len:=Length (subbasis);
   dim:=Length (subbasis[1]);
   i:= 1;
   v:=[];
   one:=One(subbasis[1][1]);
   zero:=Zero(one);
   for i in [1..dim] do
      v[i]:=zero;
   od;
   i:=1;
   while i <= len and subbasis[i][i] = one do
      i:= i + 1;
   od;
   v[i]:=one;
   for j in Reversed ([1..i-1]) do
      x:=zero;
      for k in [j + 1..i] do
         x:=x + v[k] * subbasis[j][k];
      od;
      v[j]:=-x;
   od;

   return v;
end;
SMTX.OrthogonalVector:=SMTX_OrthogonalVector;

SubGModLeadPos:=function(sub,dim,subdim,zero)
local leadpos,i,j,k;
   ## As in SpinnedBasis, leadpos[i] gives the position of the first nonzero 
   ## entry (which will always be 1) of sub[i].

   leadpos:=[];
   for i in [1..subdim] do
      j:=1;
      while j <= dim and sub[i][j]=zero do j:=j + 1; od;
      leadpos[i]:=j;
      for k in [1..i - 1] do
         if leadpos[k] = j then
            Error ("Subbasis isn't normed.");
         fi;
      od;
   od;
  return leadpos;
end;

#############################################################################
##
#F  SpinnedBasis ( v, matrices, F, [ngens] ) . . . . 
## 
## The first argument v  can either be a vector over the module on
## which matrices act or a subspace.
##
## SpinnedBasis computes a basis for the submodule defined by the action of the
## matrix group generated by the list matrices on v.
## F is the field over which we act.
## It is returned as a list of normed vectors.
## If the optional third argument is present, then only the first ngens
## matrices in the list are used.
SMTX_SpinnedBasis:=function ( arg  )
   local   v, matrices, ngens, zero,  
           ans, dim, subdim, leadpos, w, i, j, k, l, m,F;

   if Number (arg) < 3 or Number (arg) > 4 then
      Error ("Usage:  SpinnedBasis ( v, matrices, F, [ngens] )");
   fi;
   v:=arg[1];
   matrices:=arg[2];
   F:=arg[3];
   if Number (arg) = 4 then
      ngens:=arg[4];
      if ngens <= 0 or ngens > Length (matrices) then
         ngens:=Length (matrices);
      fi;
   else
      ngens:=Length (matrices);
   fi;
   ans:=[];
   if Length(v)=0 then
     return [];
   fi;
   if not IsList(v[1]) then
     v:=[v];
   fi;
   zero:=Zero(matrices[1][1][1]);
   ans:=ShallowCopy(Basis(VectorSpace(F,v)));
   for v in ans do ConvertToVectorRep(v,F); od;
   if Length(ans)=0 then
     return ans;
   fi;
   dim:=Length(ans[1]);
   subdim:=Length(ans);
   leadpos:=SubGModLeadPos(ans,dim,subdim,zero);
     
   i:=1;
   while i <= subdim do
      for l in [1..ngens] do
         m:=matrices[l];
         # apply generator m to submodule generator i
         w:=ShallowCopy(ans[i] * m);
         # try to express w in terms of existing submodule generators
         j:=1;
         for  j in [1..subdim] do
            k:=w[leadpos[j]];
            if k <> zero then
               #w:=w - k * ans[j];
               AddRowVector(w,ans[j],-k);
            fi;
         od;

         j:=1;
         while j <= dim and w[j] = zero do j:=j + 1; od;
         if j <= dim then
            #we have found a new generator of the submodule
            subdim:=subdim + 1;
            leadpos[subdim]:=j;
            #w:=(w[j]^-1) * w;
	    MultRowVector(w,w[j]^-1);
            Add ( ans, w );
            if subdim = dim then
	       ans:=ImmutableMatrix(F,ans);
               return ans;
            fi;
         fi;
      od;
      i:=i + 1;
   od;

   Sort(ans);
   ans:=Reversed(ans); #To bring it into semi-echelonised form.
   ans:=ImmutableMatrix(F,ans);
   return ans;
end;
SMTX.SpinnedBasis:=SMTX_SpinnedBasis;

SMTX_SubGModule:=function(module, subspace)
## The submodule of module generated by <subspace>.
  return SMTX.SpinnedBasis(subspace, SMTX.Generators(module),
                                    SMTX.Field(module));
end;

SMTX.SubGModule:=SMTX_SubGModule;
SMTX.SubmoduleGModule:=SMTX_SubGModule;

#############################################################################
##
#F  SMTX.SubQuotActionsModule (matrices,sub,dim,subdim,field,typ) . . .  
##  generators of sub- and quotient-module and original module wrt new basis
## 
##  IT IS ASSUMED THAT THE GENERATORS OF SUB ARE NORMED.
##
##  this function is used to compute all submodule/quotient stuff, as
##  indicated by  typ: 1=Sub, 2=Quotient, 4=Common
##  The function returns a record with components 'smatrices', 'qmatrices',
##  'nmatrices' and 'nbasis' if applicable.
##
##  See the description for 'SMTX.InducedAction' for
##  description of the matrices
##  
SMTX_SubQuotActions:=function(matrices,sub,dim,subdim,F,typ)
local c,q,i,j,k,w,zero,leadpos,cfleadpos, m, ct, erg,one,
           g, newg, newgn, smatrices, qmatrices, nmatrices, 
           im, newim, newimn,onem,zerov,zeroc;

   one:=One(F);
   onem:=One(matrices[1]);
   zero:=Zero(one);
   c:=typ>3; # common indicator
   q:=c or (typ mod 4)>1; # quotient indicator
   if c then 
     zeroc:=ListWithIdenticalEntries(subdim,zero);
     ConvertToVectorRep(zeroc,F);
   else
     zeroc:=fail;
   fi;

   leadpos:=SubGModLeadPos(sub,dim,subdim,zero);
   cfleadpos:=leadpos[2];
   leadpos:=leadpos[1];

   ## Now add a further dim-subdim vectors to the list sub, to complete a basis.
   if q then
     sub:=ShallowCopy (sub);
     k:=subdim;
     for i in [1..dim] do
	if cfleadpos[i] = 0 then
	   k:=k + 1;
	   #w:=[];
	   #for m in [1..dim] do w[m]:=zero; od;
	   #w[i]:=one;
	   w:=onem[i];
	   leadpos[k]:=i;
	   Add (sub, w);
	fi;
     od;
   fi;
   sub:=ImmutableMatrix(F,sub);

   erg:=rec();

   nmatrices:=[];
   if (typ mod 2)>0 then
     zerov:=ListWithIdenticalEntries(subdim,zero);
     ConvertToVectorRep(zerov,F);

     ## Now work out action of generators on submodule
     smatrices:=[];
     for g in matrices do
	newg:=[]; newgn:=[];
	for i in [1..subdim] do
	   im:=ShallowCopy(sub[i] * g);
	   #newim:=[]; newimn:=[];
	   newim:=ShallowCopy(zerov);
	   for j in [1..subdim] do
	     k:=im[leadpos[j]];
	     newim[j]:=k; #newimn[j]:=k;
	     if k<> zero then
	       #im:=im - k * sub[j];
	       AddRowVector(im,sub[j],-k);
	     fi;
	   od;

	   # Check that the vector is now zero - if not, then sub was 
	   # not the basis of a submodule 
	   if im <> Zero(im) then return fail; fi;
	   Add (newg, newim);

	   if c then
	     #for j in [subdim + 1..dim] do newimn[j]:=zero; od;
	     newimn:=ShallowCopy(zeroc);
	     newimn{[1..subdim]}:=newim;
	     Add (newgn, newimn);
	   fi;

	od;
	i:=ShallowCopy(newg);
	i:=ImmutableMatrix(F,i);
	Add (smatrices, i);
	Add (nmatrices, newgn); # will still be added to
     od;
     erg.smatrices:=smatrices;
   else
     nmatrices:=List(matrices,i->[]);
   fi;

   if q then
     zerov:=ListWithIdenticalEntries(dim-subdim,zero);
     ConvertToVectorRep(zerov,F);
     ## Now work out action of generators on quotient module
     qmatrices:=[];
     ct:=0;
     for g in matrices do
	ct:=ct + 1;
	newg:=[];
	newgn:=nmatrices[ct];
	for i in [subdim + 1..dim] do
	  im:=ShallowCopy(sub[i] * g);
	  #newim:=[]; newimn:=[];
	  newim:=ShallowCopy(zerov);
	  newimn:=ShallowCopy(zeroc);
	  for j in [1..dim] do
	    k:=im[leadpos[j]];
	    if j > subdim then
	      newim[j - subdim]:=k;
	    fi;
	    if k <> zero then
	      #im:=im - k * sub[j];
	      AddRowVector(im,sub[j],-k);
	      if c then
		newimn[j]:=k;
	      fi;
	    fi;
	  od;
	  Add (newg, newim);   
	  Add (newgn, newimn);
	od;
	newg:=ImmutableMatrix(F,newg);
	Add (qmatrices, newg);
     od;
     erg.qmatrices:=qmatrices;
     erg.nbasis:=sub;
     if c then
       nmatrices:=List(nmatrices,i->ImmutableMatrix(F,i));
       MakeImmutable(nmatrices);
       erg.nmatrices:=nmatrices;
     fi;
   fi;

   return erg;
end;

SMTX_SubQuotActions:=function(matrices,sub,dim,subdim,F,typ)
local s, c, q, leadpos, zero, zerov, smatrices, newg, im, newim, k, subi,
      qmats, smats, nmats, sr, qr, g, h, erg, i, j;

  s:=(typ mod 2)=1; # subspace indicator
  typ:=QuoInt(typ,2);
  q:=(typ mod 2)=1; # quotient indicator
  c:=typ>1; # common indicator

  zero:=Zero(F);
  leadpos:=SubGModLeadPos(sub,dim,subdim,zero);

  if subdim*2<dim and not (q or c) then
    # the subspace dimension is small and we only want the subspace action:
    # performing a base change is too expensive

    zerov:=ListWithIdenticalEntries(subdim,zero);
    ConvertToVectorRep(zerov,F);

    smatrices:=[];
    for g in matrices do
      newg:=[]; 
      for i in [1..subdim] do
	im:=ShallowCopy(sub[i] * g);
	newim:=ShallowCopy(zerov);
	for j in [1..subdim] do
	  k:=im[leadpos[j]];
	  if k<> zero then
	    newim[j]:=k;
	    AddRowVector(im,sub[j],-k);
	  fi;
	od;

	# Check that the vector is now zero - if not, then sub was 
	# not the basis of a submodule 
	if im <> Zero(im) then return fail; fi;
	Add (newg, newim);
      od;
      Add(smatrices,ImmutableMatrix(F,newg));
    od;
    return rec(smatrices:=smatrices);
  else
    # we want the quotient or all or the subspace dimension is big enough to
    # merit a basechange

    # first extend the basis
    sub:=ShallowCopy(sub);
    Append(sub,One(matrices[1]){Difference([1..dim],leadpos)});
    sub:=ImmutableMatrix(F,sub);
    subi:=sub^-1;
    qmats:=[];
    smats:=[];
    nmats:=[];
    sr:=[1..subdim];qr:=[subdim+1..dim];
    for g in matrices do
      g:=sub*g*subi;
      if s then 
	h:=g{sr}{sr};
	h:=ImmutableMatrix(F,h);
	Add(smats,h);
      fi;
      if q then 
	h:=g{qr}{qr};
	h:=ImmutableMatrix(F,h);
	Add(qmats,h);
      fi;
      if c then Add(nmats,g);fi;
    od;
    erg:=rec();
    if s then
      erg.smatrices:=smats;
    fi;
    if q then
      erg.qmatrices:=qmats;
    fi;
    if c then
      erg.nmatrices:=nmats;
    fi;
    if q or c then
      erg.nbasis:=sub;
    fi; 
    return erg;
  fi;
end;


SMTX.SubQuotActions:=SMTX_SubQuotActions;

#############################################################################
##
##  SMTX.NormedBasisAndBaseChange(sub)
##
##  returns a list [bas,change] where bas is a normed basis for <sub> and
##  change is the base change from bas to sub (the basis vectors of bas
##  expressed in coefficients for sub)
SMTX.NormedBasisAndBaseChange:=function(sub)
local l,m,d;
  l:=Length(sub);
  d:=Length(sub[1]);
  m:= IdentityMat(d,One(sub[1][1]));
  sub:=List([1..l],i->Concatenation(ShallowCopy(sub[i]),m[i]));
  TriangulizeMat(sub);
  m:=d+l;
  return [sub{[1..l]}{[1..d]},sub{[1..l]}{[d+1..m]}];
end;

#############################################################################
##
#F  SMTX.InducedActionSubmoduleNB ( module, sub ) . . . . construct submodule
##
## module is a module record, and sub is a list of generators of a submodule.
## IT IS ASSUMED THAT THE GENERATORS OF SUB ARE NORMED.
## (i.e. each has leading coefficient 1 in a unique place).
## SMTX.InducedActionSubmoduleNB ( module, sub ) computes the submodule of
## module for which sub is the basis.
## If sub does not generate a submodule then fail is returned.
SMTX.InducedActionSubmoduleNB:=function ( module, sub )
   local   ans, dim, subdim, smodule,F;

   subdim:=Length (sub);
   if subdim = 0 then
      return List(module.generators,i->[[]]);
   fi;
   dim:=SMTX.Dimension(module);
   F:=SMTX.Field(module);

   ans:=SMTX.SubQuotActions(module.generators,sub,dim,subdim,F,1);

   if ans=fail then
     return fail;
   fi;

   if SMTX.IsZeroGens(module) then
     smodule:=GModuleByMats([],Length(ans.smatrices[1]),F);
   else
     smodule:=GModuleByMats (ans.smatrices,F);
   fi;
   return smodule;
end;

# Ditto, but allowing also unnormed modules
SMTX.InducedActionSubmodule:=function(module,sub)
local nb,ans,dim,subdim,smodule,F;
  nb:=SMTX.NormedBasisAndBaseChange(sub);
  sub:=nb[1];
  nb:=nb[2];

   subdim:=Length (sub);
   if subdim = 0 then
      return List(module.generators,i->[[]]);
   fi;
   dim:=SMTX.Dimension(module);
   F:=SMTX.Field(module);

   ans:=SMTX.SubQuotActions(module.generators,
                                sub,dim,subdim,F,1);

   if ans=fail then
     return fail;
   fi;

   # conjugate the matrices to correspond to given sub
   if SMTX.IsZeroGens(module) then
     smodule:=GModuleByMats([],Length(ans.smatrices[1]),F);
   else
    smodule:=GModuleByMats (List(ans.smatrices,i->i^nb),F);
   fi;
   return smodule;
end;

SMTX.ProperSubmoduleBasis:=function(module)
  if SMTX.IsIrreducible(module) then
    return fail;
  fi;
  return SMTX.Subbasis(module);
end;


#############################################################################
##
#F  SMTX.InducedActionFactorModule( module, sub [,compl] )
##
## module is a module record, and sub is a list of generators of a submodule.
## (i.e. each has leading coefficient 1 in a unique place).
## Qmodule is returned, where qmodule
## is the quotient module.
## 
SMTX.InducedActionFactorModule:=function (arg)
local module,sub,  ans, dim, subdim, F,qmodule;

   module:=arg[1];
   sub:=arg[2];

   sub:=List(sub,ShallowCopy);
   TriangulizeMat(sub);

   subdim:=Length (sub);
   dim:=SMTX.Dimension(module);
   if subdim = dim then
      return List(module.generators,i->[[]]);
   fi;

