This file is indexed.

/usr/share/gap/lib/mgmadj.gd is in gap-libs 4r6p5-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
#############################################################################
##
#W  mgmadj.gd                    GAP library                  Andrew Solomon
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains declarations for magmas with zero adjoined.
##

#############################################################################
##
#C  IsMultiplicativeElementWithZero( <elt>)
##
##  <#GAPDoc Label="IsMultiplicativeElementWithZero">
##  <ManSection>
##  <Filt Name="IsMultiplicativeElementWithZero" Arg='elt' Type='Category'/>
##
##  <Description>
##  Elements in a family which can be the operands of the 
##  <C>*</C> and the operation MultiplicativeZero.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory("IsMultiplicativeElementWithZero",IsMultiplicativeElement);
DeclareCategoryCollections("IsMultiplicativeElementWithZero");


#############################################################################
##
#O  MultiplicativeZeroOp( <elt> ) 
##
##  <#GAPDoc Label="MultiplicativeZeroOp">
##  <ManSection>
##  <Oper Name="MultiplicativeZeroOp" Arg='elt'/>
##
##  <Description>
##  for an element <A>elt</A> in the category 
##  <Ref Func="IsMultiplicativeElementWithZero"/>,
##  returns the element <M>z</M> in the family <M>F</M> of <A>elt</A>
##  with the property that <M>z * m = z = m * z</M> holds for all
##  <M>m \in F</M>, if such an element is known.
##  <P/>
##  Families of elements in the category
##  <Ref Func="IsMultiplicativeElementWithZero"/>
##  often arise from adjoining a new zero to an existing magma. 
##  See&nbsp;<Ref Func="InjectionZeroMagma"/> for details.
##  <P/>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "MultiplicativeZeroOp", [IsMultiplicativeElementWithZero] );


#############################################################################
##
#A  MultiplicativeZero( <M> ) 
##
##  <#GAPDoc Label="MultiplicativeZero">
##  <ManSection>
##  <Attr Name="MultiplicativeZero" Arg='M'/>
##
##  <Description>
##  Returns the multiplicative zero of the magma which is the element
##  <A>z</A> such that for all <A>m</A> in <A>M</A>, <C><A>z</A> * <A>m</A> = <A>m</A> * <A>z</A> = <A>z</A></C>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "MultiplicativeZero", IsMultiplicativeElementWithZero );


#############################################################################
##
#O  IsMultiplicativeZero( <M>, <z> ) 
##
##  <#GAPDoc Label="IsMultiplicativeZero">
##  <ManSection>
##  <Oper Name="IsMultiplicativeZero" Arg='M, z'/>
##
##  <Description>
##  returns true iff <C><A>z</A> * <A>m</A> = <A>m</A> * <A>z</A> = <A>z</A></C> for all <A>m</A> in <A>M</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "IsMultiplicativeZero", [ IsMagma, IsMultiplicativeElement ] );


#############################################################################
##
#A  InjectionZeroMagma( <M> )
##
##  <#GAPDoc Label="InjectionZeroMagma">
##  <ManSection>
##  <Attr Name="InjectionZeroMagma" Arg='M'/>
##
##  <Description>
##  The canonical homomorphism <A>i</A> from the  magma
##  <A>M</A> into the magma formed from <A>M</A> with a single new element 
##  which is a multiplicative zero for the resulting magma.
##  <P/>
##  The elements of the new magma form a family of elements in the 
##  category IsMultiplicativeElementWithZero, and the
##  new magma is obtained as Range(<A>i</A>).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "InjectionZeroMagma", IsMagma );


#############################################################################
##
#E