This file is indexed.

/usr/share/gap/lib/mgmhom.gi is in gap-libs 4r6p5-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#############################################################################
##
#W  mgmhom.gi                    GAP library                  Andrew Solomon
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains generic methods for magma homomorphisms
##

#############################################################################
##
#F  MagmaHomomorphismByFunctionNC( <G>, <H>, <fn> ) 
##
##  Creates the homomorphism from G to H without checking
##  that <fn> is a homomorphism.
##
InstallGlobalFunction( MagmaHomomorphismByFunctionNC,
function( G, H, imgfn )
	local   hom;
	
	if not IsMagma(G) and IsMagma(H) and IsFunction(imgfn) then
		Error("Usage:  MagmaHomomorphismByFunctionNC(<Magma>,<Magma>,<fn>)");
	fi;

	hom := MappingByFunction(G, H, imgfn);
	SetIsMagmaHomomorphism(hom, true);
	return hom;
end );

#############################################################################
##
#F  MagmaIsomorphismByFunctionsNC( <G>, <H>, <fn>, <inv> )
##
##  Creates the isomorphism from G to H without checking
##  that <fn> or <inv> are a homomorphisms or bijective or inverse.
##
InstallGlobalFunction( MagmaIsomorphismByFunctionsNC,
function( G, H, imgfn, preimgfn )
	local   hom;
	
	if not IsMagma(G) and IsMagma(H) and IsFunction(imgfn) 
		and IsFunction(preimgfn) then
		Error("Usage:  MagmaIsomorphismByFunctionsNC(<Magma>,<Magma>,<fn>,<inv>)");
	fi;

	hom := MappingByFunction(G, H, imgfn,preimgfn);
	SetIsMagmaHomomorphism(hom, true);
	return hom;
end );

#############################################################################
##
#E