/usr/share/gap/lib/morpheus.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 | #############################################################################
##
#W morpheus.gi GAP library Alexander Hulpke
##
##
#Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains declarations for Morpheus
##
#############################################################################
##
#V MORPHEUSELMS . . . . limit up to which size to store element lists
##
MORPHEUSELMS := 50000;
#############################################################################
##
#M AutomorphismDomain(<G>)
##
## If <G> consists of automorphisms of <H>, this attribute returns <H>.
InstallMethod( AutomorphismDomain, "use source of one",true,
[IsGroupOfAutomorphisms],0,
function(G)
return Source(One(G));
end);
DeclareRepresentation("IsActionHomomorphismAutomGroup",
IsActionHomomorphismByBase,["basepos"]);
#############################################################################
##
#M IsGroupOfAutomorphisms(<G>)
##
InstallMethod( IsGroupOfAutomorphisms, "test generators and one",true,
[IsGroup],0,
function(G)
local s;
if IsGeneralMapping(One(G)) then
s:=Source(One(G));
if Range(One(G))=s and ForAll(GeneratorsOfGroup(G),
g->IsGroupGeneralMapping(g) and IsSPGeneralMapping(g) and IsMapping(g)
and IsInjective(g) and IsSurjective(g) and Source(g)=s
and Range(g)=s) then
SetAutomorphismDomain(G,s);
# imply finiteness
if IsFinite(s) then
SetIsFinite(G,true);
fi;
return true;
fi;
fi;
return false;
end);
#############################################################################
##
#M IsGroupOfAutomorphismsFiniteGroup(<G>)
##
InstallMethod( IsGroupOfAutomorphismsFiniteGroup,"default",true,
[IsGroup],0,
G->IsGroupOfAutomorphisms(G) and IsFinite(AutomorphismDomain(G)));
# Try to embed automorphisms into wreath product.
BindGlobal("AutomorphismWreathEmbedding",function(au,g)
local gens, inn,out, nonperm, syno, orb, orbi, perms, free, rep, i, maxl, gen,
img, j, conj, sm, cen, n, w, emb, ge, no,reps,synom,ginn,oemb;
gens:=GeneratorsOfGroup(g);
if Size(Centre(g))>1 then
return fail;
fi;
#sym:=SymmetricGroup(MovedPoints(g));
#syno:=Normalizer(sym,g);
inn:=Filtered(GeneratorsOfGroup(au),i->IsInnerAutomorphism(i));
out:=Filtered(GeneratorsOfGroup(au),i->not IsInnerAutomorphism(i));
nonperm:=Filtered(out,i->not IsConjugatorAutomorphism(i));
syno:=g;
#syno:=Group(List(Filtered(GeneratorsOfGroup(au),IsInnerAutomorphism),
# x->ConjugatorOfConjugatorIsomorphism(x)),One(g));
for i in Filtered(out,IsConjugatorAutomorphism) do
syno:=ClosureGroup(syno,ConjugatorOfConjugatorIsomorphism(i));
od;
#nonperm:=Filtered(out,i->not IsInnerAutomorphism(i));
# enumerate cosets of subgroup of conjugator isomorphisms
orb:=[IdentityMapping(g)];
orbi:=[IdentityMapping(g)];
perms:=List(nonperm,i->[]);
free:=FreeGroup(Length(nonperm));
rep:=[One(free)];
i:=1;
maxl:=NrMovedPoints(g);
while i<=Length(orb) and Length(orb)<maxl do
for w in [1..Length(nonperm)] do
gen:=nonperm[w];
img:=orb[i]*gen;
j:=1;
conj:=fail;
while conj=fail and j<=Length(orb) do
sm:=img*orbi[j];
if IsConjugatorAutomorphism(sm) then
conj:=ConjugatorOfConjugatorIsomorphism(sm);
else
j:=j+1;
fi;
od;
#j:=First([1..Length(orb)],k->IsConjugatorAutomorphism(img*orbi[k]));
