/usr/share/gap/lib/mgmring.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 | #############################################################################
##
#W mgmring.gi GAP library Thomas Breuer
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the methods for magma rings and their elements.
##
## 1. methods for elements of magma rings in default representation
## 2. methods for free magma rings
## 3. methods for free left modules in magma ring modulo relations
## 4. methods for free magma rings modulo the span of a ``zero'' element
## 5. methods for groups of free magma ring elements
##
#T > Dear Craig,
#T >
#T > you asked for the implementation of magma rings modulo the identification
#T > of a ``zero element'' in the magma with zero.
#T >
#T > Here is my proposal for the basic stuff.
#T > (I have mainly taken the implementation of free magma rings plus the
#T > ideas used for `FreeLieAlgebra'.)
#T > It does not cover the vector space functionality (computing bases etc.),
#T > but I will rearrange the code in `mgmring.gd' and `mgmring.gi' in such a way
#T > that your generalized magma rings can use the mechanisms provided there.
#T get rid of `!.zeroRing'
#T (provide uniform access to the zero coeff. stored in the element;
#T this is also possible for polynomials etc.)
#T get rid of !.defaultType
#T get rid of !.oneMagma
#T best get rid of the families distinction for magma rings ?
#T (would solve problems such as relation between GroupRing( Integers, G )
#T and GroupRing( Rationals, G ))
#############################################################################
##
## 1. methods for elements of magma rings in default representation
##
#############################################################################
##
#R IsMagmaRingObjDefaultRep( <obj> )
##
## <#GAPDoc Label="IsMagmaRingObjDefaultRep">
## <ManSection>
## <Filt Name="IsMagmaRingObjDefaultRep" Arg='obj' Type='Representation'/>
##
## <Description>
## The default representation of a magma ring element is a list of length 2,
## at first position the zero coefficient, at second position a list with
## the coefficients at the even positions, and the magma elements at the
## odd positions, with the ordering as defined for the magma elements.
## <P/>
## It is assumed that arithmetic operations on magma rings produce only
## normalized elements.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareRepresentation( "IsMagmaRingObjDefaultRep", IsPositionalObjectRep,
[ 1, 2 ] );
#############################################################################
##
#M NormalizedElementOfMagmaRingModuloRelations( <Fam>, <descr> )
##
## A free magma ring element is normalized if <descr> is sorted according to
## the involved magma elements.
## Thus normalization is trivial.
##
InstallMethod( NormalizedElementOfMagmaRingModuloRelations,
"for a family of elements in a *free* magma ring, and a list",
[ IsElementOfFreeMagmaRingFamily, IsList ],
function( Fam, descr )
return descr;
end );
#############################################################################
##
#F FMRRemoveZero( <coeffs_and_words>, <zero> )
##
## removes all pairs from <coeffs_and_words> where the coefficient
## is <zero>.
## Note that <coeffs_and_words> is assumed to be sorted.
##
BindGlobal( "FMRRemoveZero", function( coeffs_and_words, zero )
local i, # offset of old and new position
lenw, # length of `words' and `coeff'
pos; # loop over the lists
i:= 0;
lenw:= Length( coeffs_and_words );
for pos in [ 2, 4 .. lenw ] do
if coeffs_and_words[ pos ] = zero then
i:= i + 2;
elif i < pos then
coeffs_and_words[ pos-i-1 ]:= coeffs_and_words[ pos-1 ];
coeffs_and_words[ pos-i ]:= coeffs_and_words[ pos ];
fi;
od;
for pos in [ lenw-i+1 .. lenw ] do
Unbind( coeffs_and_words[ pos ] );
od;
return coeffs_and_words;
end );
#############################################################################
##
#M ElementOfMagmaRing( <Fam>, <zerocoeff>, <coeff>, <words> )
##
## check whether <coeff> and <words> lie in the correct domains,
## and remove zeroes.
##
InstallMethod( ElementOfMagmaRing,
"for family, ring element, and two homogeneous lists",
[ IsFamily, IsRingElement, IsHomogeneousList, IsHomogeneousList ],
function( Fam, zerocoeff, coeff, words )
local rep, i, j;
# Check that the data is admissible.
if not IsBound( Fam!.defaultType ) then
TryNextMethod();
elif IsEmpty( coeff ) and IsEmpty( words ) then
return Objectify( Fam!.defaultType, [ zerocoeff, [] ] );
elif not IsIdenticalObj( FamilyObj( coeff ), Fam!.familyRing ) then
Error( "<coeff> are not all in the correct domain" );
elif not IsIdenticalObj( FamilyObj( words ), Fam!.familyMagma ) then
Error( "<words> are not all in the correct domain" );
elif Length( coeff ) <> Length( words ) then
Error( "<coeff> and <words> must have same length" );
fi;
# Make sure that the list of words is strictly sorted.
if not IsSSortedList( words ) then
words:= ShallowCopy( words );
coeff:= ShallowCopy( coeff );
SortParallel( words, coeff );
if not IsSSortedList( words ) then
j:= 1;
for i in [ 2 .. Length( coeff ) ] do
if words[i] = words[j] then
coeff[j]:= coeff[j] + coeff[i];
else
j:= j+1;
words[j]:= words[i];
coeff[j]:= coeff[i];
fi;
od;
for i in [ j+1 .. Length( coeff ) ] do
Unbind( words[i] );
Unbind( coeff[i] );
od;
fi;
fi;
# Create the default representation, and remove zeros.
rep:= [];
j:= 1;
for i in [ 1 .. Length( coeff ) ] do
if coeff[i] <> zerocoeff then
rep[ j ]:= words[i];
rep[ j+1 ]:= coeff[i];
j:= j+2;
fi;
od;
# Normalize the result.
rep:= NormalizedElementOfMagmaRingModuloRelations( Fam,
[ zerocoeff, rep ] );
# Return the result.
return Objectify( Fam!.defaultType, rep );
end );
#############################################################################
##
#M ZeroCoefficient( <elm> )
##
InstallMethod( ZeroCoefficient,
"for magma ring element in default repr.",
[ IsElementOfMagmaRingModuloRelations and IsMagmaRingObjDefaultRep ],
elm -> FamilyObj( elm )!.zeroRing );
#############################################################################
##
#M CoefficientsAndMagmaElements( <elm> )
##
InstallMethod( CoefficientsAndMagmaElements,
"for magma ring element in default repr.",
[ IsElementOfMagmaRingModuloRelations and IsMagmaRingObjDefaultRep ],
elm -> elm![2] );
#############################################################################
##
#M PrintObj( <elm> ) . . . . . . . . for magma ring element in default repr.