   F:=SMTX.Field(module);

   ans:=SMTX.SubQuotActions(module.generators,
                                sub,dim,subdim,F,2);

   if ans=fail then
     return fail;
   fi;

   if Length(arg)=3 then
     # compute basechange
     sub:=Concatenation(sub,arg[3]);
     sub:=sub*Inverse(ans.nbasis);
     ans.qmatrices:=List(ans.qmatrices,i->i^sub);
   fi;

   if SMTX.IsZeroGens(module) then
     qmodule:=GModuleByMats([],Length(ans.qmatrices[1]),F);
   else
    qmodule:=GModuleByMats (ans.qmatrices, F);
   fi;
   return qmodule;

end;

#############################################################################
##
#F  SMTX.InducedActionFactorModuleWithBasis( module, sub ) 
##
SMTX.InducedActionFactorModuleWithBasis:=function (module,sub)
local ans, dim, subdim, F,qmodule;

   sub:=List(sub,ShallowCopy);
   TriangulizeMat(sub);

   subdim:=Length (sub);
   dim:=SMTX.Dimension(module);
   if subdim = dim then
      return List(module.generators,i->[[]]);
   fi;

   F:=SMTX.Field(module);

   ans:=SMTX.SubQuotActions(module.generators,
                                sub,dim,subdim,F,2);

   if ans=fail then
     return fail;
   fi;

   # fetch new basis
   sub:=ans.nbasis{[Length(sub)+1..module.dimension]};

   if SMTX.IsZeroGens(module) then
     qmodule:=GModuleByMats([],Length(ans.qmatrices[1]),F);
   else
    qmodule:=GModuleByMats (ans.qmatrices, F);
   fi;
   return [qmodule,sub];

end;

#############################################################################
##
#F  SMTX.InducedAction( module, sub, typ )
##  generators of sub- and quotient-module and original module wrt new basis
##  and new basis
## 
## module is a module record, and sub is a list of generators of a submodule.
## IT IS ASSUMED THAT THE GENERATORS OF SUB ARE NORMED.
## (i.e. each has leading coefficient 1 in a unique place).
## SMTX.InducedAction computes the submodule and quotient
## and the original module with its matrices written wrt to the basis used
## to compute smodule and qmodule. 
## [smodule, qmodule, nmodule] is returned, 
## where smodule is the submodule and qmodule the quotient module.
## The matrices of nmodule have the form  A  0  where  A  and  B  are the
##                                        C  B
## corresponding matrices of smodule and qmodule resepctively.
## If sub is not the basis of a submodule then fail is returned.
SMTX.InducedAction:=function ( arg )
local module,sub,typ,ans,dim,subdim,F,one,erg;

   module:=arg[1];
   sub:=arg[2];
   if Length(arg)>2 then
     typ:=arg[3];
   else
     typ:=7;
   fi;
   subdim:=Length (sub);
   dim:=SMTX.Dimension(module);
   F:=SMTX.Field(module); one:=One (F);

   erg:=SMTX.SubQuotActions(module.generators,
                                sub,dim,subdim,F,typ);

   if erg=fail then
     return fail;
   fi;

   ans:=[];

   if IsBound(erg.smatrices) then
     if SMTX.IsZeroGens(module) then
       Add(ans,GModuleByMats([],Length(erg.smatrices[1]), F));
     else
       Add(ans,GModuleByMats(erg.smatrices, F));
     fi;
   fi;
   if IsBound(erg.qmatrices) then
     if SMTX.IsZeroGens(module) then
       Add(ans,GModuleByMats([],Length(erg.qmatrices[1]), F));
     else
       Add(ans,GModuleByMats(erg.qmatrices, F));
     fi;
   fi;
   if IsBound(erg.nmatrices) then
     if SMTX.IsZeroGens(module) then
       Add(ans,GModuleByMats([],Length(erg.nmatrices[1]), F));
     else
       Add(ans,GModuleByMats(erg.nmatrices, F));
     fi;
   fi;
   if IsBound(erg.nbasis) then
     Add(ans,erg.nbasis);
   fi;

   return ans;

end;

#############################################################################
##
#F  SMTX.InducedActionSubMatrixNB ( mat, sub ) . . . . construct submodule
##
##  as InducedActionSubmoduleNB but for a matrix.
SMTX.InducedActionSubMatrixNB:=function ( mat, sub )
local subdim, dim, F, ans;

   subdim:=Length (sub);
   if subdim = 0 then
      return [];
   fi;
   dim:=Length(mat);
   F:=DefaultFieldOfMatrix(mat);

   ans:=SMTX.SubQuotActions([mat],sub,dim,subdim,F,1);

   if ans=fail then
     return fail;
   else
     return ans.smatrices[1];
   fi;

end;

# Ditto, but allowing also unnormed modules
SMTX.InducedActionSubMatrix:=function(mat,sub)
local nb, subdim, dim, F, ans;
  nb:=SMTX.NormedBasisAndBaseChange(sub);
  sub:=nb[1];
  nb:=nb[2];

   subdim:=Length (sub);
   if subdim = 0 then
      return [];
   fi;
   dim:=Length(mat);
   F:=DefaultFieldOfMatrix(mat);

   ans:=SMTX.SubQuotActions([mat],sub,dim,subdim,F,1);

   if ans=fail then
     return fail;
   else
    # conjugate the matrices to correspond to given sub
     return ans.smatrices[1]^nb;
   fi;

end;

#############################################################################
##
#F  SMTX.InducedActionFactorMatrix( mat, sub [,compl] )
##
##  as InducedActionFactor, but for a matrix.
## 
SMTX.InducedActionFactorMatrix:=function (arg)
local mat, sub, subdim, dim, F, ans;

   mat:=arg[1];
   sub:=arg[2];

   sub:=List(sub,ShallowCopy);
   TriangulizeMat(sub);

   subdim:=Length (sub);
   dim:=Length(mat);
   if subdim = dim then
      return [];
   fi;

   F:=DefaultFieldOfMatrix(mat);

   ans:=SMTX.SubQuotActions([mat],sub,dim,subdim,F,2);

   if ans=fail then
     return fail;
   fi;

   if Length(arg)=3 then
     # compute basechange
     sub:=Concatenation(sub,arg[3]);
     sub:=sub*Inverse(ans.nbasis);
     ans.qmatrices:=List(ans.qmatrices,i->i^sub);
   fi;

   return ans.qmatrices[1];

end;

SMTX_SMCoRaEl:=function(matrices,ngens,newgenlist,dim,F)
local g1,g2,coefflist,M,pol;
  g1:=Random ([1..ngens]);
  g2:=g1;
  while g2=g1 and ngens>1 do
     g2:=Random ([1..ngens]);
  od;
  ngens:=ngens + 1;
  matrices[ngens]:=matrices[g1] * matrices[g2];
  Add (newgenlist, [g1, g2]);
  # Take a random linear sum of the existing generators as new generator.
  # Record the sum in coefflist
  coefflist:=[Random(F)];
  #M:=NullMat(dim, dim, F);
  M:=coefflist[1]*matrices[1];
  for g1 in [2..ngens] do
     g2:=Random (F);
     if IsOne(g2) then
       M:=M + matrices[g1];
     elif not IsZero(g2) then
       M:=M + g2 * matrices[g1];
     fi;
     Add (coefflist, g2);
  od;
  Info(InfoMeatAxe,2,"Evaluated random element in algebra.");
  pol:=CharacteristicPolynomialMatrixNC (F,M,1);
  return [M,coefflist,pol];
end;
SMTX.SMCoRaEl:=SMTX_SMCoRaEl;

# how many random elements should we try before (temporarily ) giving up?
# This number is set relatively high to minimize the chance of an unlucky
# random run in functions such as composition series computation. 
SMTX.RAND_ELM_LIMIT:=5000; 

#############################################################################
##
#F  SMTX.IrreduciblityTest( module ) try to reduce a module over a finite
##                                      field
##
## 27/12/2000.
## New version incorporating Ivanyos/Lux method of handling one difficult case
## for proving reducibility.
## (See G.Ivanyos and K. Lux, `Treating the exceptional cases of the meataxe',
##  Experimental Mathematics 9, 2000, 373-381.
##
## module is a module record
## IsIrreducible ( ) attempts to decide whether module is irreducible.
## When it succeeds it returns true or false.
## We choose at random elements of the group algebra of the group.
## If el is such an element, we define M, p, fac, N, e and v as follows:-
## M is the matrix corresponding to el, p is its characteristic polynomial, 
## fac an irreducible factor of p, N the nullspace of the matrix fac (M), 
## ndim the dimension of N, and v a vector in N.
## If we can find the above such that ndim = deg (fac) then we can test
## conclusively for irreducibility. Then, in the case where irreducibility is
## proved, we store the information as fields for the module, since it may be
## useful later (e.g. to test for absolute irreducibility, equivalence with
## another module).
## These  fields are accessed by the functions
## AlgEl() (el), AlgElMat (M), AlgElCharPol (p), 
## AlgElCharPolFac (fac), AlgElNullspaceDimension (ndim), and
## AlgElNullspaceVec(v).
## 
## If we cannot find such a set with ndim = deg (fac) we may nonetheless prove
## reducibility  by finding a submodule. However we can never prove
## irreducibility without such a set (and hence the algorithm could run
## forever, but hopefully this will never happen!)
## Where reducibility is proved, we set the field .subbasis
## (a basis for the submodule, normed in the sense that the first non-zero
## component of each basis vector is 1, and is in a different position from
## the first non-zero component of every other basis vector).
## The test for irreducibility is based on the meataxe method  (but in the
## meataxe, ndim is always very small, usually 1. The modification here is put
## in to enable the method to work over modules with large centralizing fields).
## We simply spin v. If we do not get  the whole space, we have a submodule, 
## on the other hand, if we do get the whole space, we calculate the 
## nullspace NT of the transpose of fac (M), spin that under the group 
## generated by the transposes of the generating matrices, and thus either 
## find the transpose of a submodule or conclusively prove irreducibility.
##
## This function can also be used to get a random submodule. Therefore it
## is not an end-user function but only called internally
SMTX_IrreducibilityTest:=function ( module )
   local matrices, tmatrices, ngens, ans,  M, mat, g1, g2, maxdeg, 
         newgenlist, coefflist, orig_ngens, zero, 
         N, NT, v, subbasis, fac, sfac, pol, orig_pol, q, dim, ndim, i,
         l, trying, deg, facno, bestfacno, F, count, R, rt0,idmat,
         pfac1, pfac2, pfr, idemp, M2, mat2, mat3;

   rt0:=Runtime ();
   Info(InfoMeatAxe,1,"Calling MeatAxe. All times will be in milliseconds");
   if not SMTX.IsMTXModule (module) then 
      return Error ("Argument of IsIrreducible is not a module.");
   fi;

   matrices:=ShallowCopy(module.generators);
   dim:=SMTX.Dimension(module);
   ngens:=Length (matrices);
   orig_ngens:=ngens;
   F:=SMTX.Field(module);
   zero:=Zero (F);
   R:=PolynomialRing (F);

   # Now compute random elements M of the group algebra, calculate their
   # characteristic polynomials, factorize, and apply the irreducible factors
   # to M to get matrices with nontrivial nullspaces.
   # tmatrices will be a list of the transposed generators if required.

   tmatrices:=[];
   trying:=true; 
   #trying will become false when we have an answer
   maxdeg:=1;
   newgenlist:=[];
   # Do a small amount of preprocessing to increase the generator set.
   for i in [1..1] do
      g1:=Random ([1..ngens]);
      g2:=g1;
      while g2=g1 and Length (matrices) > 1 do
         g2:=Random ([1..ngens]);
      od;
      ngens:=ngens + 1;
      matrices[ngens]:=matrices[g1] * matrices[g2];
      Add (newgenlist, [g1, g2]);
   od;
   Info(InfoMeatAxe,1,"Done preprocessing. Time = ",Runtime()-rt0,".");
   count:=0;

   #Main loop starts - choose a random element of group algebra on each pass
   while trying  do
      count:=count + 1;
      if count mod SMTX.RAND_ELM_LIMIT = 0 then
         Error ("Have generated ",SMTX.RAND_ELM_LIMIT,
	        "random elements and failed to prove\n",
                "or disprove irreducibility. Type return to keep trying.");
      fi;
      maxdeg:=Minimum(maxdeg * 2,dim);
      # On this pass, we only consider irreducible factors up to degree maxdeg.
      # Using higher degree factors is very time consuming, so we prefer to try
      # another element.
      # To choose random element, first add on a new generator as a product of
      # two randomly chosen unequal existing generators
      # Record the product in newgenlist.
      Info(InfoMeatAxe,1,"Choosing random element number ",count);

      M:=SMTX.SMCoRaEl(matrices,ngens,newgenlist,dim,F);

      idmat:=matrices[1]^0;
      ngens:=Length(matrices);

      coefflist:=M[2];
      pol:=M[3];
      M:=M[1];

      orig_pol:=pol;
      Info(InfoMeatAxe,2,"Evaluated characteristic polynomial. Time = ",
           Runtime()-rt0,".");
      #Now we extract the irreducible factors of pol starting with those 
      #of low degree
      deg:=0;
      fac:=[];
      #The next loop is through the degrees of irreducible factors
      while DegreeOfLaurentPolynomial (pol) > 0 and deg < maxdeg and trying do
         repeat
            deg:=deg + 1;
            if deg > Int (DegreeOfLaurentPolynomial (pol) / 2) then
               fac:=[pol];
            else
               fac:=Factors(R, pol: factoroptions:=rec(onlydegs:=[deg]));
               fac:=Filtered(fac,i->DegreeOfLaurentPolynomial(i)=deg);
               Info(InfoMeatAxe,2,Length (fac)," factors of degree ",deg,
                    ", Time = ",Runtime()-rt0,".");
            fi;
         until fac <> [] or deg = maxdeg;

         if fac <> [] then
            if DegreeOfLaurentPolynomial (fac[1]) = dim then 
               # In this case the char poly is irreducible, so the 
               # module is irreducible.
               ans:=true;
               trying:=false; 
               bestfacno:=1;
               v:=ListWithIdenticalEntries(dim,zero);
               v[1]:=One (F);
               ndim:=dim;
            fi; 
            # Otherwise, first see if there is a non-repeating factor.
            # If so it will be decisive, so delete the rest of the list
            l:=Length (fac);
            facno:=1;
            while facno <= l and trying do
               if facno = l  or  fac[facno] <> fac[facno + 1] then
                  fac:=[fac[facno]]; l:=1;
               else
                  while facno < l and fac[facno] = fac[facno + 1] do
                     facno:=facno + 1;
                  od;
               fi;
               facno:=facno + 1;
            od;
            # Now we can delete repetitions from the list fac
            sfac:=Set (fac);

            if DegreeOfLaurentPolynomial (fac[1]) <> dim then
               # Now go through the factors and attempt to find a submodule
               facno:=1; l:=Length (sfac);
               while facno <= l and trying do
                  mat:=Value (sfac[facno], M,idmat);
                  MakeImmutable(mat);
                  ConvertToMatrixRep(mat,F);
                  Info(InfoMeatAxe,2,"Evaluated matrix on factor. Time = ",
                       Runtime()-rt0,".");
                  N:=NullspaceMat (mat);
                  v:=N[1];
                  ConvertToVectorRep(v,F);
                  ndim:=Length (N);