if conj=fail then
Add(orb,img);
Add(orbi,InverseGeneralMapping(img));
Add(rep,rep[i]*GeneratorsOfGroup(free)[w]);
perms[w][i]:=Length(orb);
else
perms[w][i]:=j;
if not conj in syno then
syno:=ClosureGroup(syno,conj);
fi;
fi;
od;
i:=i+1;
od;
cen:=Centralizer(syno,g);
Info(InfoMorph,2,"|syno|=",Size(syno)," |cen|=",Size(cen));
if Size(cen)>1 then
w:=syno;
syno:=ComplementClassesRepresentatives(syno,cen);
if Length(syno)=0 then
return fail; # not unique permauts
fi;
syno:=syno[1];
synom:=GroupHomomorphismByImagesNC(w,syno,
Concatenation(GeneratorsOfGroup(syno),GeneratorsOfGroup(cen)),
Concatenation(GeneratorsOfGroup(syno),List(GeneratorsOfGroup(cen),x->One(syno))));
else
synom:=IdentityMapping(syno);
fi;
# try wreath embedding
if Length(orb)<maxl then
Info(InfoMorph,1,Length(orb)," copies");
perms:=List(perms,PermList);
Info(InfoMorph,2,List(rep,i->MappedWord(i,GeneratorsOfGroup(free),perms)));
n:=Length(orb);
w:=WreathProduct(syno,SymmetricGroup(n));
emb:=List(GeneratorsOfGroup(g),
i->Product(List([1..n],j->Image(Embedding(w,j),Image(synom,Image(orbi[j],i))))));
ge:=Subgroup(w,emb);
emb:=GroupHomomorphismByImagesNC(g,ge,GeneratorsOfGroup(g),emb);
reps:=List(out,i->RepresentativeAction(w,GeneratorsOfGroup(ge),
List(GeneratorsOfGroup(g),j->Image(emb,Image(i,j))),OnTuples));
if not ForAll(reps,IsPerm) then
return fail;
fi;
#no:=Normalizer(w,ge);
#no:=ClosureGroup(ge,reps);
ginn:=List(inn,ConjugatorOfConjugatorIsomorphism);
no:=Group(List(ginn,i->Image(emb,i)), One(w));
oemb:=emb;
if Size(no)<Size(ge) then
emb:=RestrictedMapping(emb,Group(ginn,()));
fi;
no:=ClosureGroup(no,reps);
cen:=Centralizer(no,ge);
if Size(no)/Size(cen)<Length(orb) then
return fail;
fi;
if Size(cen)>1 then
no:=ComplementClassesRepresentatives(no,cen);
if Length(no)>0 then
no:=no[1];
else
return fail;
fi;
fi;
#
#if Size(no)/Size(syno)<>Length(orb) then
# Error("wreath embedding failed");
#fi;
sm:=SmallerDegreePermutationRepresentation(ClosureGroup(ge,no));
no:=Image(sm,no);
if IsIdenticalObj(emb,oemb) then
emb:=emb*sm;
return [no,emb,emb,Image(emb,ginn)];
else
emb:=emb*sm;
oemb:=oemb*sm;
return [no,emb,oemb,Group(Image(oemb,ginn),One(w))];
fi;
fi;
return fail;
end);
#############################################################################
##
#F AssignNiceMonomorphismAutomorphismGroup(<autgrp>,<g>)
##
# try to find a small faithful action for an automorphism group
InstallGlobalFunction(AssignNiceMonomorphismAutomorphismGroup,function(au,g)
local hom, allinner, gens, c, ran, r, cen, img, dom, u, subs, orbs, cnt, br, bv, v, val, o, i, comb, best;
hom:=fail;
allinner:=HasIsAutomorphismGroup(au) and IsAutomorphismGroup(au);
if not IsFinite(g) then
Error("can't do!");
elif IsAbelian(g) then
SetIsFinite(au,true);
gens:=IndependentGeneratorsOfAbelianGroup(g);
c:=[];
for i in gens do
c:=Union(c,Orbit(au,i));
od;
hom:=NiceMonomorphismAutomGroup(au,c,gens);
elif Size(Centre(g))=1 and IsPermGroup(g) then
# if no centre, try to use exiting permrep
if ForAll(GeneratorsOfGroup(au),IsConjugatorAutomorphism) then
ran:= Group( List( GeneratorsOfGroup( au ),
ConjugatorOfConjugatorIsomorphism ),
One( g ) );
Info(InfoMorph,1,"All automorphisms are conjugator");