##
InstallMethod( PrintObj,
"for magma ring element",
[ IsElementOfMagmaRingModuloRelations ],
function( elm )
local coeffs_and_words,
i;
coeffs_and_words:= CoefficientsAndMagmaElements( elm );
for i in [ 1, 3 .. Length( coeffs_and_words ) - 3 ] do
Print( "(", coeffs_and_words[i+1], ")*", coeffs_and_words[i], "+" );
od;
i:= Length( coeffs_and_words );
if i = 0 then
Print( "<zero> of ..." );
else
Print( "(", coeffs_and_words[i], ")*", coeffs_and_words[i-1] );
fi;
end );
#############################################################################
##
#M String( <elm> ) . . . . . . . . for magma ring element in default repr.
##
InstallMethod( String,
"for magma ring element",
[ IsElementOfMagmaRingModuloRelations ],
function( elm )
local coeffs_and_words,s,i;
s:="";
coeffs_and_words:= CoefficientsAndMagmaElements( elm );
for i in [ 1, 3 .. Length( coeffs_and_words ) - 3 ] do
Append(s,Concatenation("(",String(coeffs_and_words[i+1]), ")*", String(coeffs_and_words[i]),
"+" ));
od;
i:= Length( coeffs_and_words );
if i = 0 then
Append(s, "<zero> of ..." );
else
Append(s, Concatenation("(", String(coeffs_and_words[i]), ")*",
String(coeffs_and_words[i-1]) ));
fi;
return s;
end );
#############################################################################
##
#M \=( <x>, <y> ) . . . . for two free magma ring elements in default repr.
##
InstallMethod( \=,
"for two free magma ring elements",
IsIdenticalObj,
[ IsElementOfMagmaRingModuloRelations,
IsElementOfMagmaRingModuloRelations ],
function( x, y )
return CoefficientsAndMagmaElements( x )
= CoefficientsAndMagmaElements( y );
end );
#############################################################################
##
#M \<( <x>, <y> ) . . . . for two free magma ring elements in default repr.
##
InstallMethod( \<,
"for two free magma ring elements",
IsIdenticalObj,
[ IsElementOfMagmaRingModuloRelations,
IsElementOfMagmaRingModuloRelations ],
function( x, y )
local i;
x:= CoefficientsAndMagmaElements( x );
y:= CoefficientsAndMagmaElements( y );
for i in [ 1 .. Minimum( Length( x ), Length( y ) ) ] do
if x[i] < y[i] then
return true;
elif y[i] < x[i] then
return false;
fi;
od;
return Length( x ) < Length( y );
end );
#############################################################################
##
#M \+( <x>, <y> ) . . . . . . for two magma ring elements in default repr.
##
InstallMethod( \+,
"for two magma ring elements",
IsIdenticalObj,
[ IsElementOfMagmaRingModuloRelations,
IsElementOfMagmaRingModuloRelations ],
function( x, y )
local F, sum, z;
F := FamilyObj( x );
z := ZeroCoefficient( x );
x := CoefficientsAndMagmaElements( x );
y := CoefficientsAndMagmaElements( y );
sum:= ZippedSum( x, y, z, [ \<, \+ ] );
sum:= NormalizedElementOfMagmaRingModuloRelations( F, [ z, sum ] );
return Objectify( F!.defaultType, sum );
end );
#############################################################################
##
#M AdditiveInverseOp( <x> ) . . . . for magma ring element in default repr.
##
InstallMethod( AdditiveInverseOp,
"for magma ring element",
[ IsElementOfMagmaRingModuloRelations ],
function( x )
local ext, i, Fam, inv;
ext:= ShallowCopy( CoefficientsAndMagmaElements( x ) );
for i in [ 2, 4 .. Length( ext ) ] do
ext[i]:= AdditiveInverse( ext[i] );
od;
Fam:= FamilyObj( x );
inv:= NormalizedElementOfMagmaRingModuloRelations( Fam,
[ ZeroCoefficient( x ), ext ] );
return Objectify( Fam!.defaultType, inv );
end );
#############################################################################
##
#M \*( <x>, <y> ) . . . . . . for two magma ring elements in default repr.
##
InstallMethod( \*,
"for two magma ring elements",
IsIdenticalObj,
[ IsElementOfMagmaRingModuloRelations,
IsElementOfMagmaRingModuloRelations ],
function( x, y )
local F, prod, z;
F := FamilyObj( x );
z := ZeroCoefficient( x );
x := CoefficientsAndMagmaElements( x );
y := CoefficientsAndMagmaElements( y );
prod:= ZippedProduct( x, y, z, [ \*, \<, \+, \* ] );
prod:= NormalizedElementOfMagmaRingModuloRelations( F, [ z, prod ] );
return Objectify( F!.defaultType, prod );
end );
#############################################################################
##
#M \*( x, r ) . . . . . . . . . . . for magma ring element and coefficient
##
## Note that multiplication with zero or zero divisors
## may cause zero coefficients in the result.
## So we must normalize the elements.
#T (But we can avoid the argument check)
#T Should these two aspects be treated separately in general?
#T Should multiplication with zero be avoided (store the zero)?
#T Should the nonexistence of zero divisors be known/used?
##
ElmTimesRingElm := function( x, y )
local F, i, prod, z;
F:= FamilyObj( x );
z:= ZeroCoefficient( x );
x:= ShallowCopy( CoefficientsAndMagmaElements( x ) );
for i in [ 2, 4 .. Length(x) ] do
x[i]:= x[i] * y;
od;
prod:= NormalizedElementOfMagmaRingModuloRelations( F,
[ z, FMRRemoveZero( x, z ) ] );
return Objectify( F!.defaultType, prod );
end;
InstallMethod( \*,
"for magma ring element, and ring element",
IsMagmaRingsRings,
[ IsElementOfMagmaRingModuloRelations, IsRingElement ],
ElmTimesRingElm );
InstallMethod( \*,
"for magma ring element, and rational",
[ IsElementOfMagmaRingModuloRelations, IsRat ],
ElmTimesRingElm );
#############################################################################
##
#M \*( <r>, <x> ) . . . . . . . . . for coefficient and magma ring element
#M \*( <r>, <x> ) . . . . . . . . . . . for integer and magma ring element
##
RingElmTimesElm := function( x, y )
local F, i, prod, z;
F:= FamilyObj( y );
z:= ZeroCoefficient( y );
y:= ShallowCopy( CoefficientsAndMagmaElements( y ) );
for i in [ 2, 4 .. Length(y) ] do
y[i]:= x * y[i];
od;
prod:= NormalizedElementOfMagmaRingModuloRelations( F,
[ z, FMRRemoveZero( y, z ) ] );
return Objectify( F!.defaultType, prod );
end;
InstallMethod( \*,
"for ring element, and magma ring element",
IsRingsMagmaRings,
[ IsRingElement, IsElementOfMagmaRingModuloRelations ],
RingElmTimesElm );
InstallMethod( \*,
"for rational, and magma ring element",
[ IsRat, IsElementOfMagmaRingModuloRelations ],
RingElmTimesElm );
#############################################################################
##
#M InverseOp( <x> ) . . . . . . . . for magma ring element in default repr.
