This file is indexed.

/usr/share/gap/lib/mgmideal.gi is in gap-libs 4r6p5-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
#############################################################################
##
#W  mgmideal.gi              GAP library                     Andrew Solomon
##
##
#Y  Copyright (C)  1996,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains generic methods for magma ideals
##


#############################################################################
##
#M  PrintObj( <S> )
##  print a [left, right, two-sided] MagmaIdeal
##

##  left

InstallMethod( PrintObj,
    "for a left magma ideal",
    true,
    [ IsLeftMagmaIdeal ], 0,
    function( S )
    Print( "LeftMagmaIdeal( ... )" );
    end );

InstallMethod( PrintObj,
    "for a left magma ideal with known generators",
    true,
    [ IsLeftMagmaIdeal and HasGeneratorsOfLeftMagmaIdeal ], 0,
    function( S )
    Print( "LeftMagmaIdeal( ", GeneratorsOfLeftMagmaIdeal( S ), " )" );
    end );

##  right

InstallMethod( PrintObj,
    "for a right magma ideal",
    true,
    [ IsRightMagmaIdeal ], 0,
    function( S )
    Print( "RightMagmaIdeal( ... )" );
    end );

InstallMethod( PrintObj,
    "for a right magma ideal with known generators",
    true,
    [ IsRightMagmaIdeal and HasGeneratorsOfRightMagmaIdeal ], 0,
    function( S )
    Print( "RightMagmaIdeal( ", GeneratorsOfRightMagmaIdeal( S ), " )" );
    end );


##  two sided

InstallMethod( PrintObj,
    "for a magma ideal",
    true,
    [ IsMagmaIdeal ], 0,
    function( S )
    Print( "MagmaIdeal( ... )" );
    end );

InstallMethod( PrintObj,
    "for a magma ideal with known generators",
    true,
    [ IsMagmaIdeal and HasGeneratorsOfMagmaIdeal ], 0,
    function( S )
    Print( "MagmaIdeal( ", GeneratorsOfMagmaIdeal( S ), " )" );
    end );

#############################################################################
##
#M  ViewObj( <S> )  
##	view a [left,right,two-sided] magma ideal
##

##  left

InstallMethod( ViewObj,
    "for a LeftMagmaIdeal",
    true,
    [ IsLeftMagmaIdeal ], 0,
    function( S )
    Print( "<LeftMagmaIdeal>" );
    end );

InstallMethod( ViewObj,
    "for a LeftMagmaIdeal with generators",
    true,
    [ IsLeftMagmaIdeal and HasGeneratorsOfLeftMagmaIdeal ], 0,
    function( S )
    Print( "<LeftMagmaIdeal with ", Length( GeneratorsOfLeftMagmaIdeal( S ) ),
           " generators>" );
    end );

##  right


InstallMethod( ViewObj,
    "for a RightMagmaIdeal",
    true,
    [ IsRightMagmaIdeal ], 0,
    function( S )
    Print( "<RightMagmaIdeal>" );
    end );

InstallMethod( ViewObj,
    "for a RightMagmaIdeal with generators",
    true,
    [ IsRightMagmaIdeal and HasGeneratorsOfRightMagmaIdeal ], 0,
    function( S )
    Print( "<RightMagmaIdeal with ", Length( GeneratorsOfRightMagmaIdeal( S ) ),
           " generators>" );
    end );


## two sided

InstallMethod( ViewObj,
    "for a MagmaIdeal",
    true,
    [ IsMagmaIdeal ], 0,
    function( S )
    Print( "<MagmaIdeal>" );
    end );

InstallMethod( ViewObj,
    "for a MagmaIdeal with generators",
    true,
    [ IsMagmaIdeal and HasGeneratorsOfMagmaIdeal ], 0,
    function( S )
    Print( "<MagmaIdeal with ", Length( GeneratorsOfMagmaIdeal( S ) ),
           " generators>" );
    end );



#############################################################################
##
#M  LeftMagmaIdealByGenerators( <D>, <gens> )
#M  RightMagmaIdealByGenerators( <D>, <gens> )
#M  MagmaIdealByGenerators( <D>, <gens> )
##
##  ASSUMES that <gens> are a subset of <D>
##
InstallMethod( LeftMagmaIdealByGenerators,
    "for a collection of magma elements",
    IsIdenticalObj,
    [ IsMagma, IsCollection ], 0,
    function( M, gens )
    local S;

		S:= Objectify( NewType( FamilyObj( gens ),
                            IsLeftMagmaIdeal and IsAttributeStoringRep ),
                   rec() );

    SetGeneratorsOfLeftMagmaIdeal( S, AsList( gens ) );
		SetParent(S, M);
		SetLeftActingDomain(S, M);

    if HasGeneratorsOfGroup(M) then
        # Because any ideal of a group the whole group, we should set the
        # generators.
        SetGeneratorsOfGroup(S, GeneratorsOfGroup(M));
    fi;

    return S;
end );

InstallMethod( RightMagmaIdealByGenerators,
    "for a collection of magma elements",
    IsIdenticalObj,
    [ IsMagma, IsCollection ], 0,
    function( M, gens )
    local S;

    S:= Objectify( NewType( FamilyObj( gens ),
                            IsRightMagmaIdeal and IsAttributeStoringRep ),
                   rec() );

