/usr/share/gap/lib/mgmadj.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 | #############################################################################
##
#W mgmadj.gi GAP library Andrew Solomon
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains generic methods for magmas with zero adjoined.
##
#############################################################################
##
#M IsMultiplicativeZero( <M>, <elt> )
##
InstallMethod( IsMultiplicativeZero,
"generic method for an element and a magma with multiplicative zero",
IsCollsElms,
[ IsMagma and HasMultiplicativeZero, IsMultiplicativeElement], 0,
function( M, z )
return z = MultiplicativeZero(M);
end);
InstallMethod( IsMultiplicativeZero,
"generic method for an element and a magma",
IsCollsElms,
[ IsMagma, IsMultiplicativeElement], 0,
function( M,z )
local x,i,en;
i := 1;
en := Enumerator(M);
while IsBound(en[i]) do
x := en[i];
if x*z <> z or z*x <> z then
return false;
fi;
i := i +1;
od;
SetMultiplicativeZero(M,Immutable(z));
return true;
end);
#############################################################################
##
#M IsMultiplicativeZero( <M>, <elt> )
##
InstallMethod( IsMultiplicativeZero,
"generic method for an element of a semigroup, given generators",
IsCollsElms, [IsSemigroup and HasGeneratorsOfSemigroup,
IsMultiplicativeElement], 0,
function(S, z)
if ForAll(GeneratorsOfSemigroup(S), x->x*z=z and z*x=z) then
SetMultiplicativeZero(S, Immutable(z));
return true;
fi;
return false;
end);
############################################################################
##
#R IsMagmaWithMultiplicativeZeroAdjoinedElementRep(<obj>)
##
## Representation of an element of this type is as record which
## has a field "IsTheZero" and another, "UnderlyingElement" which
## has a value in case "IsTheZero" is false.
##
DeclareRepresentation("IsMagmaWithMultiplicativeZeroAdjoinedElementRep",
IsComponentObjectRep and IsMultiplicativeElementWithZero,
["IsTheZero", "UnderlyingElement"]);
#############################################################################
##
#M OneOp( <elm> )
##
InstallMethod( OneOp,
"for an element of a magma with zero adjoined",
true,
[ IsMultiplicativeElementWithOne and
IsMagmaWithMultiplicativeZeroAdjoinedElementRep], 0,
function( elm )
# has to be created "by hand" so to speak, since the family
# won't necessarily have the homomorphism to hand when it is created.
return Objectify(TypeObj(elm), rec( IsTheZero:= false,
UnderlyingElement := One(FamilyObj(elm)!.underlyingMagma)));
end );
#############################################################################
##
#M MultiplicativeZeroOp( <elm> )
##
## This is a shortcut - the family of elements is the same as the
## elements of the magma. It is really the *magma's* zero.
##
InstallMethod( MultiplicativeZeroOp,
"for an element of a magma with zero adjoined",
true,
[ IsMagmaWithMultiplicativeZeroAdjoinedElementRep], 0,
function( elm )
return FamilyObj(elm)!.zero;
end );
#############################################################################
##
#M MultiplicativeZero( <M> )
##
InstallOtherMethod( MultiplicativeZero,
"for a magma",
true,
[ IsMagma ], 0,
function( M )
local en, i;
en := Enumerator(M);
i := 1;
while (IsBound(en[i])) do
if IsMultiplicativeZero(M, en[i]) then
return en[i];
fi;
i := i +1;
od;
return fail;
end );
#############################################################################
##
#A InjectionZeroMagma( <M> )