##
InstallOtherMethod( InverseOp,
"for magma ring element",
[ IsElementOfMagmaRingModuloRelations ],
function( x )
local coeffs, inv1, inv2, one, R, B, T;
coeffs:= CoefficientsAndMagmaElements( x );
if IsEmpty( coeffs ) then
# The zero element is not invertible.
return fail;
elif Length( coeffs ) = 2 then
# Inverting a scalar multiple of a magma element
# means to invert the scalar and the magma element.
inv1:= Inverse( coeffs[1] );
if inv1 = fail then
return fail;
fi;
inv2:= Inverse( coeffs[2] );
if inv2 = fail then
return fail;
fi;
return Objectify( FamilyObj( x )!.defaultType,
[ ZeroCoefficient( x ), [ inv1, inv2 ] ] );
fi;
# An invertible element has an identity.
one:= One( x );
if one = fail then
return fail;
fi;
# Get the necessary coefficient ring,
# and a basis for the algebra spanned by `x'.
coeffs:= coeffs{ [ 2, 4 .. Length( coeffs ) ] };
if IsCyclotomicCollection( coeffs ) then
R:= DefaultField( coeffs );
else
R:= DefaultRing( coeffs );
fi;
B:= Basis( FLMLORByGenerators( R, [ x ] ) );
T:= StructureConstantsTable( B );
# If `one' is not in the algebra spanned by `x' then there is no inverse.
coeffs:= Coefficients( B, one );
if coeffs = fail then
return fail;
fi;
# Solve the equation system.
one:= QuotientFromSCTable( T, coeffs, Coefficients( B, x ) );
# If there is a solution then form the inverse.
if one <> fail then
one:= LinearCombination( B, one );
fi;
return one;
end );
#############################################################################
##
#M \* <m>, <x> ) . . . . . . . . for magma element and magma ring element
#M \*( <x>, <m> ) . . . . . . . . for magma ring element and magma element
##
InstallMethod( \*,
"for magma element and magma ring element",
IsMagmasMagmaRings,
[ IsMultiplicativeElement, IsElementOfMagmaRingModuloRelations ],
function( m, x )
local F, z;
F:= FamilyObj( x );
z:= ZeroCoefficient( x );
x:= ZippedProduct( [ m, One( z ) ],
CoefficientsAndMagmaElements( x ),
z,
[ \*, \<, \+, \* ] );
x:= NormalizedElementOfMagmaRingModuloRelations( F, [ z, x ] );
return Objectify( F!.defaultType, x );
end );
InstallMethod( \*,
"for magma ring element and magma element",
IsMagmaRingsMagmas,
[ IsElementOfMagmaRingModuloRelations, IsMultiplicativeElement ],
function( x, m )
local F, z;
F:= FamilyObj( x );
z:= ZeroCoefficient( x );
x:= ZippedProduct( CoefficientsAndMagmaElements( x ),
[ m, One( z ) ],
z,
[ \*, \<, \+, \* ] );
x:= NormalizedElementOfMagmaRingModuloRelations( F,
[ z, x ] );
return Objectify( F!.defaultType, x );
end );
#############################################################################
##
#M \+( <m>, <x> ) . . . . . . . . for magma element and magma ring element
#M \+( <x>, <m> ) . . . . . . . . for magma ring element and magma element
##
InstallOtherMethod( \+,
"for magma element and magma ring element",
IsMagmasMagmaRings,
[ IsMultiplicativeElement, IsElementOfMagmaRingModuloRelations ],
function( m, x )
local F, z;
F:= FamilyObj( x );
z:= ZeroCoefficient( x );
x:= ZippedSum( [ m, One( z ) ],
CoefficientsAndMagmaElements( x ),
z, [ \<, \+ ] );
x:= NormalizedElementOfMagmaRingModuloRelations( F, [ z, x ] );
return Objectify( F!.defaultType, x );
end );
InstallOtherMethod( \+,
"for magma ring element and magma element",
IsMagmaRingsMagmas,
[ IsElementOfMagmaRingModuloRelations, IsMultiplicativeElement ],
function( x, m )
local F, z;
F:= FamilyObj( x );
z:= ZeroCoefficient( x );
x:= ZippedSum( CoefficientsAndMagmaElements( x ),
[ m, One( z ) ],
z, [ \<, \+ ] );
x:= NormalizedElementOfMagmaRingModuloRelations( F, [ z, x ] );
return Objectify( F!.defaultType, x );
end );
#############################################################################
##
#M \-( <x>, <m> ) . . . . . . . . for magma ring element and magma element
#M \-( <m>, <x> ) . . . . . . . . for magma ring element and magma element
##
InstallOtherMethod( \-,
"for magma ring element and magma element",
IsMagmaRingsMagmas,
[ IsElementOfMagmaRingModuloRelations, IsMultiplicativeElement ],
function( x, m )
local F, z;
F:= FamilyObj( x );
z:= ZeroCoefficient( x );
return x - ElementOfMagmaRing( F, z, [ One( z ) ], [ m ] );
end );
InstallOtherMethod( \-,
"for magma ring element and magma element",
IsMagmasMagmaRings,
[ IsMultiplicativeElement, IsElementOfMagmaRingModuloRelations ],
function( m, x )
local F, z;
F:= FamilyObj( x );
z:= ZeroCoefficient( x );
return ElementOfMagmaRing( F, z, [ One( z ) ], [ m ] ) - x;
end );
#############################################################################
##
#M \/( x, r ) . . . . . . . . . . . for magma ring element and coefficient
##
ElmDivRingElm := function( x, y )
local F, i, z;
F:= FamilyObj( x );
z:= ZeroCoefficient( x );
x:= ShallowCopy( CoefficientsAndMagmaElements( x ) );
for i in [ 2, 4 .. Length(x) ] do
x[i]:= x[i] / y;
od;
return Objectify( F!.defaultType, [ z, x ] );
