/usr/share/gap/lib/mgmhom.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | #############################################################################
##
#W mgmhom.gi GAP library Andrew Solomon
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains generic methods for magma homomorphisms
##
#############################################################################
##
#F MagmaHomomorphismByFunctionNC( <G>, <H>, <fn> )
##
## Creates the homomorphism from G to H without checking
## that <fn> is a homomorphism.
##
InstallGlobalFunction( MagmaHomomorphismByFunctionNC,
function( G, H, imgfn )
local hom;
if not IsMagma(G) and IsMagma(H) and IsFunction(imgfn) then
Error("Usage: MagmaHomomorphismByFunctionNC(<Magma>,<Magma>,<fn>)");
fi;
hom := MappingByFunction(G, H, imgfn);
SetIsMagmaHomomorphism(hom, true);
return hom;
end );
#############################################################################
##
#F MagmaIsomorphismByFunctionsNC( <G>, <H>, <fn>, <inv> )
##
## Creates the isomorphism from G to H without checking
## that <fn> or <inv> are a homomorphisms or bijective or inverse.
##
InstallGlobalFunction( MagmaIsomorphismByFunctionsNC,
function( G, H, imgfn, preimgfn )
local hom;
if not IsMagma(G) and IsMagma(H) and IsFunction(imgfn)
and IsFunction(preimgfn) then
Error("Usage: MagmaIsomorphismByFunctionsNC(<Magma>,<Magma>,<fn>,<inv>)");
fi;
hom := MappingByFunction(G, H, imgfn,preimgfn);
SetIsMagmaHomomorphism(hom, true);
return hom;
end );
#############################################################################
##
#E
|