Size(ran); #enforce size calculation
# if `ran' has a centralizing bit, we're still out of luck.
# TODO: try whether there is a centralizer complement into which we
# could go.
if Size(Centralizer(ran,g))=1 then
r:=ran; # the group of conjugating elements so far
cen:=TrivialSubgroup(r);
hom:=GroupHomomorphismByFunction(au,ran,
function(auto)
if not IsConjugatorAutomorphism(auto) then
return fail;
fi;
img:=ConjugatorOfConjugatorIsomorphism( auto );
if not img in ran then
# There is still something centralizing left.
if not img in r then
# get the cenralizing bit
r:=ClosureGroup(r,img);
cen:=Centralizer(r,g);
fi;
# get the right coset element
img:=First(List(Enumerator(cen),i->i*img),i->i in ran);
fi;
return img;
end,
function(elm)
return ConjugatorAutomorphismNC( g, elm );
end);
SetIsGroupHomomorphism(hom,true);
SetRange( hom,ran );
SetIsBijective(hom,true);
fi;
else
# permrep does not extend. Try larger permrep.
img:=AutomorphismWreathEmbedding(au,g);
if img<>fail then
Info(InfoMorph,1,"AWE succeeds");
# make a hom from auts to perm group
ran:=img[4];
r:=List(GeneratorsOfGroup(g),i->Image(img[3],i));
hom:=GroupHomomorphismByFunction(au,img[1],
function(auto)
if IsConjugatorAutomorphism(auto) and
ConjugatorOfConjugatorIsomorphism(auto) in Source(img[2]) then
return Image(img[2],ConjugatorOfConjugatorIsomorphism(auto));
fi;
return RepresentativeAction(img[1],r,
List(GeneratorsOfGroup(g),i->Image(img[3],Image(auto,i))),OnTuples);
end,
function(perm)
if perm in ran then
return ConjugatorAutomorphismNC(g,
PreImagesRepresentative(img[2],perm));
fi;
return GroupHomomorphismByImagesNC(g,g,GeneratorsOfGroup(g),
List(r,i->PreImagesRepresentative(img[3],i^perm)));
end);
elif not IsAbelian(Socle(g)) and IsSimpleGroup(Socle(g)) then
Info(InfoMorph,1,"Try ARG");
img:=AutomorphismRepresentingGroup(g,GeneratorsOfGroup(au));
# make a hom from auts to perm group
ran:=Image(img[2],g);
r:=List(GeneratorsOfGroup(g),i->Image(img[2],i));
hom:=GroupHomomorphismByFunction(au,img[1],
function(auto)
if IsInnerAutomorphism(auto) then
return Image(img[2],ConjugatorOfConjugatorIsomorphism(auto));
fi;
return RepresentativeAction(img[1],r,
List(GeneratorsOfGroup(g),i->Image(img[2],Image(auto,i))));
end,
function(perm)
if perm in ran then
return ConjugatorAutomorphismNC(g,
PreImagesRepresentative(img[2],perm));
fi;
return GroupHomomorphismByImagesNC(g,g,GeneratorsOfGroup(g),
List(r,i->PreImagesRepresentative(img[2],i^perm)));
end);
fi;
fi;
fi;
if hom=fail then
Info(InfoMorph,1,"General Case");
SetIsFinite(au,true);
# general case: compute small domain
gens:=[];
dom:=[];
u:=TrivialSubgroup(g);
subs:=[];
orbs:=[];
while Size(u)<Size(g) do
# find a reasonable element
cnt:=0;
br:=false;
bv:=0;
if HasConjugacyClasses(g) then
for r in ConjugacyClasses(g) do
if IsPrimePowerInt(Order(Representative(r))) and