end;
InstallOtherMethod( \/,
"for magma ring element, and ring element",
IsMagmaRingsRings,
[ IsElementOfMagmaRingModuloRelations, IsRingElement ],
ElmDivRingElm );
InstallMethod( \/,
"for magma ring element, and integer",
[ IsElementOfMagmaRingModuloRelations, IsInt ],
ElmDivRingElm );
#############################################################################
##
#M OneOp( <elm> )
##
InstallMethod( OneOp,
"for magma ring element",
[ IsElementOfMagmaRingModuloRelations ],
function( elm )
local F, z;
F:= FamilyObj( elm );
if not IsBound( F!.oneMagma ) then
return fail;
fi;
z:= ZeroCoefficient( elm );
return Objectify( F!.defaultType, [ z, [ F!.oneMagma, One( z ) ] ] );
end );
#############################################################################
##
#M ZeroOp( <elm> )
##
InstallMethod( ZeroOp,
"for magma ring element",
[ IsElementOfMagmaRingModuloRelations ],
x -> Objectify( FamilyObj(x)!.defaultType,
[ ZeroCoefficient( x ), [] ] ) );
#############################################################################
##
## 2. methods for free magma rings
##
#############################################################################
##
#M IsGroupRing( <RM> ) . . . . . . . . . . . . . . . . . for free magma ring
##
InstallMethod( IsGroupRing,
"for free magma ring",
[ IsFreeMagmaRing ],
RM -> IsGroup( UnderlyingMagma( RM ) ) );
#############################################################################
##
#M PrintObj( <MR> ) . . . . . . . . . . . . . . . . . for a free magma ring
##
InstallMethod( PrintObj,
"for a free magma ring",
[ IsFreeMagmaRing ],
function( MR )
Print( "FreeMagmaRing( ", LeftActingDomain( MR ), ", ",
UnderlyingMagma( MR ), " )" );
end );
#############################################################################
##
#F FreeMagmaRing( <R>, <M> )
##
InstallGlobalFunction( FreeMagmaRing, function( R, M )
local filter, # implied filter of all elements in the new domain
F, # family of magma ring elements
one, # identity of `R'
zero, # zero of `R'
m, # one element of `M'
RM, # free magma ring, result
gens; # generators of the magma ring
# Check the arguments.
if not IsRing( R ) or One( R ) = fail then
Error( "<R> must be a ring with identity" );
fi;
# Construct the family of elements of our ring.
if IsMultiplicativeElementWithInverseCollection( M ) then
filter:= IsMultiplicativeElementWithInverse;
elif IsMultiplicativeElementWithOneCollection( M ) then
filter:= IsMultiplicativeElementWithOne;
else
filter:= IsMultiplicativeElement;
fi;
if IsAssociativeElementCollection( M ) and
IsAssociativeElementCollection( R ) then
filter:= filter and IsAssociativeElement;
fi;
F:= NewFamily( "FreeMagmaRingObjFamily",
IsElementOfFreeMagmaRing,
filter );
one:= One( R );
zero:= Zero( R );
F!.defaultType := NewType( F, IsMagmaRingObjDefaultRep );
F!.familyRing := FamilyObj( R );
F!.familyMagma := FamilyObj( M );
F!.zeroRing := zero;
#T no !!
# Set the characteristic.
if HasCharacteristic( R ) or HasCharacteristic( FamilyObj( R ) ) then
SetCharacteristic( F, Characteristic( R ) );
fi;
# Just taking `Representative( M )' doesn't work if generators are not
# yet computed (we need them anyway below).
m := GeneratorsOfMagma( M );
if Length(m) > 0 then
m := m[1];
else
m:= Representative( M );
fi;
if IsMultiplicativeElementWithOne( m ) then
F!.oneMagma:= One( m );
#T no !!
fi;
# Make the magma ring object.
if IsMagmaWithOne( M ) then
RM:= Objectify( NewType( CollectionsFamily( F ),
IsFreeMagmaRingWithOne
and IsAttributeStoringRep ),
rec() );
else
RM:= Objectify( NewType( CollectionsFamily( F ),
IsFreeMagmaRing
and IsAttributeStoringRep ),
rec() );
fi;
# Set the necessary attributes.
SetLeftActingDomain( RM, R );
SetUnderlyingMagma( RM, M );
# Deduce useful information.
if HasIsFinite( M ) then
SetIsFiniteDimensional( RM, IsFinite( M ) );
fi;
if HasIsAssociative( M ) then
if IsMagmaWithInverses( M ) then
SetIsGroupRing( RM, IsGroup( M ) );
fi;
if HasIsAssociative( R ) then
SetIsAssociative( RM, IsAssociative( R ) and IsAssociative( M ) );
fi;
fi;
if HasIsCommutative( R ) and HasIsCommutative( M ) then
SetIsCommutative( RM, IsCommutative( R ) and IsCommutative( M ) );
fi;
if HasIsWholeFamily( R ) and HasIsWholeFamily( M ) then
SetIsWholeFamily( RM, IsWholeFamily( R ) and IsWholeFamily( M ) );
fi;
# Construct the generators.
# To get meaningful generators,
# we have to handle the case that the magma is trivial.
if IsMagmaWithOne( M ) then
gens:= GeneratorsOfMagmaWithOne( M );
SetGeneratorsOfLeftOperatorRingWithOne( RM,
List( gens,
x -> ElementOfMagmaRing( F, zero, [ one ], [ x ] ) ) );
if IsEmpty( gens ) then
SetGeneratorsOfLeftOperatorRing( RM,
[ ElementOfMagmaRing( F, zero, [ one ], [ One( M ) ] ) ] );
fi;
else
SetGeneratorsOfLeftOperatorRing( RM,
List( GeneratorsOfMagma( M ),
x -> ElementOfMagmaRing( F, zero, [ one ], [ x ] ) ) );
fi;