##
## The canonical homomorphism from the
## <M> into the magma formed from <M> with a single new element
## which is a multiplicative zero for the resulting magma.
##
## In order to be able to define multiplication, the elements of the
## new magma must be in a new family.
##
InstallMethod(InjectionZeroMagma,
"method for a magma",
true,
[IsMagma], 0,
function(M)
local
Fam, Typ, # the new family and type
z, # the new zero
ZM, # the new magma
ZMgens, # generators of the new magma
filters, # the new elements family's filters
coerce; # coerce an element of the base magma into the zero magma
# Putting IsMultiplicativeElement in the NewFamily means that when you make,
# say [a] it picks up the Category from the Family object and makes
# sure that [a] has CollectionsCategory(IsMultiplicativeElement)
# Preserve all sensible properties
filters := IsMultiplicativeElementWithZero;
if IsMultiplicativeElementWithOne(Representative(M)) then
filters := filters and IsMultiplicativeElementWithOne;
fi;
if IsAssociativeElement(Representative(M)) then
filters := filters and IsAssociativeElement;
fi;
Fam := NewFamily( "TypeOfElementOfMagmaWithZeroAdjoined", filters);
Fam!.underlyingMagma := Immutable(M);
# put n in the type data so that we can find the position in the database
# without a search
Typ := NewType(Fam, filters and
IsMagmaWithMultiplicativeZeroAdjoinedElementRep);
coerce := g->Objectify(Typ,
rec( IsTheZero:= false, UnderlyingElement := g));
# Now create the new magma and its zero element
z := Objectify(Typ, rec( IsTheZero:= true ) );
if Length(GeneratorsOfMagma(M))=0 then
# ZM := Magma(CollectionsFamily(Fam),[]);
Error("Can't adjoin a zero to a Magma without generators");
fi;
# make the list of generators into generators of ZM
ZMgens := List(GeneratorsOfMagma(M), g->coerce(g));
if IsSemigroup(M) then
if IsMonoid(M) then
# need to supply the identity as second argument
ZM := MonoidByGenerators(Concatenation(ZMgens, [z]));
else
ZM := Semigroup(Concatenation(ZMgens, [z]));
fi;
else
ZM := Magma(Concatenation(ZMgens, [z]));
fi;
if IsGroup(M) then
SetIsZeroGroup(ZM,true);
fi;
SetMultiplicativeZero(ZM,z);
Fam!.injection := Immutable(MagmaHomomorphismByFunctionNC(M, ZM, coerce));
Fam!.zero := Immutable(z);
return Fam!.injection;
end);
#############################################################################
##
#M Size( <S> )
##
InstallMethod( Size,
"method for a magma with a zero adjoined",
true,
[ IsMagma and HasMultiplicativeZero ], 0,
function(s)
local sizeofs,m,fam,z;
# if the magma has a zero, but it is not a magma with
# a zero adjoined then this method does not apply
z := MultiplicativeZero( s );
if not( IsMagmaWithMultiplicativeZeroAdjoinedElementRep( z ) ) then
TryNextMethod();
fi;
# get the magma underlying s
fam := ElementsFamily( FamilyObj (s ) );
m := fam!.underlyingMagma;
sizeofs:=Size(m) + 1;
return sizeofs;
end);
#############################################################################
##
#M <elm> * <elm>
##
## returns the product of two elements of a magma with a zero adjoined
InstallMethod( \*,
"for two elements of a magma with zero adjoined",
IsIdenticalObj,
[ IsMagmaWithMultiplicativeZeroAdjoinedElementRep,
IsMagmaWithMultiplicativeZeroAdjoinedElementRep ], 0,
function ( elm1, elm2 )
if elm1!.IsTheZero or elm2!.IsTheZero then
return MultiplicativeZeroOp(elm1);
else
# compute the product in the underlying magma and then
# inject back into the zeromagma
return (elm1!.UnderlyingElement * elm2!.UnderlyingElement)^
(FamilyObj(elm1)!.injection);
fi;
end );
#############################################################################
##
#M <elm> = <elm>
##
## decides equality of two elements of a magma with zero adjoined
##
InstallMethod( \=,
"for two elements of a magma with zero adjoined",
IsIdenticalObj,
[ IsMagmaWithMultiplicativeZeroAdjoinedElementRep,
IsMagmaWithMultiplicativeZeroAdjoinedElementRep ], 0,
function ( elm1, elm2 )
if elm1!.IsTheZero and elm2!.IsTheZero then
return true;
elif elm1!.IsTheZero or elm2!.IsTheZero then
# only one is zero
return false;
else
# compute in the underlying magma
return (elm1!.UnderlyingElement = elm2!.UnderlyingElement);
fi;
end );
############################################################################
##
#M <eltz> < <eltz> .. for magma with a zero adjoined
##
## Ordering of the underlying magma with zero less than everything else
##
InstallMethod(\<,
"for elements of magmas with 0 adjoined",
IsIdenticalObj,
[ IsMagmaWithMultiplicativeZeroAdjoinedElementRep,
IsMagmaWithMultiplicativeZeroAdjoinedElementRep ], 0,
function ( elm1, elm2 )
if elm1!.IsTheZero and elm2!.IsTheZero then # 0 0
return false;
elif elm2!.IsTheZero then # 1 0
return false;
elif elm1!.IsTheZero and not(elm2!.IsTheZero) then # 0 1
return true;
else
# compute in the underlying magma
return (elm1!.UnderlyingElement < elm2!.UnderlyingElement);
fi;
end );
############################################################################
##
#A Print(<elz>)
##
## Print the element
##
InstallMethod(PrintObj, "for elements of magmas with 0 adjoined", true,
[IsMagmaWithMultiplicativeZeroAdjoinedElementRep], 0,
function(x)
if x!.IsTheZero then
Print("0");
else
Print(x!.UnderlyingElement);
fi;
end);
#############################################################################
##
#E
|