                  Info(InfoMeatAxe,2,"Evaluated nullspace. Dimension = ",
                       ndim,". Time = ",Runtime()-rt0,".");
                  subbasis:=SMTX.SpinnedBasis (v, matrices, F,orig_ngens);
                  Info(InfoMeatAxe,2,"Spun up vector. Dimension = ",
                       Length(subbasis),". Time = ",Runtime()-rt0,".");
                  if Length (subbasis) < dim then
                     # Proper submodule found 
                     trying:=false;
                     ans:=false;
                     SMTX.SetSubbasis(module, subbasis);
                  elif ndim = deg then
                     trying:=false;
                     # if we transpose and find no proper submodule, then the
                     # module is definitely irreducible. 
                     mat:=TransposedMat (mat);
                     if Length (tmatrices)=0 then
                        for i in [1..orig_ngens] do
                           Add (tmatrices, TransposedMat (matrices[i]));
                        od;
                     fi;
                     Info(InfoMeatAxe,2,"Transposed matrices. Time = ",
                          Runtime()-rt0,".");
                     NT:=NullspaceMat (mat);
                     ConvertToVectorRep(NT[1],F);
                     Info(InfoMeatAxe,2,"Evaluated nullspace. Dimension = ",
                          Length(NT),". Time = ",Runtime()-rt0, ".");
                     subbasis:=SMTX.SpinnedBasis(NT[1],tmatrices,F,orig_ngens);
                     Info(InfoMeatAxe,2,"Spun up vector. Dimension = ",
                          Length(subbasis),". Time = ",Runtime()-rt0, ".");
                     if Length (subbasis) < dim then
                        # subbasis is a basis for a submodule of the transposed 
                        # module, and the orthogonal complement of this is a 
                        # submodule of the original module. So we find a vector 
                        # v in that, and then spin it. Of course we won't
                        # necessarily get the full orthogonal complement 
                        # that way, but we'll certainly get a proper submodule.
                        v:=SMTX.OrthogonalVector (subbasis);
                        SMTX.SetSubbasis(module,
                          SMTX.SpinnedBasis(v,matrices,F,orig_ngens));
                        ans:=false;
                     else
                        ans:=true;
                        bestfacno:=facno;
                     fi;
                  fi;
		  if trying and deg>1 and count>2 then
                     Info(InfoMeatAxe,1,"Trying Ivanyos/Lux Method");
                     #first find the appropriate idempotent
                     pfac1:=sfac[facno];
                     pfac2:= Quotient(R, orig_pol, sfac[facno]);
                     while QuotRemLaurpols(pfac2, sfac[facno], 2) = Zero(R) do
                       pfac1:=pfac1*sfac[facno];
                       pfac2:= Quotient(R, pfac2, sfac[facno]);
                     od;
                     pfr:=GcdRepresentation(pfac1, pfac2);
                     idemp:=QuotRemLaurpols(pfr[2]*pfac2, orig_pol, 2);
		     #Now another random element in the group algebra.
                     #and a random vector in the module
                     g2:=Random (F);
                     if IsOne(g2) then
                          M2:=matrices[1];
                        else
                          M2:=g2 * matrices[1];
                        fi;
                     for g1 in [2..ngens] do
                        g2:=Random (F);
                        if IsOne(g2) then
                          M2:=M2 + matrices[g1];
                        elif not IsZero(g2) then
                          M2:=M2 + g2 * matrices[g1];
                        fi;
                     od;
                     Info(InfoMeatAxe,2,
                         "Evaluated second random element in algebra.");
                     v:=Random(FullRowSpace(F,dim));
                     mat2:=Value (idemp, M,idmat);
                     MakeImmutable(mat2);
                     ConvertToMatrixRep(mat2,F);
                     mat3:=mat2*M2*mat2;
                     v:=v*(M*mat3 - mat3*M);
                     #This vector might lie in a proper subspace!
                     ConvertToVectorRep(v,F);
                     subbasis:=SMTX.SpinnedBasis (v, matrices, F,orig_ngens);
                     Info(InfoMeatAxe,2,"Spun up vector. Dimension = ",
                       Length(subbasis),". Time = ",Runtime()-rt0,".");
                    if Length(subbasis) < dim and Length(subbasis) <> 0  then
                       # Proper submodule found 
                       trying:=false;
                       ans:=false;
                       SMTX.SetSubbasis(module, subbasis);
                    fi;
                  fi;
                  facno:=facno + 1;
               od; # going through irreducible factors of fixed degree.
               # If trying is false at this stage, then we don't have 
               #an answer yet, so we have to go onto factors of the next degree.
               # Now divide p by the factors used if necessary
               if trying and deg < maxdeg then
                  for q in fac do
                     pol:=Quotient (R, pol, q);
                  od;
               fi; 
            fi;           #DegreeOfLaurentPolynomial (fac[1]) <> dim
         fi;             #fac <> []
      od; #loop through degrees of irreducible factors

      # if we have not found a submodule and trying is false, then the module
      # must be irreducible.
      if trying = false and ans = true then
         SMTX.SetAlgEl(module, [newgenlist, coefflist]);
         SMTX.SetAlgElMat (module, M);
         SMTX.SetAlgElCharPol (module, orig_pol);
         SMTX.SetAlgElCharPolFac (module, sfac[bestfacno]);
         SMTX.SetAlgElNullspaceVec(module, v);
         SMTX.SetAlgElNullspaceDimension (module, ndim);
      fi;

   od;  #main loop

   # das kommt in die eigentliche Methode!
   #if ans = true then 
   #   SMTX.SetReducibleFlag (module, false);
   #else 
   #   SMTX.SetReducibleFlag (module, true);
   #fi;

   Info(InfoMeatAxe,1,"Total time = ",Runtime()-rt0," milliseconds.");
   return ans;

end;

SMTX.IrreducibilityTest:=SMTX_IrreducibilityTest;

SMTX.IsIrreducible:=function(module)
  if not IsBound(module.IsIrreducible) then
    module.IsIrreducible:=SMTX.IrreducibilityTest(module);
  fi;
  return module.IsIrreducible;
end;

#############################################################################
##
#F SMTX.RandomIrreducibleSubGModule ( module ) . . .
## find a basis for a random irreducible
## submodule of module, and return that basis and the submodule, with all
## the irreducibility flags set.
## Returns false if module is irreducible.
SMTX_RandomIrreducibleSubGModule:=function ( module )
   local  ranSub, subbasis, submodule, subbasis2, submodule2,
   F, dim, el, M, fac, N, i, matrices, ngens, genpair;

   if not SMTX.IsMTXModule (module) then 
      return Error ("Argument of RandomIrreducibleSubGModule is not a module.");
   elif SMTX.HasIsIrreducible(module) and SMTX.IsIrreducible(module) then
      return false;
   fi;

   # now call an irreducibility test that will compute a new subbasis

#AH Do we really want to keep old flags? What are they good for?
#      copymodule:=Copy (module);
#      UndoReducibleFlag (copymodule);
#      # Do this to avoid changing the flags in the original module
#      # We need to undo the reducible falgs before calling IsIrreducible 
#      # so that it actually runs and doesn't merely select the submodule 
#      # already listed as a field of module.

   i:=SMTX.IrreducibilityTest(module);

   if i then
     # we just found out it is irreducible
     SMTX.SetIsIrreducible(module,true);
     return false;
   elif not SMTX.HasIsIrreducible(module) then
     # or store reducibility
     SMTX.SetIsIrreducible(module,false);
   fi;

   subbasis:=SMTX.Subbasis (module);
   submodule:=SMTX.InducedActionSubmoduleNB (module, subbasis);
   ranSub:=SMTX.RandomIrreducibleSubGModule (submodule);
   if ranSub = false then
      # submodule has been proved irreducible in a call to this function, 
      # so the flags have been set.
      return [ subbasis, submodule] ;
   else 
      # ranSub[1] is given in terms of the basis for the submodule, 
      # but we want it in terms of the basis of the original module.
      # So we multiply it by subbasis.
      # Then we need our basis to be normed. 
      # this is done by triangulization
      F:=SMTX.Field(module);
      subbasis2:=ranSub[1] * subbasis;
      subbasis2:=List(subbasis2,ShallowCopy);
      TriangulizeMat(subbasis2);

      # But now since we've normed the basis subbasis2, 
      # the matrices of the submodule ranSub[2] are given with respect to 
      # the wrong basis.  So we have to recompute the submodule.
      submodule2:=SMTX.InducedActionSubmoduleNB (module, subbasis2);
      # Unfortunately, although it's clear that this submodule is 
      # irreducible, we'll have to reset the flags that IsIrreducible sets. 
      # AH Why can't we keep irreducibility?

      # Some will be the same # as in ranSub[2], but some are affected by 
      # the base change, or at least part of it, since the flags gets 
      # screwed up by the base change.
      # We need to set the following flags:-

      # ReducibleFlag
      # AlgEl(el), AlgElMat (M), AlgElCharPol (p), 
      # AlgElCharPolFac (fac), AlgElNullspaceDimension (ndim), and
      # AlgElNullspaceVec(v).
      # Most of these can simply be copied.
#AHSetReducibleFlag (submodule2, false);

      el:=SMTX.AlgEl(ranSub[2]); 
      SMTX.SetAlgEl(submodule2,el);
      SMTX.SetAlgElCharPol(submodule2,SMTX.AlgElCharPol(ranSub[2]));
      fac:=SMTX.AlgElCharPolFac(ranSub[2]);
      SMTX.SetAlgElCharPolFac(submodule2,fac);
      SMTX.SetAlgElNullspaceDimension(submodule2,
             SMTX.AlgElNullspaceDimension(ranSub[2]));

      # Only the actual algebra element and its nullspace have to be recomputed
      # This code is essentially from IsomorphismGModule 
      dim:=SMTX.Dimension(submodule2);
      matrices:=ShallowCopy(submodule2.generators);
      ngens:=Length (matrices);
      for genpair in el[1] do
         ngens:=ngens + 1;
         matrices[ngens]:=matrices[genpair[1]] * matrices[genpair[2]];
      od;
      M:= ImmutableMatrix(F,NullMat(dim,dim,Zero(F)));
      for i in [1..ngens] do M:=M + el[2][i] * matrices[i]; od;
      SMTX.SetAlgElMat(submodule2,M);
      N:=NullspaceMat(Value(fac,M,M^0));
      ConvertToVectorRep(N[1],F);
      SMTX.SetAlgElNullspaceVec(submodule2,N[1]);
      return [subbasis2, submodule2];
   fi;

end;
SMTX.RandomIrreducibleSubGModule:=SMTX_RandomIrreducibleSubGModule;

#############################################################################
##
#F  SMTX.GoodElementGModule ( module ) . .  find good group algebra element
##                                       in an irreducible module
##
## module is a module that is already known to be irreducible.
## GoodElementGModule finds a group algebra element with nullspace of
## minimal possible dimension. This dimension is 1 if the module is absolutely
## irreducible, and the degree of the relevant field extension otherwise.
## This is needed for testing for equivalence of modules.
SMTX_GoodElementGModule:=function ( module )
local matrices, ngens, M, mat,  N, newgenlist, coefflist, orig_ngens,
      fac, sfac, pol, oldpol,  q, deg, i, l,
      trying, dim, mindim, F, R, count, rt0;

   rt0:=Runtime ();
   if not SMTX.IsMTXModule(module) or not SMTX.IsIrreducible(module) then
     return Error ("Argument is not an irreducible module.");
   fi;
   if not SMTX.HasIsAbsolutelyIrreducible(module) then
      SMTX.IsAbsolutelyIrreducible(module);
   fi;
   if  SMTX.IsAbsolutelyIrreducible(module) then
     mindim:=1;
   else
     mindim:=SMTX.DegreeFieldExt(module);
   fi;

   if SMTX.AlgElNullspaceDimension (module) = mindim then return; fi;
   # This is the condition that we want. If it holds already, then there is
   # nothing else to do.

   dim:=SMTX.Dimension(module);
   matrices:=ShallowCopy(module.generators);
   ngens:=Length (matrices);
   orig_ngens:=ngens;
   F:=SMTX.Field(module);
   R:=PolynomialRing(F);

   # Now compute random elements el of the group algebra, calculate their
   # characteristic polynomials, factorize, and apply the irreducible factors
   # to el to get matrices with nontrivial nullspaces.

   trying:=true;
   count:=0;
   newgenlist:=[];
   while trying do
      count:=count + 1;
      if count mod SMTX.RAND_ELM_LIMIT = 0 then
         Error ("Have generated ",SMTX.RAND_ELM_LIMIT,
	        " random elements and failed ",
                "to find a good one. Type return to keep trying.");
      fi;
      Info(InfoMeatAxe,2,"Choosing random element number ",count,".");

      M:=SMTX.SMCoRaEl(matrices,ngens,newgenlist,dim,F);
      ngens:=Length(matrices);

      coefflist:=M[2];
      pol:=M[3];
      M:=M[1];

      Info(InfoMeatAxe,2,"Evaluated characteristic polynomial. Time = ",
           Runtime()-rt0,".");
      #That is necessary in case p is defined over a smaller field that F.
      oldpol:=pol;
      #Now we extract the irreducible factors of pol starting with those
      #of low degree
      deg:=0;
      fac:=[];
      while deg  <= mindim and trying do
         repeat
            deg:=deg + 1;
            if deg > mindim then
               fac:=[pol];
            else
               fac:=Factors(R, pol: factoroptions:=rec(onlydegs:=[deg]));
               fac:=Filtered(fac,i->DegreeOfLaurentPolynomial(i)<=deg);
               Info(InfoMeatAxe,2,Length(fac)," factors of degree ",deg,
                    ", Time = ",Runtime()-rt0,".");
               sfac:=Set (fac);
            fi;
         until fac <> [];
         l:=Length (fac);
         if trying and deg <= mindim then
            i:=1;
            while i <= l and trying do
               mat:=Value (fac[i], M,M^0);
               MakeImmutable(mat);
               ConvertToMatrixRep(mat,F);
               Info(InfoMeatAxe,2,"Evaluated matrix on factor. Time = ",
                    Runtime()-rt0,".");
               N:=NullspaceMat(mat);
               Info(InfoMeatAxe,2,"Evaluated nullspace. Dimension = ",
                    Length(N),". Time = ",Runtime()-rt0,".");
               if Length (N) = mindim then
                  trying:=false;
                  SMTX.SetAlgEl(module, [newgenlist, coefflist]);
                  SMTX.SetAlgElMat (module, M);
                  SMTX.SetAlgElCharPol (module, oldpol);
                  SMTX.SetAlgElCharPolFac (module, fac[i]);
		  ConvertToVectorRep(N[1],F);
                  SMTX.SetAlgElNullspaceVec(module, N[1]);
                  SMTX.SetAlgElNullspaceDimension (module, Length (N));
               fi;
               i:=i + 1;
            od;
         fi;

         if trying then
            for q in fac do
               pol:=Quotient (R, pol, q);
            od;
         fi;
      od;
   od;
   Info(InfoMeatAxe,1,"Total time = ",Runtime()-rt0," milliseconds.");

end;
SMTX.GoodElementGModule:=SMTX_GoodElementGModule;

#############################################################################
##
#F  EnlargedIrreducibleGModule (module, mat) . .add a generator to a module that
#
# 2bdef!