# Return the ring.
return RM;
end );
#############################################################################
##
#F GroupRing( <R>, <G> )
##
InstallGlobalFunction( GroupRing, function( R, G )
if not IsGroup( G ) then
Error( "<G> must be a group" );
fi;
R:= FreeMagmaRing( R, G );
SetIsGroupRing( R, true );
return R;
end );
#############################################################################
##
#M AugmentationIdeal( <RG> ) . . . . . . . . . . . . . for a free magma ring
##
InstallMethod( AugmentationIdeal,
"for a free magma ring",
[ IsFreeMagmaRing ],
function( RG )
local one, G, gens, I;
one:= One( RG );
if one = fail then
TryNextMethod();
fi;
G:= UnderlyingMagma( RG );
gens:= List( GeneratorsOfMagma( G ), g -> g - one );
I:= TwoSidedIdealByGenerators( RG, gens );
SetGeneratorsOfAlgebra( I, gens );
return I;
end );
#############################################################################
##
#R IsCanonicalBasisFreeMagmaRingRep( <B> )
##
DeclareRepresentation( "IsCanonicalBasisFreeMagmaRingRep",
IsCanonicalBasis and IsAttributeStoringRep,
[ "zerovector" ] );
#############################################################################
##
#M Coefficients( <B>, <v> ) . . . . . . for canon. basis of free magma ring
##
InstallMethod( Coefficients,
"for canon. basis of a free magma ring, and a vector",
IsCollsElms,
[ IsCanonicalBasisFreeMagmaRingRep, IsElementOfFreeMagmaRing ],
function( B, v )
local coeffs,
data,
elms,
i;
data:= CoefficientsAndMagmaElements( v );
coeffs:= ShallowCopy( B!.zerovector );
elms:= EnumeratorSorted( UnderlyingMagma( UnderlyingLeftModule( B ) ) );
for i in [ 1, 3 .. Length( data )-1 ] do
coeffs[ Position( elms, data[i] ) ]:= data[i+1];
od;
return coeffs;
end );
#############################################################################
##
#M Basis( <RM> ) . . . . . . . . . . . . . . . . . . . for a free magma ring
##
InstallMethod( Basis,
"for a free magma ring (delegate to `CanonicalBasis')",
[ IsFreeMagmaRing ], CANONICAL_BASIS_FLAGS,
CanonicalBasis );
#############################################################################
##
#M CanonicalBasis( <RM> ) . . . . . . . . . . . . . . for a free magma ring
##
InstallMethod( CanonicalBasis,
"for a free magma ring",
[ IsFreeMagmaRing ],
function( RM )
local B, one, zero, F;
F:= ElementsFamily( FamilyObj( RM ) );
if not IsBound( F!.defaultType ) then
TryNextMethod();
fi;
one := One( LeftActingDomain( RM ) );
zero := Zero( LeftActingDomain( RM ) );
B:= Objectify( NewType( FamilyObj( RM ),
IsFiniteBasisDefault
and IsCanonicalBasisFreeMagmaRingRep ),
rec() );
SetUnderlyingLeftModule( B, RM );
if IsFiniteDimensional( RM ) then
SetBasisVectors( B,
List( EnumeratorSorted( UnderlyingMagma( RM ) ),
x -> ElementOfMagmaRing( F, zero, [ one ], [ x ] ) ) );
B!.zerovector:= List( BasisVectors( B ), x -> zero );
fi;
return B;
end );
#############################################################################
##
#M IsFinite( <RM> ) . . . . . . . . . . . . . . . . . for a free magma ring
##
InstallMethod( IsFinite,
"for a free magma ring",
[ IsFreeMagmaRing ],
RM -> IsFinite( LeftActingDomain( RM ) )
and IsFinite( UnderlyingMagma( RM ) ) );
#############################################################################
##
#M IsFiniteDimensional( <RM> ) . . . . . . . . . . . . for a free magma ring
##
InstallMethod( IsFiniteDimensional,
"for a free magma ring",
[ IsFreeMagmaRing ],
RM -> IsFinite( UnderlyingMagma( RM ) ) );
#############################################################################
##
#M IsFiniteDimensional( <R> ) . . for left module of free magma ring elms.
##
InstallMethod( IsFiniteDimensional,
"for a left module of free magma ring elements",
[ IsFreeLeftModule and IsElementOfFreeMagmaRingCollection
and HasGeneratorsOfLeftOperatorRing ],
function( R )
local gens;
gens:= Concatenation( List( GeneratorsOfLeftOperatorRing( R ),
CoefficientsAndMagmaElements ) );
gens:= gens{ [ 1, 3 .. Length( gens ) - 1 ] };
if IsEmpty( gens ) or IsFinite( Magma( gens ) ) then
return true;
else
TryNextMethod();
fi;
end );
#############################################################################
##
#M Dimension( <RM> ) . . . . . . . . . . . . . . . . . for a free magma ring
##
InstallMethod( Dimension,
"for a free magma ring",
[ IsFreeMagmaRing ],
RM -> Size( UnderlyingMagma( RM ) ) );
#############################################################################
##
#M GeneratorsOfLeftModule( <RM> ) . . . . . . . . . . for a free magma ring
##
InstallMethod( GeneratorsOfLeftModule,
"for a free magma ring",
[ IsFreeMagmaRing ],
function( RM )
local F, one, zero;
if IsFiniteDimensional( RM ) then
F:= ElementsFamily( FamilyObj( RM ) );
one:= One( LeftActingDomain( RM ) );
zero:= Zero( LeftActingDomain( RM ) );
return List( Enumerator( UnderlyingMagma( RM ) ),
m -> ElementOfMagmaRing( F, zero, [ one ], [ m ] ) );
else
Error( "<RM> is not finite dimensional" );
fi;
end );