    SetGeneratorsOfRightMagmaIdeal( S, AsList( gens ) );
		SetParent(S, M);
		SetRightActingDomain(S, M);

    if HasGeneratorsOfGroup(M) then
        # Because any ideal of a group is the whole group, we should set the
        # generators.
        SetGeneratorsOfGroup(S, GeneratorsOfGroup(M));
    fi;


    return S;
end );


InstallMethod( MagmaIdealByGenerators,
    "for a collection of magma elements",
    IsIdenticalObj,
    [ IsMagma, IsCollection ], 0,
    function( M, gens )
    local S;

    S:= Objectify( NewType( FamilyObj( gens ),
                            IsMagmaIdeal and IsAttributeStoringRep ),
                   rec() );

    SetGeneratorsOfMagmaIdeal( S, AsList( gens ) );
		SetParent(S, M);
		SetActingDomain(S, M);

    if HasGeneratorsOfGroup(M) then
        # Because any ideal of a group is the whole group, we should set the
        # generators.
        SetGeneratorsOfGroup(S, GeneratorsOfGroup(M));
    fi;


    return S;
end );

#############################################################################
##
#F  LeftMagmaIdeal( <gen>, ... ) 
#F  RightMagmaIdeal( <gens> )
#F  MagmaIdeal( <gens> )
##
##  Unimplemented
##
# InstallGlobalFunction( LeftMagmaIdeal, function( arg )
# InstallGlobalFunction( RightMagmaIdeal, function( arg )
# InstallGlobalFunction( MagmaIdeal, function( arg )

#############################################################################
##                                                        
#M  AsLeftMagmaIdeal( <D>, <C> )    
##
##	Regard the list <C> of elements as a left ideal of <D>.
##  It is not checked, but assumed, that <C> are all the elements
##  of the ideal and that <C> is a subset of <D>.
##     
InstallMethod( AsLeftMagmaIdeal,
    "generic method for a domain and a collection", 
    IsIdenticalObj,               
    [ IsDomain, IsCollection ], 0,                                   

function( D, C )
    local S;

		S:= LeftMagmaIdealByGenerators( D, AsList(C));
    UseIsomorphismRelation( C, S );
    UseSubsetRelation( C, S );
    return S;
end );

#############################################################################
##
#M  Enumerator( <I> ) . . . . . . . . . . . .  elements of a magma ideal
##
BindGlobal( "EnumeratorOfMagmaIdeal", function( I )

    local   gens,       # magma generators of <I>
            H,          # submagma 
            gen,        # generator of <I>
						x,y,				# elements of parent
						M;					# parent

    # handle the case of an empty magma
    gens:= GeneratorsOfMagmaIdeal( I );
    if IsEmpty( gens ) then
      return [];
    fi;

		M := Parent(I); # the magma whose ideal it is

    # start with the empty magma and its element generators list
    H:= Submagma( M, [] );
    SetAsSSortedList( H, Immutable( [ ] ) );

    # Add the generators one after the other.
    # We use a function that maintains the elements list for the closure.
    for gen in gens do
			for x in AsSSortedList(M) do
				for y in AsSSortedList(M) do
					H:= ClosureMagmaDefault( H, x*gen*y );
				od;
			od;
    od;

    # return the list of elements
    Assert( 2, HasAsSSortedList( H ) );
    return AsSSortedList( H );
end );

InstallMethod( Enumerator,
    "generic method for a magma ideal",
    true,
    [ IsMagma and IsAttributeStoringRep and IsMagmaIdeal ], 0,
    EnumeratorOfMagmaIdeal );




#############################################################################
##
#M  AsSSortedList( <R> )  - for a right magma ideal
#M  AsSSortedList( <L> )  - for a left magma ideal
##  
##  Lazy methods for listing the elements of a left/right magma ideal
##  assuming the object is finite. Should write enumerators some time...
##
InstallMethod( AsSSortedList,
  "for a right magma ideal", true, 
  [IsRightMagmaIdeal and HasGeneratorsOfRightMagmaIdeal],0,
function(I)
  local
    g,    # a generator of the ideal
    x,    # an element of the parent
    plist, # elements of the parent
    genlist, # right ideal generators
    idealelts; # elements of the ideal

  plist := AsSet(Parent(I));
  genlist := AsSet(GeneratorsOfRightMagmaIdeal(I));

  idealelts := ShallowCopy(genlist);

  for g in genlist do
    for x in plist do
      AddSet(idealelts, g*x);
    od;
  od;

	return idealelts;
end);


InstallMethod( AsSSortedList,
  "for a left magma ideal", true, 
  [IsLeftMagmaIdeal and HasGeneratorsOfLeftMagmaIdeal],0,
function(I)
  local
    g,    # a generator of the ideal
    x,    # an element of the parent
    plist, # elements of the parent
    genlist, # left ideal generators
    idealelts; # elements of the ideal

  plist := AsSet(Parent(I));
  genlist := AsSet(GeneratorsOfLeftMagmaIdeal(I));

  idealelts := ShallowCopy(genlist);

  for g in genlist do
    for x in plist do
      AddSet(idealelts, x*g);
    od;
  od;

	return idealelts;
end);






#############################################################################
##
#E