#############################################################################
##
#F  SMTX.FrobeniusAction (A, v [, basis]) . . action of matrix A on
##                                  . . Frobenius block of vector v
##
## FrobeniusAction (A, v) computes the Frobenius block of the dxd matrix A
## generated by the length - d vector v, and returns it.
## It is based on code of MinPolCoeffsMat.
## The optional third argument is for returning the basis for this block.
##
SMTX_FrobeniusAction:=function ( arg )
local   L, d, p, M, one, zero, R, h, v, w, i, j, nd, ans, 
	A, basis;

   if Number (arg) = 2  then
      A:=arg[1];
      v:=arg[2];
      basis:=0;
   elif Number (arg) = 3  then
      A:=arg[1];
      v:=arg[2];
      basis:=arg[3];
   else
      return Error ("usage: SMTX.FrobeniusAction ( <A>, <v>, [, <basis>] )");
   fi;
   one :=One(A[1][1]);
   zero:=Zero(one);
   d:=Length ( A );
   M:=ListWithIdenticalEntries(Length(A[1]),zero);
   Add ( M, M[1] );
   ConvertToVectorRep(M,DefaultField(v));

   # L[i] (length d) will contain a vector with head entry 1 at position i,
   # which is in the current block.
   # R[i] (length d + 1 but (d + 1) - entry always 0) is vector expressing
   # L[i] in terms of the basis of the block.
   L:=[];
   R:=[];

   # <j> - 1 gives the power of <A> we are looking at
   j:=1;

   # spin vector around and construct polynomial
   repeat

      # compute the head of <v>
      h:=1;
      while v[h] = zero  do
         h:=h + 1;
      od;

      # start with appropriate polynomial x^(<j> - 1)
      p:=ShallowCopy ( M );
      p[j]:=one;

      # divide by known left sides
      w:=v;
      while h <= d and IsBound ( L[h] ) do
         p:=p - w[h] * R[h];
         w:=w - w[h] * L[h];
         while h <= d and w[h] = zero do
            h:=h + 1;
         od;
      od;

      # if <v> is not the zero vector try next power
      if h <= d  then
	 #AH replaced Copy by ShallowCopy as only vector is used
         if (basis <> 0) then basis[j]:=ShallowCopy (v); fi;
         R[h]:=p * w[h]^-1;
         L[h]:=w * w[h]^-1;
         j:=j + 1;
         v:=v * A;
      fi;
   until h > d;

   nd:=Length (p);
   while 0 < nd  and p[nd] = zero  do
      nd:=nd - 1;
   od;
   nd:=nd - 1;
   ans:=[];
   for i in [1..nd - 1] do
      ans[i]:=[];
      for j in [1..nd] do ans[i][j]:=zero; od;
      ans[i][i + 1]:=one;
   od;
   ans[nd]:=[];
   for j in [1..nd] do
      ans[nd][j]:= - p[j];
   od;

   return ans;
end;
SMTX.FrobeniusAction:=SMTX_FrobeniusAction;

#############################################################################
##
#F SMTX.CompleteBasis(matrices,basis) . complete a basis under a group action
##
##  CompleteBasis ( matrices, basis ) takes the partial basis 'basis' of the
##  underlying space of the (irreducible) module defined by matrices, and
##  attempts to extend it to a complete basis which is a direct sum of
##  translates of the original subspace under group elements. It returns
##  true or false according to whether it succeeds.
##  It is called by IsAbsolutelyIrreducible ()
## 
SMTX_CompleteBasis:=function ( matrices, basis )
local  L, d, subd, subd0, zero, h, v, w, i, bno, gno, vno, newb, ngens;

   subd:=Length (basis);
   subd0:=subd;
   d:=Length ( basis[1] );
   if d = subd then
      return true;
   fi;
   # L is list of normalized generators of the subspace spanned by basis.
   L:=[];
   zero:=Zero(basis[1][1]);
   ngens:=Length (matrices);

   #First find normalized generators for subspace itself.
   for i in [1..subd] do
      v:=basis[i];
      h:=1;
      while v[h] = zero  do
         h:=h + 1;
      od;
      w:=v;
      while h <= d and IsBound ( L[h] )  do
         w:=w - w[h] * L[h];
         while h <= d and w[h] = zero  do
            h:=h + 1;
         od;
      od;
      if h <= d then
         L[h]:=w * w[h]^-1;
      else 
         return Error ("Initial vectors are not linearly independent.");
      fi;
   od;

   #Now start translating
   bno:=1; gno:=1; vno:=1;
   while subd < d do
      #translate vector vno of block bno by generator gno
      v:= basis[ (bno - 1) * subd0 + vno] * matrices[gno];
      h:=1;
      while h<=d and v[h] = zero  do
         h:=h + 1;
      od;
      w:=v;
      while h <= d and IsBound ( L[h] )  do
         w:=w - w[h] * L[h];
         while h <= d and w[h] = zero  do
            h:=h + 1;
         od;
      od;
      if (h <= d) then
         #new generator (and block)
         if vno = 1 then
            newb:=true;
         elif newb = false then
            return false;
         fi;
         L[h]:=w * w[h]^-1;
         subd:=subd + 1;
         basis[subd]:=v;
      else
         #in existing subspace
         if vno = 1 then
            newb:=false;
         elif newb = true then
            return false;
         fi;
      fi;
      vno:=vno + 1;
      if vno > subd0 then
         vno:=1;
         gno:=gno + 1;
         if gno > ngens then
            gno:=1;
            bno:=bno + 1;
         fi;
      fi;
   od;

   return true;
end;
SMTX.CompleteBasis:=SMTX_CompleteBasis;

#############################################################################
##
#F SMTX.AbsoluteIrreducibilityTest( module ) . . decide if an irreducible
##                    module over a  finite field is absolutely irreducible
##
## this function does the work for an absolute irreducibility test but does
## not actually set the flags.
## The function calculates the centralizer of the module.
## The centralizer should be isomorphic to the multiplicative 
## group of the field GF (q^e) for some e, or rather to the group of 
## dim/e x dim/e scalar matrices over GF (q^e), or equivalently, 
## dim x dim matrices composed of identical e x e blocks along the diagonal.
##  e = 1 <=> the module is absolutely irreducible.
## The .fieldExtDeg component is set to e during the function call.
## The function shouldn't be called if the module has not already been
## shown to be irreducible, using IsIrreducible. 
## 
SMTX_AbsoluteIrreducibilityTest:=function ( module )
local dim, ndim, gcd, div, e, ct, F, q, ok, 
      M, v, M0, v0, C, C0, centmat, one, zero, 
      pow, matrices, newmatrices, looking, 
      basisN, basisB, basisBN, P, Pinv, i, j, k, nblocks; 

   if not SMTX.IsMTXModule(module) or not SMTX.IsIrreducible(module) then
      Error("Argument of IsAbsoluteIrreducible is not an irreducible module");
   fi;

   dim:=SMTX.Dimension(module);
   F:=SMTX.Field(module);
   q:=Size (F);
   matrices:=module.generators;

   # M acts irreducibly on N, which is canonically defined with respect to M
   # as the nullspace of fac (M), where fac is a factor of the char poly of M.
   # ndim is the dimension of N, and v is a vector of N. All these come from
   # the irreducibility test for the module.
   # An element of the centralizer must centralize every element, and
   # therefore M, and so must preserve N, since N is canonically defined
   # wrt M. Our plan is therefore first to find an element which centralizes
   # the restriction of M to N, and then extend it to the whole space. 

   M:=SMTX.AlgElMat(module);
   ndim:=SMTX.AlgElNullspaceDimension(module);
   v:=SMTX.AlgElNullspaceVec(module);

   # e will have to divide both dim and ndim, and hence their gcd.
   gcd:=GcdInt (dim, ndim);
   Info(InfoMeatAxe,2,"GCD of module and nullspace dimensions = ", gcd, ".");
   if gcd = 1 then
      SMTX.SetDegreeFieldExt(module,1);
      #SetAbsReducibleFlag (module, false);
      return true;
   fi;
   div:=DivisorsInt(gcd);

   # It's easy to find elements  in the centralizer of an element in Frobenius 
   # (=rational canonical) form (centralizing elements are defined by their 
   # action on the first basis element).
   # M0  is the Frobenius form for the action of M on N.
   # basisN is set by the function SMTX.FrobeniusAction to be the 
   # basis v, vM, vM^2, .. for N

   basisN:=[];
   Info(InfoMeatAxe,2,
     "Calc. Frobenius action of element from group algebra on nullspace.");
   M0:=SMTX.FrobeniusAction(M,v,basisN);

   zero:=Zero (F);
   one:= One (F);
   v0:=ListWithIdenticalEntries(Length(M0[1]),zero);
   v0[1]:=one;
   ConvertToVectorRep(v0, F);

   # v0 is just the vector (1, 0, 0....0) of length ndim. It has nothing
   # in particular to do with M0[1], but multiplying a vector that happens to be 
   # around by 0 is a good way to get a zero vector of the right length. 

   # we try all possible divisors of gcd (biggest first) as possibilities for e
   # We're looking for a centralizing element with order dividing q^e - 1, and
   # blocks size e on N. 
   for ct in Reversed ([2..Length (div)]) do
      e:=div[ct];
      Info(InfoMeatAxe,2,"Trying dimension ",e," for centralising field.");
      # if ndim = e, M0 will do. 
      if ndim > e then
         C:=M0;
         # Take the smallest power of C guaranteed to have order dividing
	 # q^e - 1, and try that.
         pow:=(q^ndim - 1)/ (q^e - 1);
         Info(InfoMeatAxe,2,"Looking for a suitable centralising element.");
         repeat
            # The first time through the loop C is M0, otherwise we choose C
	    # at random from the centralizer of M0. Since M0 is in Frobenius
	    # form any centralising element is determined by its top row
	    # (which may be anything but the zero vector).

            if Length(C)=0 then
               C[1]:=[];
               repeat
                  ok:=0;
                  for i in [1..ndim] do 
                     C[1][i]:=Random (F);
		     if C[1][i] <> zero then  ok:=1; fi;
                  od;
               until ok=1;
               for i in [2..ndim] do C[i]:=C[i - 1] * M0; od; 
	       C:=ImmutableMatrix(F,C);
            fi;
            # C0 is the Frobenius form for the action of this power on one
	    # of its blocks, B (all blocks have the same size). basisBN will
	    # be set to be a basis for B, in terms of the elements of basisN.
	    # A matrix product gives us the basis for B in terms of the
	    # original basis for the module.
            basisBN:=[];
            C0:=SMTX.FrobeniusAction(C^pow,v0,basisBN);
            C:=[];
         until Length (C0) = e;
	 Info(InfoMeatAxe,2,"Found one.");
         basisB:=ShallowCopy(basisBN * basisN);
      else
         C0:=M0;
         basisB:=ShallowCopy(basisN);
      fi;
      # Now try to extend basisB to a basis for the whole module, by
      # translating it by the generating matrices.
      P:=basisB;
      Info(InfoMeatAxe,2,"Trying to extend basis to whole module.");
      if SMTX.CompleteBasis(matrices,P) then
         # We succeeded in extending the basis (might not have done).
         # So now we have a full basis, which we think of now as a base
 	 # change matrix.
         Info(InfoMeatAxe,2,"Succeeded. Calculating centralising matrix.");
         newmatrices:=[];
         Pinv:=P^-1;
         for i in [1..Length (matrices)] do
            newmatrices[i]:=P * matrices[i] * Pinv;
         od;
         # Make the sum of copies of C0 as centmat
         centmat:=NullMat (dim, dim, F);
         nblocks:=dim/e;
         for i in [1..nblocks] do
            for j in [1..e] do
               for k in [1..e] do
                  centmat[ (i - 1) * e + j][ (i - 1) * e + k]:=C0[j][k];
               od;
            od;
         od;
         Info(InfoMeatAxe,2,"Checking that it centralises the generators.");
         # Check centralizing.
         looking:=true;
         i:=1;
         while looking and i <= Length (newmatrices) do
            if newmatrices[i] * centmat <> centmat * newmatrices[i] then
               looking:=false;
            fi;
            i:=i + 1;
         od;
         if looking then
	    Info(InfoMeatAxe,2,"It did!");
            SMTX.SetDegreeFieldExt(module, e);
            #SetAbsReducibleFlag (module, true);
            SMTX.SetCentMat (module, P^-1 * centmat * P); # get the base right
            # We will also record the minimal polynomial of C0 (and hence of
	    # centmat) in case we need it at some future date.
            SMTX.SetCentMatMinPoly (module, MinimalPolynomialMatrixNC(F,C0,1));
            return false;
         fi;
         Info(InfoMeatAxe,2,"But it didn't.");
      else
         Info(InfoMeatAxe,2,"Failed!");
      fi;
   od;

   Info(InfoMeatAxe,2,
     "Tried all divisors. Must be absolutely irreducible.");
   SMTX.SetDegreeFieldExt(module, 1);
   #SetAbsReducibleFlag (module, false);
   return true;
end;
SMTX.AbsoluteIrreducibilityTest:=SMTX_AbsoluteIrreducibilityTest;

SMTX.DegreeFieldExt:=function(module)
  if not IsBound(module.smashMeataxe.degreeFieldExt) then
    SMTX.AbsoluteIrreducibilityTest( module );
  fi;
  return module.smashMeataxe.degreeFieldExt;
end;

SMTX.DegreeSplittingField:=function(module)
  return DegreeOverPrimeField(SMTX.Field(module))
         *SMTX.DegreeFieldExt(module);
end;

#############################################################################
##
#F  FieldGenCentMat ( module ) . . find a centralizing matrix that generates
##                                the centralizing field of an irred. module
##
## FieldGenCentMat ( ) should only be applied to modules that have already
## been proved irreducible using IsIrreducible. It then tests for absolute
## irreducibility (if not already known) and does nothing if module is
## absolutely irreducible. Otherwise, it returns a a matrix that generates
## (multiplicatively) the centralizing field (i.e. its multiplicative order
## is q^e - 1, where e is the degree of the centralizing field. This is not
## yet used, but maybe in future, if we wish to reduce the group to matrices
## over the larger field.
SMTX.FieldGenCentMat:=function ( module )
   local e, F, R, q, qe, minpol, pp, 
         M, v, M0, v0, C, C0, centmat, newcentmat, genpol, looking, 
         i, l, okd; 

  if SMTX.FGCentMat(module)=fail then
    if SMTX.IsMTXModule (module) = false then
      Error ("Argument of IsIrreducible is not a module.");
    fi;

    if not SMTX.IsIrreducible(module) then
      Error ("GModule is not irreducible.");
    fi;

    # enforce absirred knowledge as well.
    #if not SMTX.IsAbsolutelyIrreducible (module) then
    #  Error ("GModule is not absolutely irreducible.");
    #fi;

    if SMTX.CentMat(module)=fail then
      Error ("No CentMat component!");
    fi;

    F:=SMTX.Field (module);
    R:=PolynomialRing (F);
    q:=Size (F);
    e :=SMTX.DegreeFieldExt(module);
    qe:=q^e - 1;
    minpol:=SMTX.CentMatMinPoly (module);
    # Factorise q^e - 1 
    pp:=PrimePowersInt (qe);
    # We seek a generator of the field of order q^e - 1. In other words, a
    # polynomial genpol of degree e, which has multiplicative order q^e - 1
    # modulo minpol. We first try the polynomial x, which is the element we
    # have already. If this does not work, then we try random nonconstant
    # polynomials until we find one with the right order.

    genpol:=Indeterminate (F);

    looking:=true;
    while looking do
      if genpol <> minpol then
      okd:=FFPOrderKnownDividend (R, genpol, minpol, pp); 
      if okd[1] * Order (One(F)*okd[2]) = qe then
	  looking:=false;
      fi;
      fi;
      if looking then
	  repeat
	    genpol:=RandomPol (F, e,1);
	  until DegreeOfUnivariateLaurentPolynomial(genpol) > 0;
	  genpol:=StandardAssociate (R, genpol);
      fi;
    od;
    # Finally recalculate centmat and its minimal polynomial.
    centmat:=SMTX.CentMat (module);
    newcentmat:=Value (genpol, centmat,centmat^0);
    ConvertToMatrixRep(newcentmat,q);
    SMTX.SetFGCentMat (module, newcentmat);
    SMTX.SetFGCentMatMinPoly(module,MinimalPolynomialMatrixNC(F,newcentmat,1));
    # Ugh! That was very inefficient - should work out the min poly using
    # polynomials, but will sort that out if its ever needed.
  fi;
  return SMTX.FGCentMat(module);
end;