#############################################################################
##
#M Centre( <RM> ) . . . . . . . . . . . . . . . . . . . . for a group ring
##
## The centre of a group ring $RG$ of a finite group $G$ is the FLMLOR
## over the centre of $R$ generated by the conjugacy class sums in $G$.
##
## Note that this ring is clearly contained in the centre of $RG$.
## On the other hand, if an element $x = \sum_{g \in G} r_g g$ lies in the
## centre of $RG$ then $( r h ) \cdot x = x \cdot ( r h )$ for each
## $r \in R$ and $h \in G$.
## This means that
## $\sum_{g \in G} (r r_g ) ( h g ) = \sum_{g \in G} (r_g r ) ( g h )$,
## which means that for $k = h g_1 = g_2 h$, the coefficients on both sides,
## which are $r r_{g_1} = r r_{h^{-1} k}$ and $r_{g_2} r = r_{k h^{-1}} r$,
## must be equal.
## Setting $r = 1$ forces $r_g$ to be constant on conjugacy classes of $G$,
## and leaving $r$ arbitrary forces the coefficients to lie in the centre
## of $R$.
##
InstallMethod( Centre,
"for a group ring",
[ IsGroupRing ],
function( RG )
local F, # family of elements of `RG'
one, # identity of the coefficients ring
zero, # zero of the coefficients ring
gens, # list of (module) generators of the result
c, # loop over `ccl'
elms, # set of elements of a conjugacy class
coeff; # coefficients vector
if not IsFiniteDimensional( RG ) then
TryNextMethod();
fi;
F:= ElementsFamily( FamilyObj( RG ) );
one:= One( LeftActingDomain( RG ) );
zero:= Zero( LeftActingDomain( RG ) );
gens:= [];
for c in ConjugacyClasses( UnderlyingMagma( RG ) ) do
elms:= EnumeratorSorted( c );
coeff:= List( elms, x -> one );
Add( gens, ElementOfMagmaRing( F, zero, coeff, elms ) );
od;
c:= FLMLORWithOne( Centre( LeftActingDomain( RG ) ), gens, "basis" );
Assert( 1, IsAbelian( c ) );
SetIsAbelian( c, true );
return c;
end );
#############################################################################
##
#M \in( <r>, <RM> ) . . . . . . . . . for ring element and free magma ring
##
InstallMethod( \in,
"for ring element, and magma ring",
IsElmsColls,
[ IsElementOfMagmaRingModuloRelations, IsMagmaRingModuloRelations ],
function( r, RM )
r:= CoefficientsAndMagmaElements( r );
if ( ForAll( [ 2, 4 .. Length( r ) ],
i -> r[i] in LeftActingDomain( RM ) )
and ForAll( [ 1, 3 .. Length( r ) - 1 ],
i -> r[i] in UnderlyingMagma( RM ) ) ) then
return true;
elif IsFreeMagmaRing( RM ) then
return false;
else
TryNextMethod();
fi;
end );
#############################################################################
##
#M IsAssociative( <RM> ) . . . . . . . . . . . . . . . for a free magma ring
##
InstallMethod( IsAssociative,
"for a free magma ring",
[ IsFreeMagmaRing ],
RM -> IsAssociative( LeftActingDomain( RM ) )
and IsAssociative( UnderlyingMagma( RM ) ) );
#############################################################################
##
#M IsCommutative( <RM> ) . . . . . . . . . . . . . . . for a free magma ring
##
InstallMethod( IsCommutative,
"for a free magma ring",
[ IsFreeMagmaRing ],
RM -> IsCommutative( LeftActingDomain( RM ) )
and IsCommutative( UnderlyingMagma( RM ) ) );
#############################################################################
##
#M IsWholeFamily( <RM> ) . . . . . . . . . . . . . . . for a free magma ring
##
InstallMethod( IsWholeFamily,
"for a free magma ring",
[ IsFreeMagmaRing ],
RM -> IsWholeFamily( LeftActingDomain( RM ) )
and IsWholeFamily( UnderlyingMagma( RM ) ) );
#############################################################################
##
#M GeneratorsOfRing( <RM> ) . . . . . . . . . . . . . for a free magma ring
#M GeneratorsOfRingWithOne( <RM> ) . . . . . for a free magma ring-with-one
##
## If the underlying magma has an identity and if we know ring generators
## for the ring <R>, we take the left operator ring generators together
## with the images of the ring generators under the natural embedding.
##
InstallMethod( GeneratorsOfRing,
"for a free magma ring",
[ IsFreeMagmaRing ],
function( RM )
local R, emb;
R:= LeftActingDomain( RM );
emb:= Embedding( R, RM );
if emb = fail then
TryNextMethod();
else
return Concatenation( GeneratorsOfLeftOperatorRing( RM ),
List( GeneratorsOfRing( R ),
r -> ImageElm( emb, r ) ) );
fi;
end );
InstallMethod( GeneratorsOfRingWithOne,
"for a free magma ring-with-one",
[ IsFreeMagmaRingWithOne ],
function( RM )
local R, emb;
R:= LeftActingDomain( RM );
emb:= Embedding( R, RM );
if emb = fail then
TryNextMethod();
else
return Concatenation( GeneratorsOfLeftOperatorRingWithOne( RM ),
List( GeneratorsOfRingWithOne( R ),
r -> ImageElm( emb, r ) ) );
fi;
end );
#############################################################################
##
#R IsEmbeddingRingMagmaRing( <R>, <RM> )
##
DeclareRepresentation( "IsEmbeddingRingMagmaRing",
IsSPGeneralMapping
and IsMapping
and IsInjective
and RespectsAddition
and RespectsZero
and RespectsMultiplication
and RespectsOne
and IsAttributeStoringRep,
[] );
#############################################################################
##
#M Embedding( <R>, <RM> ) . . . . . . . . . . . . . for ring and magma ring
##
InstallMethod( Embedding,
"for ring and magma ring",
IsRingCollsMagmaRingColls,
[ IsRing, IsFreeMagmaRing ],
function( R, RM )
local emb;
# Check that this is the right method.
if Parent( R ) <> LeftActingDomain( RM ) then
TryNextMethod();
elif One( UnderlyingMagma( RM ) ) = fail then
return fail;
fi;
# Make the mapping object.
emb := Objectify( TypeOfDefaultGeneralMapping( R, RM,
IsEmbeddingRingMagmaRing ),
rec() );
# Return the embedding.
return emb;
end );
InstallMethod( ImagesElm,
"for embedding of ring into magma ring, and ring element",
FamSourceEqFamElm,
[ IsEmbeddingRingMagmaRing, IsRingElement ],
function ( emb, elm )
local F;
F:= ElementsFamily( FamilyObj( Range( emb ) ) );
return [ ElementOfMagmaRing( F, Zero( elm ), [ elm ],
[ One( UnderlyingMagma( Range( emb ) ) ) ] ) ];
end );
InstallMethod( ImagesRepresentative,
"for embedding of ring into magma ring, and ring element",
FamSourceEqFamElm,
[ IsEmbeddingRingMagmaRing, IsRingElement ],
function ( emb, elm )
local F;
F:= ElementsFamily( FamilyObj( Range( emb ) ) );
return ElementOfMagmaRing( F, Zero( elm ), [ elm ],
[ One( UnderlyingMagma( Range( emb ) ) ) ] );
end );
InstallMethod( PreImagesElm,
"for embedding of ring into magma ring, and free magma ring element",
FamRangeEqFamElm,
[ IsEmbeddingRingMagmaRing, IsElementOfFreeMagmaRing ],
function ( emb, elm )
local R, extrep;
R:= Range( emb );
extrep:= CoefficientsAndMagmaElements( elm );
if Length( extrep ) = 2
and extrep[1] = One( UnderlyingMagma( R ) ) then
return [ extrep[2] ];
else
return [];
fi;
end );
InstallMethod( PreImagesRepresentative,
"for embedding of ring into magma ring, and free magma ring element",
FamRangeEqFamElm,
[ IsEmbeddingRingMagmaRing, IsElementOfFreeMagmaRing ],
function ( emb, elm )
local R, extrep;
R:= Range( emb );
extrep:= CoefficientsAndMagmaElements( elm );
if Length( extrep ) = 2
and extrep[1] = One( UnderlyingMagma( R ) ) then
return extrep[2];
else
return fail;
fi;
end );
#############################################################################
##
#R IsEmbeddingMagmaMagmaRing( <M>, <RM> )
##
DeclareRepresentation( "IsEmbeddingMagmaMagmaRing",
IsSPGeneralMapping
and IsMapping
and IsInjective
and RespectsMultiplication
and IsAttributeStoringRep,
[] );
#############################################################################
##
#F Embedding( <M>, <RM> ) . . . . . . . . . . . . for magma and magma ring
##
InstallMethod( Embedding,
"for magma and magma ring",
IsMagmaCollsMagmaRingColls,
[ IsMagma, IsFreeMagmaRing ],
function( M, RM )
local emb;