not Representative(r) in u then
v:=ClosureGroup(u,Representative(r));
if allinner then
val:=Size(Centralizer(r))*Size(NormalClosure(g,v));
else
val:=Size(Centralizer(r))*Size(v);
fi;
if val>bv then
br:=Representative(r);
bv:=val;
fi;
fi;
od;
else
repeat
cnt:=cnt+1;
repeat
r:=Random(g);
until not r in u;
# force prime power order
if not IsPrimePowerInt(Order(r)) then
v:=List(Collected(Factors(Order(r))),x->r^(x[1]^x[2]));
r:=First(v,x->not x in u); # if all are in u, r would be as well
fi;
v:=ClosureGroup(u,r);
if allinner then
val:=Size(Centralizer(g,r))*Size(NormalClosure(g,v));
else
val:=Size(Centralizer(g,r))*Size(v);
fi;
if val>bv then
br:=r;
bv:=val;
fi;
until bv>2^cnt;
fi;
r:=br;
if allinner then
u:=NormalClosure(g,ClosureGroup(u,r));
else
u:=ClosureGroup(u,r);
fi;
#calculate orbit and closure
o:=Orbit(au,r);
v:=TrivialSubgroup(g);
i:=1;
while i<=Length(o) do
if not o[i] in v then
if allinner then
v:=NormalClosure(g,ClosureGroup(v,o[i]));
else
v:=ClosureGroup(v,o[i]);
fi;
if Size(v)=Size(g) then
i:=Length(o);
fi;
fi;
i:=i+1;
od;
u:=ClosureGroup(u,v);
i:=1;
while Length(o)>0 and i<=Length(subs) do
if IsSubset(subs[i],v) then
o:=[];
elif IsSubset(v,subs[i]) then
subs[i]:=v;
orbs[i]:=o;
gens[i]:=r;
o:=[];
fi;
i:=i+1;
od;
if Length(o)>0 then
Add(subs,v);
Add(orbs,o);
Add(gens,r);
fi;
od;
# now find the smallest subset of domains
comb:=Filtered(Combinations([1..Length(subs)]),i->Length(i)>0);
bv:=infinity;
for i in comb do
val:=Sum(List(orbs{i},Length));
if val<bv then
v:=subs[i[1]];
for r in [2..Length(i)] do
v:=ClosureGroup(v,subs[i[r]]);
od;
if Size(v)=Size(g) then
best:=i;
bv:=val;
fi;
fi;
od;
gens:=gens{best};
dom:=Union(orbs{best});
Unbind(orbs);
u:=SubgroupNC(g,gens);
while Size(u)<Size(g) do
repeat
r:=Random(dom);
until not r in u;
Add(gens,r);
u:=ClosureSubgroupNC(u,r);
od;
Info(InfoMorph,1,"Found generating set of ",Length(gens)," elements",
List(gens,Order));
hom:=NiceMonomorphismAutomGroup(au,dom,gens);
fi;
SetFilterObj(hom,IsNiceMonomorphism);
SetNiceMonomorphism(au,hom);
SetIsHandledByNiceMonomorphism(au,true);
end);
#############################################################################
##
#F NiceMonomorphismAutomGroup
##
InstallGlobalFunction(NiceMonomorphismAutomGroup,
function(aut,elms,elmsgens)
local xset,fam,hom;
One(aut); # to avoid infinite recursion once the niceo is set
elmsgens:=Filtered(elmsgens,i->i in elms); # safety feature
#if Size(Group(elmsgens))<>Size(Source(One(aut))) then Error("holler1"); fi;
xset:=ExternalSet(aut,elms);
SetBaseOfGroup(xset,elmsgens);
fam := GeneralMappingsFamily( ElementsFamily( FamilyObj( aut ) ),
PermutationsFamily );
hom := rec( );
hom:=Objectify(NewType(fam,
IsActionHomomorphismAutomGroup and IsSurjective ),hom);
SetIsInjective(hom,true);
SetUnderlyingExternalSet( hom, xset );