###############################################################################
##
#F  SMTX.CollectedFactors ( module ) . . find composition factors of a module
##
## 01/01/01 Try to deal more efficiently with large numbers of repeated
## small factors by using SMTX.Homomorphisms
##
## SMTX.CollectedFactors calls IsIrreducible repeatedly to find the
## composition factors of the GModule `module'. It also calls
## IsomorphismGModule to determine which are isomorphic.
## It returns a list [f1, f2, ..fr], where each fi is a list [m, n],
## where m is an irreducible composition factor of module, and n is the
## number of times it occurs in module.
##
SMTX_CollectedFactors:= function ( module )
  local field,dim, factors, factorsout, queue, cmod, new,
      d, i, j, l, lq, lf, q, smod, ds, homs, mat;
   if SMTX.IsMTXModule (module) = false then
      return Error ("Argument is not a module.");
   fi;

   dim:=SMTX.Dimension(module);
   field:= SMTX.Field(module);
   factors:=[];
   for i in [1..dim] do
      factors[i]:=[];
   od;
   #factors[i] will contain a list [f1, f2, ..., fr] of the composition factors
   #of module of dimension i. Each fi will have the form [m, n], where m is
   #the module, and n its multiplicity.

   queue:=[module];
   #queue is the list of modules awaiting processing.

   while Length (queue) > 0 do
      lq:=Length (queue);
      cmod:=queue[lq];
      Unbind (queue[lq]);
      d:=SMTX.Dimension(cmod);
      Info(InfoMeatAxe,3,"Length of queue = ", lq, ", dim = ", d, ".");

      if SMTX.IsIrreducible (cmod) then
         Info(InfoMeatAxe,2,"Irreducible: ");
         #module is irreducible. See if it is already on the list.
         new:=true;
         lf:=Length (factors[d]);
         i:=1;
         while new and i <= lf do
            if SMTX.IsEquivalent(factors[d][i][1], cmod) then
               new:=false;
               factors[d][i][2]:=factors[d][i][2] + 1;
            fi;
            i:=i + 1;
         od;
         if new then
            Info(InfoMeatAxe,2," new.");
            factors[d][lf + 1]:=[cmod, 1];
         else
            Info(InfoMeatAxe,2," old.");
         fi;
      else
         Info(InfoMeatAxe,2,"Reducible.");
         #module is reducible. Add sub- and quotient-modules to queue.
         lq:=Length (queue);
	 q:=SMTX.InducedAction(cmod,
		  SMTX.Subbasis (cmod),3);
         smod:=q[1];
         ds:=SMTX.Dimension(smod);
         if ds < d/10 and SMTX.IsIrreducible(smod) then
           #Small dimensional submodule
           #test for repeated occurrences.
           homs:=SMTX.Homomorphisms( smod, cmod); # must have length >0

	   # build the submodule formed by their images
	   mat:=homs[1];
	   for i in [2..Length(homs)] do
	     mat:=Concatenation(mat,homs[i]);
	   od;
	   TriangulizeMat(mat);
	   mat:=Filtered(mat,i->not IsZero(i));
	   mat:=ImmutableMatrix(field,mat);
	   if Length(mat)<cmod.dimension then
	     # there is still some factor left
	     queue[lq+1]:=SMTX.InducedActionFactorModule(cmod, mat);
	   fi;

           Info(InfoMeatAxe,2,
              "Small irreducible submodule X ",Length(homs),
	      " subdim :",Length(mat)/smod.dimension,":");

           #module is irreducible. See if it is already on the list.
           new:=true;
           lf:=Length (factors[ds]);
           i:=1;
           while new and i <= lf do
              if SMTX.IsEquivalent(factors[ds][i][1], smod) then
		 Info(InfoMeatAxe,2," old.");
                 new:=false;
                 factors[ds][i][2]:=factors[ds][i][2] +
		  Length(mat)/smod.dimension;
              fi;
              i:=i + 1;
           od;
           if new then
              Info(InfoMeatAxe,2," new.");
              factors[ds][lf + 1]:=[smod, Length(mat)/smod.dimension];
           fi;
	   
         else
           queue[lq + 1]:=smod; queue[lq + 2]:=q[2];
         fi;
      fi;
   od;

   #Now repack the sequence for output.
   l:=0;
   factorsout:=[];
   for i in [1..dim] do
      for j in [1..Length (factors[i])] do
         l:=l + 1;
         factorsout[l]:=factors[i][j];
      od;
   od;

   return factorsout;

end;
SMTX.CollectedFactors:=SMTX_CollectedFactors;

SMTX.CompositionFactors:=function ( module )
  if SMTX.IsIrreducible(module) then
    return [module];
  else
    module:=SMTX.InducedAction(module,
	          SMTX.Subbasis(module),3);
    return Concatenation(SMTX.CompositionFactors(module[1]),
			 SMTX.CompositionFactors(module[2]));
  fi;
end;

###############################################################################
##
#F  SMTX.Distinguish ( cf, i )  distinguish a composition factor of a module
##
## cf is assumed to be the output of a call to SMTX.CollectedFactors,
## and i is the number of one of the cf.
## Distinguish tries to find a group-algebra element for factor[i]
## which gives nullity zero when applied to all other cf.
## Once this is done, it is easy to find submodules containing this
## composition factor.
##
SMTX_Distinguish:=function ( cf, i )
   local el, genpair, ngens, orig_ngens, mat, matsi, mats, M,
         dimi, dim, F, fac, sfac, p, q, oldp, found, extdeg, j, k,
         lcf, lf, x, y, wno, deg, trying, N, fact, R;

   lcf:=Length (cf);
   ngens:=Length (cf[1][1].generators);
   orig_ngens:=ngens;
   F:=SMTX.Field (cf[1][1]);
   R:=PolynomialRing (F);
   matsi:=ShallowCopy(cf[i][1].generators);
   dimi:=SMTX.Dimension (cf[i][1]);

   #First check that the existing nullspace has dim. 1 over centralising field.
   SMTX.GoodElementGModule (cf[i][1]);

   #First see if the existing element is OK
   #Apply the alg. el. of factor i to every other factor and see if the
   # matrix is nonsingular.
   found:=true;
   el:=SMTX.AlgEl(cf[i][1]);
   fact:=SMTX.AlgElCharPolFac(cf[i][1]);
   for j in [1..lcf] do
      if j <> i and found then
         mats:=ShallowCopy(cf[j][1].generators);
         dim:=SMTX.Dimension(cf[j][1]);
         for genpair in el[1] do
            ngens:=ngens + 1;
            mats[ngens]:=mats[genpair[1]] * mats[genpair[2]];
         od;
         M:=ImmutableMatrix(F, NullMat (dim, dim, F) );
         for k in [1..ngens] do
            M:=M + el[2][k] * mats[k];
         od;
         ngens:=orig_ngens;
         mat:=Value (fact, M,M^0);
         MakeImmutable(mat);
         ConvertToMatrixRep(mat,F);
         if RankMat (mat) < dim then
            found:=false;
            Info(InfoMeatAxe,2,"Current element failed on factor ", j);
         fi;
      fi;
   od;

   if found then
      Info(InfoMeatAxe,2,"Current element worked.");
      return;
   fi;

   #That didn't work, so we have to try new random elements.
   wno:=0;
   el:=[]; el[1]:=[];
   extdeg:=SMTX.DegreeFieldExt (cf[i][1]);

   while found = false do
      Info(InfoMeatAxe,2,"Trying new one.");
      wno:=wno + 1;
      #Add a new generator if there are less than 8 or if wno mod 10=0.
      if  ngens<8 or wno mod 10 = 0 then
         x:=Random ([1..ngens]);
         y:=x;
         while y = x and ngens > 1 do y:=Random ([1..ngens]); od;
         Add (el[1], [x, y]);
         ngens:=ngens + 1;
         matsi[ngens]:=matsi[x] * matsi[y];
      fi;
      #Now take the new random element
      el[2]:=[];
      for j in [1..ngens] do el[2][j]:=Random (F); od;
      #First evaluate on cf[i][1].
      M:=ImmutableMatrix(F, NullMat (dimi, dimi, F) );
      for k in [1..ngens] do
         M:=M + el[2][k] * matsi[k];
      od;
      p:=CharacteristicPolynomialMatrixNC (F,M,1);
      #That is necessary in case p is defined over a smaller field that F.
      oldp:=p;
      #extract irreducible factors
      deg:=0;
      fac:=[];
      trying:=true;
      while deg <= extdeg and trying do
         repeat
            deg:=deg + 1;
            if deg > extdeg then
               fac:=[p];
            else
               fac:=Factors(R, p: factoroptions:=rec(onlydegs:=[deg]));
               fac:=Filtered(fac,i->DegreeOfLaurentPolynomial(i)<=deg);
               sfac:=Set (fac);
            fi;
         until fac <> [];
         lf:=Length (fac);
         if trying and deg <= extdeg then
            j:=1;
            while j <= lf and trying do
               mat:=Value (fac[j], M,M^0);
               MakeImmutable(mat);
               ConvertToMatrixRep(mat,F);
               N:=NullspaceMat (mat);
               if Length (N) = extdeg then
                  trying:=false;
                  SMTX.SetAlgEl(cf[i][1], el);
                  SMTX.SetAlgElMat(cf[i][1], M);
                  SMTX.SetAlgElCharPol (cf[i][1], oldp);
                  SMTX.SetAlgElCharPolFac (cf[i][1], fac[j]);
		  ConvertToVectorRep(N[1],F);
                  SMTX.SetAlgElNullspaceVec(cf[i][1], N[1]);
               fi;
               j:=j + 1;
            od;
         fi;

         if trying then
            for q in fac do
               p:=Quotient (R, p, q);
            od;
         fi;
      od;

      #Now see if it works against the other factors of cf
      if trying = false then
         Info(InfoMeatAxe,2,"Found one.");
         found:=true;
         fact:=SMTX.AlgElCharPolFac(cf[i][1]);
         #Apply the alg. el. of factor i to every other factor and
         #see if the matrix is nonsingular.
         for j in [1..lcf] do
            if j <> i and found then
               mats:=ShallowCopy(cf[j][1].generators);
               dim:=SMTX.Dimension(cf[j][1]);
               ngens:=orig_ngens;
               for genpair in el[1] do
                  ngens:=ngens + 1;
                  mats[ngens]:=mats[genpair[1]] * mats[genpair[2]];
               od;
               M:=ImmutableMatrix(F, NullMat (dim, dim, F) );
               for k in [1..ngens] do
                  M:=M + el[2][k] * mats[k];
               od;
               mat:=Value (fact, M,M^0);
               MakeImmutable(mat);
               ConvertToMatrixRep(mat,F);
               if RankMat (mat) < dim then
                  found:=false;
                  Info(InfoMeatAxe,2,"Failed on factor ", j);
               fi;
            fi;
         od;
      fi;
      if found then
         Info(InfoMeatAxe,2,"It worked!");
      fi;
   od;

end;
SMTX.Distinguish:=SMTX_Distinguish;

###############################################################################
##
#F  SMTX.MinimalSubGModule ( module, cf, i ) . .  find minimal submodule
##                                     containing a given composition factor.
##
## cf is assumed to be the output of a call to SMTX.CollectedFactors, 
## and i is the number of one of the cf.
## It is assumed that SMTX.Distinguish (cf, i) has already been called.
## A basis of a minimal submodule of module containing the composition factor
## cf[i][1] is calculated and returned - i.e. if cf[i][2] = 1.
##
SMTX_MinimalSubGModule:=function ( module, cf, i )
   local el, genpair, ngens, orig_ngens, mat, mats, M, dim, F, 
         k, N, fact;

   if SMTX.IsMTXModule (module) = false then
      return Error ("First argument is not a module.");
   fi;

   ngens:=Length (module.generators);
   orig_ngens:=ngens;
   F:=SMTX.Field (module);

   #Apply the alg. el. of factor i to module
   el:=SMTX.AlgEl(cf[i][1]);
   mats:=ShallowCopy(module.generators);
   dim:=SMTX.Dimension(module);
   for genpair in el[1] do
      ngens:=ngens + 1;
      mats[ngens]:=mats[genpair[1]] * mats[genpair[2]];
   od;
   M:=ImmutableMatrix(F, NullMat (dim, dim, F) );
   for k in [1..ngens] do
      M:=M + el[2][k] * mats[k];
   od;
   #Now throw away extra generators of module
   for k in [orig_ngens + 1..ngens] do
      Unbind (mats[k]);
   od;
   ngens:=orig_ngens;
   fact:=SMTX.AlgElCharPolFac(cf[i][1]);
   mat:=Value (fact, M,M^0);
   N:=NullspaceMat (mat);
   ConvertToVectorRep(N[1],F);
   return (SMTX.SpinnedBasis (N[1], mats,F, ngens));

end;
SMTX.MinimalSubGModule:=SMTX_MinimalSubGModule ;


#############################################################################
##
#F  SMTX.Isomomorphism(module1, module2) . . . . 
##  decide whether two irreducible modules are isomorphic.
## 
## If the 2 modules are not isomorphic, this function returns false;
## if they are isomorphic it returns the matrix B, whose rows form the 
## basis of module2  which is the image of the standard basis for module1.
## Thus if X and Y are corresponding matrices in the generating sets
## for module1 and module2 respectively, Y = B^-1XB
## It is assumed that the same group acts on both modules.
## Otherwise who knows what will happen?
## 
SMTX_IsomorphismComp:=function (module1, module2, action)
   local matrices, matrices1, matrices2, F, R, dim, swapmodule, genpair,
         swapped, orig_ngens, i, j, el, p, fac, ngens, M, mat, v1, v2, v, 
         N, basis, basis1, basis2;

  #CCC:=[ShallowCopy(module1),ShallowCopy(module2),ShallowCopy(action)];
  #CCC[1].smashMeataxe:=ShallowCopy(CCC[1].smashMeataxe);
  #CCC[2].smashMeataxe:=ShallowCopy(CCC[2].smashMeataxe);
  #Print(CCC,"\n");

   if SMTX.IsMTXModule (module1) = false then 
      Error ("Argument is not a module.");
   elif SMTX.IsMTXModule (module2) = false then 
      Error ("Argument is not a module.");
   elif SMTX.Field (module1) <> SMTX.Field (module2) then 
      Error ("GModules are defined over different fields.");
   fi;

   swapped:=false;
   if not SMTX.HasIsIrreducible (module1) then
      if not SMTX.HasIsIrreducible (module2) then
         Error ("Neither module is known to be irreducible.");
      else
         # The second module is known to be irreducible, so swap arguments.
         swapmodule:=module2; module2:=module1; module1:=swapmodule;
         swapped:=true;
         Info(InfoMeatAxe,2,"Second module is irreducible. Swap them round.");
      fi;
   fi;

   #At this stage, module1 is known to be irreducible
   dim:=SMTX.Dimension (module1);
   if dim <> SMTX.Dimension (module2) then
      Info(InfoMeatAxe,2,"GModules have different dimensions.");
      return fail;
   fi;
   F:=SMTX.Field (module1);
   R:=PolynomialRing (F);

   #First we must check that our nullspace is 1-dimensional over the
   #centralizing field.