# Check that this is the right method.
if not IsSubset( UnderlyingMagma( RM ), M ) then
TryNextMethod();
fi;
# Make the mapping object.
emb := Objectify( TypeOfDefaultGeneralMapping( M, RM,
IsEmbeddingMagmaMagmaRing ),
rec() );
if IsMagmaWithInverses( M ) then
SetRespectsInverses( emb, true );
elif IsMagmaWithOne( M ) then
SetRespectsOne( emb, true );
fi;
# Return the embedding.
return emb;
end );
InstallMethod( ImagesElm,
"for embedding of magma into magma ring, and mult. element",
FamSourceEqFamElm,
[ IsEmbeddingMagmaMagmaRing, IsMultiplicativeElement ],
function ( emb, elm )
local R, F;
R:= Range( emb );
F:= ElementsFamily( FamilyObj( R ) );
return [ ElementOfMagmaRing( F, Zero( LeftActingDomain( R ) ),
[ One( LeftActingDomain( R ) ) ], [ elm ] ) ];
end );
InstallMethod( ImagesRepresentative,
"for embedding of magma into magma ring, and mult. element",
FamSourceEqFamElm,
[ IsEmbeddingMagmaMagmaRing, IsMultiplicativeElement ],
function ( emb, elm )
local R, F;
R:= Range( emb );
F:= ElementsFamily( FamilyObj( R ) );
return ElementOfMagmaRing( F, Zero( LeftActingDomain( R ) ),
[ One( LeftActingDomain( R ) ) ], [ elm ] );
end );
InstallMethod( PreImagesElm,
"for embedding of magma into magma ring, and free magma ring element",
FamRangeEqFamElm,
[ IsEmbeddingMagmaMagmaRing, IsElementOfFreeMagmaRing ],
function ( emb, elm )
local R, extrep;
R:= Range( emb );
extrep:= CoefficientsAndMagmaElements( elm );
if Length( extrep ) = 2
and extrep[2] = One( LeftActingDomain( R ) ) then
return [ extrep[1] ];
else
return [];
fi;
end );
InstallMethod( PreImagesRepresentative,
"for embedding of magma into magma ring, and free magma ring element",
FamRangeEqFamElm,
[ IsEmbeddingMagmaMagmaRing, IsElementOfFreeMagmaRing ],
function ( emb, elm )
local R, extrep;
R:= Range( emb );
extrep:= CoefficientsAndMagmaElements( elm );
if Length( extrep ) = 2
and extrep[2] = One( LeftActingDomain( R ) ) then
return extrep[1];
else
return fail;
fi;
end );
#############################################################################
##
#M ExtRepOfObj( <elm> ) . . . . . . . . . . . . . . for magma ring element
##
## The external representation of elements in a free magma ring is defined
## as a list of length 2, the first entry being the zero coefficient,
## the second being a zipped list containing the external representations
## of the monomials and their coefficients.
##
InstallMethod( ExtRepOfObj,
"for magma ring element",
#T eventually more specific!
#T allow this only if the magma elements have an external representation!
#T (make this explicit!)
[ IsElementOfMagmaRingModuloRelations ],
function( elm )
local zero, i;
zero:= ZeroCoefficient( elm );
elm:= ShallowCopy( CoefficientsAndMagmaElements( elm ) );
for i in [ 1, 3 .. Length( elm ) - 1 ] do
elm[i]:= ExtRepOfObj( elm[i] );
od;
return [ zero, elm ];
end );
#############################################################################
##
#M ObjByExtRep( <Fam>, <descr> ) . . . . for free magma ring elements family
##
## This is well-defined only if the magma elements of the free magma ring
## have an external representation.
##
## We need this mainly for free and f.p. algebras.
##
## Note that <descr> must describe a *normalized* element (sorted w.r.t. the
## magma elements, normalized w.r.t. the relations if there are some).
##
InstallMethod( ObjByExtRep,
"for magma ring elements family, and list",
[ IsElementOfMagmaRingModuloRelationsFamily, IsList ],
function( Fam, descr )
local FM, elm, i;
FM:= ElementsFamily( Fam!.familyMagma );
elm:= ShallowCopy( descr[2] );
for i in [ 1, 3 .. Length( elm ) - 1 ] do
elm[i]:= ObjByExtRep( FM, elm[i] );
od;
return Objectify( Fam!.defaultType, [ descr[1], elm ] );
end );
#############################################################################
##
## 3. Free left modules in magma rings modulo relations
##
#############################################################################
##
#M NiceFreeLeftModuleInfo( <V> )
#M NiceVector( <V>, <v> )
#M UglyVector( <V>, <r> )
##
InstallHandlingByNiceBasis( "IsSpaceOfElementsOfMagmaRing", rec(
detect := function( F, gens, V, zero )
return IsElementOfMagmaRingModuloRelationsCollection( V );
end,
NiceFreeLeftModuleInfo := function( V )
local gens,
monomials,
gen,
list,
i,
zero,
info;
gens:= GeneratorsOfLeftModule( V );
monomials:= [];
for gen in gens do
list:= CoefficientsAndMagmaElements( gen );
for i in [ 1, 3 .. Length( list ) - 1 ] do
AddSet( monomials, list[i] );
od;
od;
zero:= Zero( V )![1];
info:= rec( monomials := monomials,
zerocoeff := zero,
family := ElementsFamily( FamilyObj( V ) ) );
# For the zero row vector, catch the case of empty `monomials' list.
if IsEmpty( monomials ) then
info.zerovector := [ Zero( LeftActingDomain( V ) ) ];
else
info.zerovector := ListWithIdenticalEntries( Length( monomials ),
zero );
fi;
return info;
end,
NiceVector := function( V, v )
local info, c, monomials, i, pos;
info:= NiceFreeLeftModuleInfo( V );
c:= ShallowCopy( info.zerovector );
v:= CoefficientsAndMagmaElements( v );
monomials:= info.monomials;
for i in [ 2, 4 .. Length( v ) ] do
pos:= Position( monomials, v[ i-1 ] );
if pos = fail then return fail; fi;
c[ pos ]:= v[i];
od;
return c;
end,
UglyVector := function( V, r )
local info;
info:= NiceFreeLeftModuleInfo( V );
if Length( r ) <> Length( info.zerovector ) then
return fail;
elif IsEmpty( info.monomials ) then
if IsZero( r ) then
return Zero( V );
else
return fail;
fi;
fi;
return ElementOfMagmaRing( info.family, info.zerocoeff,
r, info.monomials );
end ) );
#############################################################################
##
## 4. methods for free magma rings modulo the span of a ``zero'' element
##
#############################################################################
##
#F MagmaRingModuloSpanOfZero( <R>, <M>, <z> )
##
InstallGlobalFunction( MagmaRingModuloSpanOfZero, function( R, M, z )
local RM, # result
F, # family of magma ring elements
one, # identity of `R'
zero; # zero of `R'
# Construct the family of elements of our ring.
F:= NewFamily( "MagmaRingModuloSpanOfZeroObjFamily",
IsElementOfMagmaRingModuloRelations );
SetFilterObj( F, IsElementOfMagmaRingModuloSpanOfZeroFamily );
one:= One( R );
zero:= Zero( R );
F!.defaultType := NewType( F, IsMagmaRingObjDefaultRep );
F!.familyRing := FamilyObj( R );
F!.familyMagma := FamilyObj( M );
F!.zeroRing := zero;
#T no!
F!.zeroOfMagma := z;
# Do not set the characteristic since we do not know whether we are
# 0-dimensional and the characteristic would then be 0.
# Make the magma ring object.
RM:= Objectify( NewType( CollectionsFamily( F ),
IsMagmaRingModuloSpanOfZero
and IsAttributeStoringRep ),
rec() );
# Store it in its elements family:
F!.magmaring := RM;
# Set the necessary attributes.
SetLeftActingDomain( RM, R );
SetUnderlyingMagma( RM, M );
# Deduce useful information.
if HasIsFinite( M ) then
SetIsFiniteDimensional( RM, IsFinite( M ) );
fi;
if HasIsWholeFamily( R ) and HasIsWholeFamily( M ) then
SetIsWholeFamily( RM, IsWholeFamily( R ) and IsWholeFamily( M ) );
fi;
# Construct the generators.
SetGeneratorsOfLeftOperatorRing( RM,
List( GeneratorsOfMagma( M ),
x -> ElementOfMagmaRing( F, zero, [ one ], [ x ] ) ) );
# Return the ring.
return RM;
end );
#############################################################################
##
#M Characteristic( <A> )
#M Characteristic( <algelm> )
#M Characteristic( <algelmfam> )
##
## (via delegations)
##
InstallMethod( Characteristic,
"for an elements family of a magma ring quotient",
[ IsElementOfMagmaRingModuloSpanOfZeroFamily ],
function( fam )
local A,n,one,x;
A := fam!.magmaring;
one := One(A);
if Zero(A) = one then
return 1;
else
return Characteristic(LeftActingDomain(A));
fi;
end );
#############################################################################
##
#M NormalizedElementOfMagmaRingModuloRelations( <Fam>, <descr> )
#M . . . for a magma ring modulo the span of the ``zero''
##
## <Fam> is a family of elements of a magma ring modulo the span of the
## ``zero element'' of the magma.
## <descr> is a list of the form `[ <z>, <list> ]', <z> being the zero
## coefficient of the ring, and <list> being the list of monomials and
## their coefficients.
##
## The function returns the element described by <descr> in normal form,
## that is, with zero coefficient of the ``zero element'' of the magma.
##
InstallMethod( NormalizedElementOfMagmaRingModuloRelations,
"for family of magma rings modulo the span of ``zero'', and list",
[ IsElementOfMagmaRingModuloSpanOfZeroFamily, IsList ],
function( Fam, descr )
local zeromagma, len, i;
zeromagma:= Fam!.zeroOfMagma;
len:= Length( descr[2] );
for i in [ 1, 3 .. len - 1 ] do
if descr[2][i] = zeromagma then
descr:= [ descr[1], Concatenation( descr[2]{ [ 1 .. i-1 ] },
descr[2]{ [ i+2 .. len ] } ) ];
MakeImmutable( descr );
break;
fi;
od;
return descr;
end );
#############################################################################
##
#M IsFinite( <RM> ) . . . . . . . . for magma ring modulo span of ``zero''
##
InstallMethod( IsFinite,
"for a magma ring modulo the span of ``zero''",
[ IsMagmaRingModuloSpanOfZero ],
RM -> IsFinite( LeftActingDomain( RM ) )
and IsFinite( UnderlyingMagma( RM ) ) );
#############################################################################
##
#M IsFiniteDimensional( <RM> ) . . . for magma ring modulo span of ``zero''
##
InstallMethod( IsFiniteDimensional,
"for a magma ring modulo the span of ``zero''",
[ IsMagmaRingModuloSpanOfZero ],
RM -> IsFinite( UnderlyingMagma( RM ) ) );
#############################################################################
##
#M Dimension( <RM> ) . . . . . . . . for magma ring modulo span of ``zero''
##
InstallMethod( Dimension,
"for a magma ring modulo the span of ``zero''",
[ IsMagmaRingModuloSpanOfZero ],
RM -> Size( UnderlyingMagma( RM ) ) - 1 );
#############################################################################
##
#M GeneratorsOfLeftModule( <RM> ) . for magma ring modulo span of ``zero''
##
InstallMethod( GeneratorsOfLeftModule,
"for a magma ring modulo the span of ``zero''",
[ IsMagmaRingModuloSpanOfZero ],
function( RM )
local F, one, zero;
if IsFiniteDimensional( RM ) then
F:= ElementsFamily( FamilyObj( RM ) );
one:= One( LeftActingDomain( RM ) );
zero:= Zero( LeftActingDomain( RM ) );
return List( Difference( AsSSortedList( UnderlyingMagma( RM ) ),
[ F!.zeroOfMagma ] ),
m -> ElementOfMagmaRing( F, zero, [ one ], [ m ] ) );
else
Error( "<RM> is not finite dimensional" );
fi;
end );
#############################################################################
##
## 5. methods for groups of free magma ring elements
##
#############################################################################
##
#M IsGeneratorsOfMagmaWithInverses( <mgmringelms> )
##
## Check that all elements are in fact invertible.
##
InstallMethod( IsGeneratorsOfMagmaWithInverses,
"for a collection of free magma ring elements",
[ IsElementOfMagmaRingModuloRelationsCollection ],
mgmringelms -> ForAll( mgmringelms, x -> Inverse( x ) <> fail ) );
#############################################################################
##
#E
|