   Info(InfoMeatAxe,2,
        "Checking nullspace 1-dimensional over centralising field.");
   SMTX.GoodElementGModule (module1);
   matrices1:=module1.generators;
   matrices2:=ShallowCopy(module2.generators);
   ngens:=Length (matrices1);
   orig_ngens:=ngens;
   if ngens <> Length (matrices2) then
      Error ("GModules have different numbers of defining matrices.");
   fi;

   # Now we calculate the element in the group algebra of module2 that 
   # corresponds to that in module1. This is done using the AlgEl flag 
   # for module1. We first extend the generating set in the same way as 
   # we did for module1, and then calculate the group alg. element as 
   # a linear sum in the generators.

   Info(InfoMeatAxe,2,"Extending generating set for second module.");
   el:=SMTX.AlgEl(module1);
   for genpair in el[1] do
      ngens:=ngens + 1;
      matrices2[ngens]:=matrices2[genpair[1]] * matrices2[genpair[2]];
   od;
   M:=ImmutableMatrix(F, NullMat(dim, dim, F) );
   for i in [1..ngens] do
      M:=M + el[2][i] * matrices2[i];
   od;
   # Having done that, we no longer want the extra generators of module2, 
   # so we throw them away again.
   for i in [orig_ngens + 1..ngens] do
      Unbind (matrices2[i]);
   od;

   Info(InfoMeatAxe,2,
        "Calculating characteristic polynomial for second module.");
   p:=CharacteristicPolynomialMatrixNC (F,M,1);
   if p <> SMTX.AlgElCharPol (module1) then
      Info(InfoMeatAxe,2,"Characteristic polynomial different.");
      return fail;
   fi;
   fac:=SMTX.AlgElCharPolFac (module1);
   mat:=Value (fac, M,M^0);
   Info(InfoMeatAxe,2,"Calculating nullspace for second module.");
   N:=NullspaceMat (mat);
   if Length (N) <> SMTX.AlgElNullspaceDimension(module1) then
      Info(InfoMeatAxe,2,"Null space dimensions different.");
      return fail;
   fi;

   # That concludes the easy tests for nonisomorphism. Now we must proceed
   # to spin up. We first form the direct sum of the generating matrices.
   Info(InfoMeatAxe,2,"Spinning up in direct sum.");
   matrices:=SMTX.MatrixSum (matrices1, matrices2);
   v1:=SMTX.AlgElNullspaceVec(module1);
   ConvertToVectorRep(N[1],F);
   v2:=N[1];
   v:=Concatenation (v1, v2);
   basis:=SMTX.SpinnedBasis (v, matrices, F);
   if Length (basis) = dim then
      if action<>true then
        return true;
      fi;
      basis1:=[]; basis2:=[];
      for i in [1..dim] do
         basis1[i]:=[]; basis2[i]:=[];
         for j in [1..dim] do
            basis1[i][j]:=basis[i][j];
            basis2[i][j]:=basis[i][j + dim];
         od;
      od;
      if swapped then
         return basis2^-1 * basis1;
      else
         return basis1^-1 * basis2;
      fi;
   else
      return fail;
   fi;
end;
SMTX.IsomorphismComp:=SMTX_IsomorphismComp;

SMTX.IsomorphismIrred:=function(module1,module2)
  return SMTX.IsomorphismComp(module1,module2,true);
end;

SMTX.Isomorphism:=SMTX.IsomorphismIrred;

SMTX.IsEquivalent:=function(module1,module2)
  return SMTX.IsomorphismComp(module1,module2,false)<>fail;
end;

#############################################################################
##
#F  SMTX.MatrixSum (matrices1, matrices2) direct sum of two lists of matrices
##
SMTX_MatrixSum:=function (matrices1, matrices2) 
   local matrices, nmats, i;
   matrices:=[];
   nmats:=Length (matrices1);
   for i in [1..nmats] do
      matrices[i]:=DirectSumMat(matrices1[i],matrices2[i]);
   od;

   return  matrices;
end;
SMTX.MatrixSum:=SMTX_MatrixSum ;


#############################################################################
##
#F  SMTX.Homomorphisms( m1, m2) . . . . homomorphisms from an irreducible
##                         . . . GModule to an arbitrary GModule
##
## It is assumed that m1 is a module that has been proved irreducible
##  (using IsIrreducible), and m2 is an arbitrary module for the same group.
## A basis of the space of G-homomorphisms from m1 to m2 is returned.
## Each homomorphism is given as a list of base images.
##
SMTX_Homomorphisms:= function (m1, m2)

   local F, ngens, orig_ngens, mats1, mats2, dim1, dim2, m1bas, imbases,
         el, genpair, fac, mat, N, imlen, subdim, leadpos, vec, imvecs,
         numrels, rels, leadposrels, newrels, bno, genno, colno, rowno,
         zero, looking, ans, i, j, k;

   if not SMTX.IsMTXModule (m1) then
      return Error ("First argument is not a module.");
   elif not SMTX.IsIrreducible(m1) then
      return Error ("First module is not known to be irreducible.");
   fi;

   if not SMTX.IsMTXModule (m2) then
      return Error ("Second argument is not a module.");
   fi;
   mats1:=m1.generators;
   mats2:=ShallowCopy(m2.generators);
   ngens:=Length (mats1);
   if ngens <> Length (mats2) then
      return Error ("GModules have different numbers of generators.");
   fi;

   F:=SMTX.Field (m1);
   if F <> SMTX.Field (m2) then
      return Error ("GModules are defined over different fields.");
   fi;
   zero:=Zero (F);

   dim1:=SMTX.Dimension (m1); dim2:=SMTX.Dimension (m2);

   m1bas:=[];
   m1bas[1]:= SMTX.AlgElNullspaceVec(m1);

   # In any homomorphism from m1 to m2, the vector in the nullspace of the
   # algebraic element that was used to prove irreducibility  (which is now
   # m1bas[1]) must map onto a vector in the nullspace of the same algebraic
   # element evaluated in m2. We therefore calculate this nullspaces, and
   # store a basis in imbases.

   Info(InfoMeatAxe,2,"Extending generating set for second module.");
   orig_ngens:=ngens;
   el:=SMTX.AlgEl(m1);
   for genpair in el[1] do
      ngens:=ngens + 1;
      mats2[ngens]:=mats2[genpair[1]] * mats2[genpair[2]];
   od;
   mat:=ImmutableMatrix(F, NullMat(dim2, dim2, F) );
   for i in [1..ngens] do
      mat:=mat + el[2][i] * mats2[i];
   od;
   # Having done that, we no longer want the extra generators of m2,
   # so we throw them away again.
   for i in [orig_ngens + 1..ngens] do
      Unbind (mats2[i]);
   od;
   ngens:=orig_ngens;

   fac:=SMTX.AlgElCharPolFac (m1);
   mat:=Value (fac, mat,mat^0);
   MakeImmutable(mat);
   ConvertToMatrixRep(mat,F);
   Info(InfoMeatAxe,2,"Calculating nullspace for second module.");
   N:=NullspaceMat (mat);
   N:=ImmutableMatrix(F,N);
   imlen:=Length (N);
   Info(InfoMeatAxe,2,"Dimension = ", imlen, ".");
   if imlen = 0 then
      return [];
   fi;

   imbases:=[];
   for i in [1..imlen] do
      imbases[i]:=[N[i]];
   od;

   # Now the main algorithm starts. We are going to spin the vectors in m1bas
   # under the action of the module generators, norming as we go. Every
   # operation that we perform on m1bas will also be performed on each of the
   # vectors in  imbas[1], ..., imbas[imlen].
   # When we find a vector that norms to zero in m1bas, then the image of this
   # under a homomorphism must be zero. This leads to a linear relation
   # amongst some vectors in imbas. We store up such relations, echelonizing as
   # we go. At the end, if we have numrels subch independent relations, then
   # there will be imlen - numrels independent homomorphisms from m1 to m2,
   # which we can then calculate.

   subdim:=1; # the dimension of module spanned by m1bas
   numrels:=0;
   rels:=[];

   #leadpos[j] will be the position of the first nonzero entry in m1bas[j]
   leadpos:=[];
   vec:=m1bas[1];
   j:=1;
   while j <= dim1 and vec[j] = zero do j:=j + 1; od;
   leadpos[1]:=j;
   k:=vec[j]^-1;
   m1bas[1]:=k * vec;
   for i in [1..imlen] do
      imbases[i][1]:=k * imbases[i][1];
   od;

   leadposrels:=[];
   #This will play the same role as leadpos but for the relation matrix.
   Info(InfoMeatAxe,2,"Starting spinning.");
   bno:=1;
   while bno <= subdim do
      for genno in [1..ngens] do
         # apply generator no. genno to submodule generator bno
         vec:=m1bas[bno] * mats1[genno];
         # and do the same to the images
         imvecs:=[];
         for i in [1..imlen] do
            imvecs[i]:=imbases[i][bno] * mats2[genno];
         od;
         # try to express w in terms of existing submodule generators
         # make same changes to images
         j:=1;
         for  j in [1..subdim] do
            k:=vec[leadpos[j]];
            if k <> zero then
               vec:=vec - k * m1bas[j];
               for i in [1..imlen] do
                  imvecs[i]:=imvecs[i] - k * imbases[i][j];
               od;
            fi;
         od;

         j:=1;
         while j <= dim1 and vec[j] = zero do j:=j + 1; od;
         if j <= dim1 then
            #we have found a new generator of the submodule
            subdim:=subdim + 1;
            leadpos[subdim]:=j;
            k:=vec[j]^-1;
            m1bas[subdim]:=k * vec;
            for i in [1..imlen] do
               imbases[i][subdim]:=k * imvecs[i];
            od;
         else
            # vec has reduced to zero. We get relations among the imvecs.
            # (these are given by the transpose of imvec)
            # reduce these against any existing relations.
            newrels:=TransposedMat (imvecs);
            for i in [1..Length (newrels)] do
               vec:=newrels[i];
               for j in [1..numrels] do
                  k:=vec[leadposrels[j]];
                  if k <> zero then
                     vec:=vec - k * rels[j];
                  fi;
               od;
               j:=1;
               while j <= imlen and vec[j] = zero do j:=j + 1; od;
               if j <= imlen then
                  # we have a new relation
                  numrels:=numrels + 1;
                  # if we have imlen relations, there can be no homomorphisms
                  # so we might as well give up immediately
                  if numrels = imlen then
                     return [];
                  fi;
                  k:=vec[j]^-1;
                  rels[numrels]:=k * vec;
                  leadposrels[numrels]:=j;
               fi;
            od;
         fi;
      od;
      bno:=bno + 1;
   od;

   # That concludes the spinning. Now we do row operations on the im1bas to
   # make it the identity, and do the same operations to the imvecs.
   # Then the homomorphisms we output will be the basis images.
   Info(InfoMeatAxe,2,"Done. Reducing spun up basis.");

   for colno in [1..dim1] do
      rowno:=colno;
      looking:=true;
      while rowno <= dim1 and looking do
         if m1bas[rowno][colno] <> zero then
            looking:=false;
            if rowno <> colno then
               #swap rows rowno and colno
               vec:=m1bas[rowno]; m1bas[rowno]:=m1bas[colno];
               m1bas[colno]:=vec;
               #and of course the same in the images
               for i in [1..imlen] do
                  vec:=imbases[i][rowno];
                  imbases[i][rowno]:=imbases[i][colno];
                  imbases[i][colno]:=vec;
               od;
            fi;
            # and then clear remainder of column
            for j in [1..dim1] do
               if j <> colno and m1bas[j][colno] <> zero then
                  k:=m1bas[j][colno];
                  m1bas[j]:=m1bas[j] - k * m1bas[colno];
                  for i in [1..imlen] do
                     imbases[i][j]:=imbases[i][j] - k * imbases[i][colno];
                  od;
               fi;
            od;
         fi;
         rowno:=rowno + 1;
      od;
   od;

   #Now we are ready to compute and output the linearly independent
   #homomorphisms.  The coefficients for the solution are given by
   #the basis elements of the nullspace of the transpose of rels.

   Info(InfoMeatAxe,2,"Done. Calculating homomorphisms.");
   if rels = [] then
      rels:=NullMat (imlen, 1, F);
   else
      rels:=TransposedMat (rels);
   fi;
   N:=NullspaceMat (rels);
   for k in N do
     ConvertToVectorRep(k,F);
   od;
   ans:=[];
   for k in [1..Length (N)] do
      vec:=N[k];
      mat:=ImmutableMatrix(F, NullMat (dim1, dim2, F) );
      for i in [1..imlen] do
         mat:=mat + vec[i] * imbases[i];
      od;
      ans[k]:=mat;
   od;

   return ans;
end;
SMTX.Homomorphisms:=SMTX_Homomorphisms;

#############################################################################
##
#F  SMTX.SortHomGModule ( m1, m2, homs)  . . sort output of HomGModule
##                                           according to their images
##
## It is assumed that m1 is a module that has been proved irreducible
## (using IsIrreducible), and m2 is an arbitrary module for the same group, 
## and that homs is the output of a call HomGModule (m1, m2).
## Let e be the degree of the centralising field of m1.
## If e = 1 then SMTX.SortHomGModule does nothing. If e > 1, then it replaces 
## the basis contained in homs by a new basis arranged in the form
## b11, b12, ..., b1e, b21, b22, ...b2e, ..., br1, br2, ...bre,  where each
## block of  e  adjacent basis vectors are all equivalent under the
## centralising field of m1, and so they all have the same image in  m2.
## A complete list of the distinct images can then be obtained with a call
## to DistinctIms (m1, m2, homs).
## 
SMTX_SortHomGModule:=function (m1, m2, homs)
local e, F, ngens, mats1, mats2, dim1, dim2, centmat, fullimbas, oldhoms, 
      homno, dimhoms, newdim, subdim, leadpos, vec, nexthom, 
      i, j, k, zero;

   if SMTX.IsAbsolutelyIrreducible(m1) then return; fi;

   e:=SMTX.DegreeFieldExt (m1);
   F:=SMTX.Field (m1);
   zero:=Zero (F);

   mats1:=m1.generators;  mats2:=m2.generators;
   dim1:=SMTX.Dimension (m1);  dim2:=SMTX.Dimension (m2);
   ngens:=Length (mats1);
   centmat:=SMTX.CentMat(m1);

   fullimbas:=[];
   subdim:=0;
   leadpos:=[];

   # fullimbas will contain an echelonised basis for the submodule of m2
   # generated by all images of the basis vectors of hom that we have found
   # so far; subdim is its length.

   # We go through the existing basis of homs. 
   # For each hom in the basis, we first check whether the first vector in 
   # the image  of hom is in the space spanned by fullimbas. 
   # If so, we reject hom. If not, then hom is adjoined to the new
   # basis of homs, as are the other e-1 linearly independent homomorphisms
   # that are equivalent to hom by a multiplication by centmat. The
   # resulting block of e homomorphisms all have the same image in m2.

   # first make a copy of homs.

   oldhoms:=ShallowCopy (homs);
   dimhoms:=Length (homs);

   homno:=0; newdim:=0;

   while homno < dimhoms and newdim < dimhoms do
      homno:=homno + 1;
      nexthom:=oldhoms[homno];
      vec:=nexthom[1];

      #Now check whether vec is in existing submodule spanned by fullimbas   
      j:=1;
      for j in [1..subdim] do
         k:=vec[leadpos[j]];
         if k <> zero then
            vec:=vec - k * fullimbas[j];
         fi;
      od;

      j:=1;
      while j <= dim2 and vec[j] = zero do j:=j + 1; od;

      if j <= dim2 then
         #vec is not in the image, so we adjoin this homomorphism to the list;
         #first adjoin vec and all other basis vectors in the image to fullimbas
         subdim:=subdim + 1;
         leadpos[subdim]:=j;
         k:=vec[j]^-1;
         fullimbas[subdim]:=k * vec;
         for i in [2..dim1] do
            vec:=nexthom[i];
            j:=1;
            for  j in [1..subdim] do
               k:=vec[leadpos[j]];
               if k <> zero then
                  vec:=vec - k * fullimbas[j];
               fi;
            od;

            j:=1;
            while j <= dim2 and vec[j] = zero do j:=j + 1; od;
            subdim:=subdim + 1;
            leadpos[subdim]:=j;
            k:=vec[j]^-1;
            fullimbas[subdim]:=k * vec;
         od;

         newdim:=newdim + 1;
         homs[newdim]:=nexthom;

         #Now add on the other e - 1 homomorphisms equivalent to 
         #newhom by centmat.
         for k in [1..e - 1] do
            nexthom:=centmat * nexthom;
            newdim:=newdim + 1;
            homs[newdim]:=nexthom;
         od;
      fi;
   od;

end;
SMTX.SortHomGModule:=SMTX_SortHomGModule;

#############################################################################
##
#F  SMTX.Homomorphism(module1,module2,mat) . . . define a module homorphism
##
##  module1 and module2 should be meataxe modules of dimensions m and n
##  over the same algebra, and mat an mXn matrix over the field of
##  the modules that defines a homomorphism module1 -> module2, where
##  the i-th row of mat gives the image in module2 of the i-th basis
##  vector of module1.
##  It is checked whether mat really does define a homomorphism.
##  If, so then the corresponding vector space homomorphism from the underlying
##  row space of module1 to that of module2 is returned. This can be used
##  for computing images, kernel, preimages, etc.

SMTX_Homomorphism:=function(module1, module2, mat)
  local F, gens1, gens2, ng, dim1, dim2, i, j;
  F:=SMTX.Field(module1);
  if F <> SMTX.Field(module2) then
    Error("Modules are over different fields");
  fi;
  gens1:=SMTX.Generators(module1); gens2:=SMTX.Generators(module2);
  dim1:=SMTX.Dimension(module1); dim2:=SMTX.Dimension(module2);
  ng:=Length(gens1);
  if ng <> Length(gens2) then
    Error("Modules are not over the same algebra");
  fi;
  if Length(mat) <> dim1 or Length(mat[1]) <> dim2 then
    Error("matrix has wrong size for a homomorphism");
  fi;
  #Check if it is a homorphism
  MakeImmutable(mat);
  ConvertToMatrixRep(mat,F);
  for i in [1..ng] do
    for j in [1..dim1] do
      if gens1[i][j] * mat <> mat[j] * gens2[i] then
        Print(i,j,"\n");
        Error("matrix does not define a homomorphism");
      fi;
    od;
  od;
  return LeftModuleHomomorphismByImages(FullRowSpace(F,dim1),
                          FullRowSpace(F,dim2),IdentityMat(dim1,F),mat);
end;
SMTX.Homomorphism:=SMTX_Homomorphism;

#############################################################################
##
#F SMTX.MinimalSubGModules (m1, m2, [max]) . . 
## minimal submodules of m2 isomorphic to m1
##
## It is assumed that m1 is a module that has been proved irreducible
##  (using IsIrreducible), and m2 is an arbitrary module for the same group.
## MinimalSubGModules computes and outputs a list of normed bases for all of the
## distinct minimal submodules of m2 that are isomorphic to m1.
## max is an optional maximal number - if the total number of submodules
## exceeds max, then the procedure aborts.
## First HomGModule is called and then SMTX.SortHomGModule to get a basis for
## the homomorphisms from m1 to m2 in the correct order.
## It is then easy to write down the list of distinct images.
## 
SMTX_MinimalSubGModules:=function (arg)

   local m1, m2, max, e, homs, coeff,  dimhom, edimhom, F, elF, q, 
         submodules, sub, adno, more, count, sr, er, i, j, k ;

   if Number (arg) < 2 or Number (arg) > 3 then
      Error ("Number of arguments to MinimalSubGModules must be 2 or 3.");
   fi;

   m1:=arg[1]; m2:=arg[2];
   if Number (arg) = 2 then max:=0; else max:=arg[3]; fi;

   Info(InfoMeatAxe,2,"Calculating homomorphisms from m1 to m2.");
   homs:=SMTX.Homomorphisms(m1, m2);
   Info(InfoMeatAxe,2,"Sorting them.");
   SMTX.SortHomGModule (m1, m2, homs);

   F:=SMTX.Field (m1);
   e:=SMTX.DegreeFieldExt (m1);
   dimhom:=Length (homs);
   edimhom:=dimhom / e;
   submodules:=[];
   count:=0;
   coeff:=[];
   elF:=AsList(F);
   q:=Length (elF);
   for i in [1..dimhom] do coeff[i]:=1; od;

   #coeff[i] will be an integer in the range [1..q] corresponding to the
   #field element elF[coeff[i]].
   #Each submodule will be calculated as the image of the homomorphism
   #elF[coeff[1]] * homs[1] +...+  elF[coeff[dimhom]] * homs[dimhom]
   #for appropriate field elements elF[coeff[i]]. 
   #We get each distinct submodule
   #exactly once by making the first nonzero elF[coeff[i]] to be 1, 
   #and all other elF[coeff[i]]'s in that block equal to zero.

   Info(InfoMeatAxe,2,"Done. Calculating submodules.");

   for i in Reversed ([1..edimhom]) do
      j:=e * (i - 1) + 1;
      coeff[j]:=2;  #giving field element 1.
      for k in [j + 1..dimhom] do coeff[k]:=1; od; # field element 0.
      sr:=j + e; er:=dimhom;
      #coeff[i] for i in [sr..er] ranges over all field elements.

      more:=true;
      adno:=er;
      while more do
         count:=count + 1;
         if max > 0 and count > max then
            Info(InfoMeatAxe,2,"Number of submodules exceeds ", max,
	         ". Aborting.");
            return submodules;
         fi;

         # Calculate the next submodule
         sub:=homs[j];
         for k in [sr..er] do
            sub:=sub + elF[coeff[k]] * homs[k];
         od;
	 sub:=List(sub,ShallowCopy);
         TriangulizeMat (sub);
         Add (submodules, ImmutableMatrix(F,sub));

         #Move on to next set of coefficients if any
         while adno >= sr and coeff[adno]=q do
            coeff[adno]:=1;
            adno:=adno - 1;
         od;
         if adno < sr then
            more:=false;
         else
            coeff[adno]:=coeff[adno] + 1;
            adno:=er;
         fi;
      od;

   od;

   return submodules;

end;
SMTX.MinimalSubGModules:=SMTX_MinimalSubGModules;

SMTX_BasesCompositionSeries:=function(m)
local q,b,s,ser,queue,F,one,mats,mo;
mats:=m.generators;
  SMTX.SetSmashRecord(m,0);
  F:=SMTX.Field(m);
  one:=One(F);
  b:= IdentityMat(SMTX.Dimension(m),SMTX.Field(m) );
  # denombasis: Basis des Kerns
  m.smashMeataxe.denombasis:=[];
  # csbasis: Basis des Moduls
  #m.smashMeataxe.csbasis:=b;

  # fakbasis: Urbilder der Basis, bzgl. derer csbasis angegeben wird
  # the first <dimension> vectors of <fakbasis> are the right ones.
  m.smashMeataxe.fakbasis:=b;

  ser:=[[]];
  queue:=[m];
  while Length(queue)>0 do
    m:=queue[1];
    queue:=queue{[2..Length(queue)]};
    if SMTX.IsIrreducible(m) then
      mo:=m;
      Info(InfoMeatAxe,3,SMTX.Dimension(m)," ",
                         Length(m.smashMeataxe.denombasis));
      m:=List(Concatenation(m.smashMeataxe.denombasis,
		      m.smashMeataxe.fakbasis{[1..SMTX.Dimension(m)]}),
		      ShallowCopy);
                 #List(m.smashMeataxe.csbasis,
		 #     i->LinearCombinationVecs(m.smashMeataxe.fakbasis,i)));
      TriangulizeMat(m);
      m:=ImmutableMatrix(F,m);
#      m:=Filtered(m,i->i<>Zero(i));
#if ForAny(m,i->i=Zero(i)) then
#  Error("zero!");
#fi;
#Assert(1,ForAll(m,i->ForAll(mats,j->SolutionMat(m,i*j)<>fail)));
      Add(ser,m);
    else
      b:=SMTX.Subbasis(m);
#Assert(1,ForAll(b,i->ForAll(m.generators,j->SolutionMat(b,i*j)<>fail)));
      s:=SMTX.InducedAction(m,b,3);
      q:=s[2];
      b:=s[3];
      s:=s[1];
      SMTX.SetSmashRecord(s,0);
      SMTX.SetSmashRecord(q,0);
      Info(InfoMeatAxe,1,"chopped ",SMTX.Dimension(s),"\\", SMTX.Dimension(q));
      s.smashMeataxe.denombasis:=m.smashMeataxe.denombasis;

      #s.smashMeataxe.csbasis:= IdentityMat(SMTX.Dimension(s), SMTX.Field(s) );
      s.smashMeataxe.fakbasis:=
        List(b,i->LinearCombinationVecs(m.smashMeataxe.fakbasis,i));

      q.smashMeataxe.denombasis:=Concatenation(
        #List(m.smashMeataxe.denombasis,ShallowCopy),
        m.smashMeataxe.denombasis,
        #List(s.smashMeataxe.fakbasis{[1..s.dimension]},ShallowCopy));
        s.smashMeataxe.fakbasis{[1..s.dimension]});
      #q.smashMeataxe.csbasis:= IdentityMat(SMTX.Dimension(q), SMTX.Field(q) );
      q.smashMeataxe.fakbasis:=List(b{[SMTX.Dimension(s)+1..Length(b)]},
                       i->LinearCombinationVecs(m.smashMeataxe.fakbasis,i));
      Add(queue,s);
      Add(queue,q);
    fi;
  od;
  Sort(ser,function(a,b) return Length(a)<Length(b);end);
  return ser;
end;
SMTX.BasesCompositionSeries:=SMTX_BasesCompositionSeries;

SMTX_BasesSubmodules:=function(m)
local cf,u,i,j,f,cl,min,neu,sq,sb,fb,k,nmin,F;
  F:=SMTX.Field(m);
  cf:=SMTX.CollectedFactors(m);
  cl:=Sum(cf,i->i[2]); # composition length
  cf:=List(cf,i->i[1]);
  u:=[[]];
  if cl>1 then
    min:=Concatenation(List(cf,i->SMTX.MinimalSubGModules(i,m)));
    u:=Concatenation(u,min);
  fi;
  for i in [2..cl-1] do 
    neu:=[];
    for j in min do
      f:=List(j,i->List(i,i->i));
      sq:=SMTX.InducedAction(m,j,2);
      Assert(2,j=f);
      f:=sq[1];
      sb:=j;
      fb:=sq[2]{[Length(j)+1..Length(sq[2])]};
      # actually we might want to count frequencies to speed up the process,
      # so far I'm lazy
      nmin:=Concatenation(List(cf,i->SMTX.MinimalSubGModules(i,f)));
      Info(InfoMeatAxe,3,Length(nmin),"minimal submodules");
      for k in nmin do 
        sq:=Concatenation(List(sb,ShallowCopy), # don't destroy old basis
	                  List(k,i->LinearCombinationVecs(fb,i)));
	TriangulizeMat(sq);
	sq:=ImmutableMatrix(F,sq);
	Assert(2,SMTX.InducedAction(m,sq)<>fail);
	if not sq in neu then
          Info(InfoMeatAxe,2,"submodule dimension ",Length(sq));
	  Add(neu,sq);
	fi;
      od;
    od;
    u:=Concatenation(u,neu);
    min:=neu;
  od;
  Add(u,ImmutableMatrix(SMTX.Field(m),
                        IdentityMat(SMTX.Dimension(m),SMTX.Field(m))));
  return u;
end;
SMTX.BasesSubmodules:=SMTX_BasesSubmodules;


SMTX_BasesMinimalSubmodules:=function(m)
local cf;
  cf:=SMTX.CollectedFactors(m);
  cf:=List(cf,i->i[1]);
  return Concatenation(List(cf,i->SMTX.MinimalSubGModules(i,m)));
end;
SMTX.BasesMinimalSubmodules:=SMTX_BasesMinimalSubmodules;

SMTX.DualModule:=function(module)
  if SMTX.IsZeroGens(module) then
    return GModuleByMats([],module.dimension,SMTX.Field(module));
  else
    return GModuleByMats(List(SMTX.Generators(module),i->TransposedMat(i)^-1),
			module.dimension,
			SMTX.Field(module));
  fi;
end;

###############################################################################
##
#F  DualGModule ( module ) . . . . . dual of a G-module
##
## DualGModule calculates the dual of a G-module.
## The matrices of the module are inverted and transposed.
## 
InstallGlobalFunction(DualGModule,function ( module)
   return SMTX.DualModule(module);
end);

SMTX.DualizedBasis:=function(module,sub)
local F,M;
  F:=DefaultFieldOfMatrix(sub);
  M:=NullspaceMat(TransposedMat(sub));
  M:=List(M,ShallowCopy);
  TriangulizeMat(M);
  M:=ImmutableMatrix(F,M);
  return M;
end;

SMTX_BasesMaximalSubmodules:=function(m)
local d,u;
  d:=SMTX.DualModule(m);
  u:=SMTX.BasesMinimalSubmodules(d);
  return List(u,i->SMTX.DualizedBasis(d,i));
end;
SMTX.BasesMaximalSubmodules:=SMTX_BasesMaximalSubmodules ;

SMTX_BasesMinimalSupermodules:=function(m,sub)
local a,u,i,nb;
  a:=SMTX.InducedAction(m,sub,2);
  u:=SMTX.BasesMinimalSubmodules(a[1]);
  nb:=a[2];
  nb:=nb{[Length(sub)+1..Length(nb)]}; # the new basis part
  nb:=List(u,i->Concatenation( List( sub, ShallowCopy ),
                               List(i,j->LinearCombinationVecs(nb,j))));
  u:=[];
  for i in nb do
    TriangulizeMat(i);
    Add(u,Filtered(i,j->j<>Zero(j)));
  od;
  return u;
end;
SMTX.BasesMinimalSupermodules:=SMTX_BasesMinimalSupermodules ;

SMTX_BasisRadical:=function(module)
local m,i,r;
  m:=SMTX.BasesMaximalSubmodules(module);
  r:=m[1];
  for i in [2..Length(m)] do
    r:=SumIntersectionMat(r,m[i])[2];
  od;
  return r;
end;
SMTX.BasisRadical:=SMTX_BasisRadical;

#############################################################################
##
#F SMTX.SpanOfMinimalSubGModules (m1, m2) . .
## span of the minimal submodules of m2 isomorphic to m1
##
## It is assumed that m1 is a module that has been proved irreducible
##  (using IsIrreducible), and m2 is an arbitrary module for the same group.
## SpanOfMinimalSubGModules computes a normed bases for the span of
## the minimal submodules of m2 that are isomorphic to m1,
## First HomGModule is called.
##
SMTX_SpanOfMinimalSubGModules:=function (m1, m2)
   local  homs, e, mat, i;
   Info(InfoMeatAxe,2,"Calculating homomorphisms from m1 to m2.");
   homs:=SMTX.Homomorphisms(m1, m2);
   if homs=[] then
     return [];
   fi;
   Info(InfoMeatAxe,2,"Sorting them.");
   SMTX.SortHomGModule (m1, m2, homs);

   e:=SMTX.DegreeFieldExt (m1);
   #homs are now grouped so that each block of e have the same image.
   #We only want one from each block.
   if e > 1 then
     homs:=homs{Filtered([1..Length(homs)],i->(i mod e) = 1)};
   fi;
   if Length(homs) = 1 then
     return homs[1];
   fi;
   #The span of the the images of homs is what we want!
   mat:=homs[1];
   for i in [2..Length(homs)] do
     mat:=Concatenation(mat,homs[i]);
   od;
   TriangulizeMat(mat);
   MakeImmutable(mat);
   return mat;
end;
SMTX.SpanOfMinimalSubGModules:=SMTX_SpanOfMinimalSubGModules;

SMTX_BasisSocle:=function(module)
local cf, mat, i;
   cf:=SMTX.CollectedFactors(module);
   cf:=List(cf,i->i[1]);
   mat:=SMTX.SpanOfMinimalSubGModules(cf[1],module);
   if Length(cf) = 1 then
     return mat;
   fi;
   for i in [2..Length(cf)] do
     mat:=Concatenation(mat,SMTX_SpanOfMinimalSubGModules(cf[i],module));
   od;
   TriangulizeMat(mat);
   MakeImmutable(mat);
   return mat;
end;
SMTX.BasisSocle:=SMTX_BasisSocle;

SMTX_BasisRadical:=function(module)
local d, bs;
   d:=SMTX.DualModule(module);
   bs:=SMTX.BasisSocle(d);
   return SMTX.DualizedBasis(d,bs);
end;
SMTX.BasisRadical:=SMTX_BasisRadical;

# the following assignement is for profiling
SMTX.funcs:=[SMTX_OrthogonalVector,SMTX_SpinnedBasis,SMTX_SubQuotActions,
  SMTX_SMCoRaEl,SMTX_IrreducibilityTest,SMTX_RandomIrreducibleSubGModule,
  SMTX_GoodElementGModule,SMTX_FrobeniusAction,SMTX_CompleteBasis,
  SMTX_AbsoluteIrreducibilityTest,SMTX_CollectedFactors,SMTX_Distinguish,
  SMTX_MinimalSubGModule,SMTX_IsomorphismComp,SMTX_MatrixSum,
  SMTX_Homomorphisms,SMTX_SortHomGModule,SMTX_MinimalSubGModules,
  SMTX_BasesCompositionSeries,SMTX_BasesSubmodules,SMTX_BasesMinimalSubmodules,
  SMTX_BasesMaximalSubmodules,SMTX_BasesMinimalSupermodules,SMTX_BasisSocle,
  SMTX_BasisRadical];


# The following functions are for finding a basis of an irreducible module
# that is contained in an orbit of the G-action on vectors, and for
# looking for G-invariant bilinear and quadratic forms of the module.
# The special basis is used for finding invariant quadratic forms when
# the characteristic of the field is 2.

SMTX.SetBasisInOrbit:=function(module,b)
  module.BasisInOrbit:=b;
end;

#############################################################################
##
#F  BasisInOrbit ( module ) . . . . 
## 
## Find a basis of the irrecucible GModule module that is contained in
## an orbit of the action of G.
## The code is similar to that of SpinnedBasis.
SMTX_BasisInOrbit:=function ( module  )
   local   v, matrices, ngens, zero,  ans, normedans,
           dim, subdim, leadpos, w, normedw, i, j, k, l, m, F;

   if not SMTX.IsMTXModule(module) or not SMTX.IsIrreducible(module) then
      Error("Argument of BasisInOrbit is not an irreducible module");
   fi;
   if IsBound(module.BasisInOrbit) then return module.BasisInOrbit; fi;

   dim:=SMTX.Dimension(module);
   F:=SMTX.Field(module);
   matrices:=module.generators;
   ngens:=Length(matrices);

   zero:=Zero(F);
   v:=IdentityMat(dim,F)[1];
   ConvertToVectorRep(v,F);
   ans:=[v];
   normedans:=[v];
   subdim:=1;
   leadpos:=SubGModLeadPos(ans,dim,subdim,zero);
     
   i:=1;
   while i <= subdim do
      for l in [1..ngens] do
         m:=matrices[l];
         # apply generator m to submodule generator i
         w:=ans[i] * m;
         normedw:=w;
         # try to express w in terms of existing submodule generators
         j:=1;
         for  j in [1..subdim] do
            k:=normedw[leadpos[j]];
            if k <> zero then
               normedw:=normedw - k * normedans[j];
            fi;
         od;

         j:=1;
         while j <= dim and normedw[j] = zero do j:=j + 1; od;
         if j <= dim then
            #we have found a new generator of the submodule
            subdim:=subdim + 1;
            leadpos[subdim]:=j;
            normedw:=(normedw[j]^-1) * normedw;
            Add ( ans, w );
            Add ( normedans, normedw );
            if subdim = dim then
	       ans:=ImmutableMatrix(F,ans);
               SMTX.SetBasisInOrbit(module,ans);
               return ans;
            fi;
         fi;
      od;
      i:=i + 1;
   od;
end;
SMTX.BasisInOrbit:=SMTX_BasisInOrbit;

SMTX.SetInvariantBilinearForm:=function(module,b)
  module.InvariantBilinearForm:=b;
end;

#############################################################################
##
#F  InvariantBilinearForm ( module ) . . . . 
## 
## Look for an invariant bilinear form of the absolutely irreducible
## GModule module. Return fail, or the matrix of the form.
SMTX_InvariantBilinearForm:=function ( module  )
   local DM, iso;

   if not SMTX.IsMTXModule(module) or
                            not SMTX.IsAbsolutelyIrreducible(module) then
      Error(
 "Argument of InvariantBilinearForm is not an absolutely irreducible module");
   fi;
   if IsBound(module.InvariantBilinearForm) then
     return module.InvariantBilinearForm; 
   fi;
   DM:=SMTX.DualModule(module);
   iso:=MTX.IsomorphismIrred(module,DM);
   if iso = fail then 
       SMTX.SetInvariantBilinearForm(module, fail);
       return fail; 
   fi;
   ConvertToMatrixRep(iso,module.field);
   MakeImmutable(iso);
   SMTX.SetInvariantBilinearForm(module, iso);
   return iso;
end;

SMTX.InvariantBilinearForm:=SMTX_InvariantBilinearForm;

SMTX.MatrixUnderFieldAuto:=function(matrix, r)
# raise every component of matrix to r-th power
  local mat;
  mat:=List( matrix, x -> List(x, y->y^r) );
  ConvertToMatrixRep(mat, GF(r^2));
  MakeImmutable(mat);
  return mat;
end;

SMTX.TwistedDualModule:=function(module)
  local q, r, mats;
  q:=Size(module.field);
  r:=RootInt(q,2);
  if r^2 <> q then
    Error("Size of field of module is not a square"); 
  fi;
  if SMTX.IsZeroGens(module) then
    return GModuleByMats([],module.dimension,SMTX.Field(module));
  else
    mats:=List( SMTX.Generators(module),
          i->SMTX.MatrixUnderFieldAuto(TransposedMat(i)^-1,r) );
    return GModuleByMats( mats, module.dimension, SMTX.Field(module) );
  fi;
end;

SMTX.SetInvariantSesquilinearForm:=function(module,b)
  module.InvariantSesquilinearForm:=b;
end;

#############################################################################
##
#F  InvariantSesquilinearForm ( module ) . . . . 
## 
## Look for an invariant sesquililinear form of the absolutely irreducible
## GModule module. Return fail, or the matrix of the form.
SMTX_InvariantSesquilinearForm:=function ( module  )
   local DM, q, r, iso, isot, l;

   if not SMTX.IsMTXModule(module) or
                            not SMTX.IsAbsolutelyIrreducible(module) then
      Error(
 "Argument of InvariantSesquilinearForm is not an absolutely irreducible module"
   );
   fi;

   if IsBound(module.InvariantSesquilinearForm) then
     return module.InvariantSesquilinearForm; 
   fi;
   DM:=SMTX.TwistedDualModule(module);
   iso:=MTX.IsomorphismIrred(module,DM);
   if iso = fail then 
       SMTX.SetInvariantSesquilinearForm(module, fail);
       return fail; 
   fi;
   #Replace iso by a scalar multiple to get iso twisted symmetric
   q:=Size(module.field);
   r:=RootInt(q,2);
   isot:=List( TransposedMat(iso), x -> List(x, y->y^r) );
   isot:=iso * isot^-1;
   if not IsDiagonalMat(isot) then
     Error("Form does not seem to be of the right kind (non-diagonal)!");
   fi;
   l:=LogFFE(isot[1][1],Z(q));
   if l mod (r-1) <> 0 then
     Error("Form does not seem to be of the right kind (not (q-1)st root)!");
   fi;
   iso:=Z(q)^(l/(r-1)) * iso;
   ConvertToMatrixRep(iso,GF(q));
   MakeImmutable(iso);
   SMTX.SetInvariantSesquilinearForm(module, iso);
   return iso;
end;

SMTX.InvariantSesquilinearForm:=SMTX_InvariantSesquilinearForm;

SMTX.SetInvariantQuadraticForm:=function(module,b)
  module.InvariantQuadraticForm:=b;
end;

#############################################################################
##
#F  InvariantQuadraticForm ( module ) . . . . 
## 
## Look for an invariant quadratic form of the absolutely irreducible
## GModule module. Return fail, or the matrix of the form.
SMTX_InvariantQuadraticForm:=function ( module  )
   local iso, bas, cgens, ciso, dim, f, z, x, i, j, qf, g, id, cqf, fix;

   if not SMTX.IsMTXModule(module) or
                            not SMTX.IsAbsolutelyIrreducible(module) then
      Error(
 "Argument of InvariantQuadraticForm is not an absolutely irreducible module");
   fi;
   if IsBound(module.InvariantQuadraticForm) then
     return module.InvariantQuadraticForm; 
   fi;
   iso:=SMTX.InvariantBilinearForm(module);
   if iso = fail then return fail; fi;
   if Characteristic(module.field) <> 2 then return iso/2; fi;

   #In characteristic two, we change to a basis in orbit.
   #This makes the search for an invariant quadratic form quicker.
   bas:=SMTX.BasisInOrbit(module);
   cgens:=List (module.generators, x->bas*x*bas^-1 );
   ciso:=List(bas * iso * TransposedMat(bas),ShallowCopy);
   dim:=module.dimension;
   f:=module.field;
   z:=Zero(f);

   #Matrix must be symplectic - perhaps it must be?
   for i in [1..dim] do if ciso[i][i] <> z then
     Print("Non-symplectic failure!\n");
     return fail;
   fi; od;

   #If there is an invariant quadratic form, then it will be the lower
   #left hand part of ciso plus a scalar.
   for i in [1..dim-1] do for j in [i+1..dim] do ciso[i][j]:=z; od; od;
   id:=IdentityMat(dim, f);
   for x in f do
     qf:=ciso + x*id;
     fix:=true;
     #Form is preserved if and only if diagonal is.
     for g in cgens do
       cqf:=g * qf * TransposedMat(g);
       for j in [1..dim] do if cqf[j][j] <> x then
         fix:=false;
         break;
       fi; od;
       if not fix then break; fi;
     od;
     if fix then
       qf:=bas^-1 * qf * TransposedMat(bas^-1);
       #switch to lower triangular equivalent
       for i in [1..dim-1] do for j in [i+1..dim] do
         qf[j][i]:=qf[i][j] + qf[j][i];
         qf[i][j]:=z;
       od; od;
       ConvertToMatrixRep(qf,f);
       MakeImmutable(qf);
       SMTX.SetInvariantQuadraticForm(module, qf);
       return qf;
     fi;
   od;
   SMTX.SetInvariantQuadraticForm(module, fail);
   return fail;
end;

SMTX.InvariantQuadraticForm:=SMTX_InvariantQuadraticForm;

#############################################################################
##
#F  OrthogonalSign ( module ) . . . . 
## 
## When an absolutely irreducible G-module has an invariant quadratic
## form, this implies that it embeds in a General Orthogonal group. In
## even dimension there are two non-isomorphic General Orthogonal groups
## "plus" and "minus" type `GeneralOrthogonalGroup(+1,<n>,<q>)' and 
## `GeneralOrthogobalGroup(-1,<n>,<q>)' in GAP terms. This function
## decides which one the module embeds into. 
##
## It returns: 
##  fail if the module is not absolutely irreducible, or
##       does not stabilize a quadratic form.
##  0    otherwise, if the dimension of the module is odd
##  +1 or -1 otherwise, according to which GO the module embeds in
##
## This is an implementation of an algorithm by Jon Thackray

SMTX.SetOrthogonalSign:=function(module,s)
  module.OrthogonalSign:=s;
end;

SMTX_OrthogonalSign:=function(gm)
    local   b,  q,  k,  n,  W,  o,  z,  lo,  lzo,  lines,  l,  w,  p,  
            x,  y,  r,  i;
    if IsBound(gm.OrthogonalSign) then
        return gm.OrthogonalSign;
    fi;
    b:=MTX.InvariantBilinearForm(gm);
    q:=MTX.InvariantQuadraticForm(gm);
    if q = fail then
        return fail;
    fi;
    n:=Length(b);
    if n mod 2 = 1 then
        return 0;
    fi;
    k:=MTX.Field(gm);
    W:=IdentityMat(n,k);
    
    #
    # Assemble the points of projective 3-space
    #
    o:=One(k);
    z:=Zero(k);
    lo:=[o];
    lzo:=[z,o];
    lines:=List(Elements(FullRowSpace(k,2)),x -> Concatenation(lo,x));
    Append(lines,List(Elements(k), x-> Concatenation(lzo,[x])));
    Add(lines,[z,z,o]);
    
    #
    # Main loop of Thackray's algorithm, build up a totally isotropic 
    # subspace and restrict it's perp until the gap between is just 2 dimensional
    #
    
    while n > 2 do
        
        #
        # Find an isotropic vector
        #
        for l in lines do
            w:=l*W;
            if w*q*w = z then
                break;
            fi;
        od;
        Assert(1,w*b*w = z);
        p:=PositionNonZero(l);
        #
        # delete it from W (add it to the subspace)
        #
        W{[p..n-1]}:=W{[p+1..n]};
        Unbind(W[n]);
        n:=n-1;
        #
        # find a vector with which it has non-zero inner product
        #
        x:=w*b;
        p:=PositionProperty(W, row -> x*row <> z);
        Assert(1, p <> fail);
        #
        # use it to find the perp of the enlarged subspace
        #
        y:=W[p];
        r:=x*y;
        for i in [p+1..n] do
            AddRowVector(W[i], y, - x*W[i]/r);
            W[i-1]:=W[i];
        od;
        Unbind(W[n]);
        n:=n-1;
        #
        # Now n has gone down by 2 and W is still the "gap" between the
        # subspace and its perp
        #
    od;
    
    #
    # Now we need to see if the span of W contains an isotropic vector
    #
    if W[2]*q*W[2] = z then
        SMTX.SetOrthogonalSign(gm,1);
        return 1;
    else
        for x in k do
            w:=W[1]+x*W[2];
            if w*q*w = z then
                SMTX.SetOrthogonalSign(gm,1);
                return 1;
            fi;
        od;
        SMTX.SetOrthogonalSign(gm,-1);
        return -1;
    fi;
end;
        
SMTX.OrthogonalSign:=SMTX_OrthogonalSign;