hom!.basepos:=List(elmsgens,i->Position(elms,i));
SetRange( hom, Image( hom ) );
Setter(SurjectiveActionHomomorphismAttr)(xset,hom);
Setter(IsomorphismPermGroup)(aut,ActionHomomorphism(xset,"surjective"));
hom:=ActionHomomorphism(xset,"surjective");
SetFilterObj(hom,IsNiceMonomorphism);
return hom;
end);
#############################################################################
##
#M PreImagesRepresentative for OpHomAutomGrp
##
InstallMethod(PreImagesRepresentative,"AutomGroup Niceomorphism",
FamRangeEqFamElm,[IsActionHomomorphismAutomGroup,IsPerm],0,
function(hom,elm)
local xset,g,imgs;
xset:= UnderlyingExternalSet( hom );
g:=Source(One(ActingDomain(xset)));
imgs:=OnTuples(hom!.basepos,elm);
imgs:=Enumerator(xset){imgs};
#if g<>Group(BaseOfGroup(xset)) then Error("holler"); fi;
elm:=GroupHomomorphismByImagesNC(g,g,BaseOfGroup(xset),imgs);
SetIsBijective(elm,true);
return elm;
end);
#############################################################################
##
#F MorFroWords(<gens>) . . . . . . create some pseudo-random words in <gens>
## featuring the MeatAxe's FRO
InstallGlobalFunction(MorFroWords,function(gens)
local list,a,b,ab,i;
list:=[];
ab:=gens[1];
for i in [2..Length(gens)] do
a:=ab;
b:=gens[i];
ab:=a*b;
list:=Concatenation(list,
[ab,ab^2*b,ab^3*b,ab^4*b,ab^2*b*ab^3*b,ab^5*b,ab^2*b*ab^3*b*ab*b,
ab*(ab*b)^2*ab^3*b,a*b^4*a,ab*a^3*b]);
od;
return list;
end);
#############################################################################
##
#F MorRatClasses(<G>) . . . . . . . . . . . local rationalization of classes
##
InstallGlobalFunction(MorRatClasses,function(GR)
local r,c,u,j,i;
Info(InfoMorph,2,"RationalizeClasses");
r:=[];
for c in RationalClasses(GR) do
u:=Subgroup(GR,[Representative(c)]);
j:=DecomposedRationalClass(c);
Add(r,rec(representative:=u,
class:=j[1],
classes:=j,
size:=Size(c)));
od;
for i in r do
i.size:=Sum(i.classes,Size);
od;
return r;
end);
#############################################################################
##
#F MorMaxFusClasses(<l>) . . maximal possible morphism fusion of classlists
##
InstallGlobalFunction(MorMaxFusClasses,function(r)
local i,j,flag,cl;
# cl is the maximal fusion among the rational classes.
cl:=[];
for i in r do
j:=0;
flag:=true;
while flag and j<Length(cl) do
j:=j+1;
flag:=not(Size(i.class)=Size(cl[j][1].class) and
i.size=cl[j][1].size and
Size(i.representative)=Size(cl[j][1].representative));
od;
if flag then
Add(cl,[i]);
else
Add(cl[j],i);
fi;
od;
# sort classes by size
Sort(cl,function(a,b) return
Sum(a,i->i.size)
<Sum(b,i->i.size);end);
return cl;
end);
#############################################################################
##
#F SomeVerbalSubgroups
##
## correspond simultaneously some verbal subgroups in g and h
BindGlobal("SomeVerbalSubgroups",function(g,h)
local l,m,i,j,cg,ch,pg;
l:=[g];
m:=[h];
i:=1;
while i<=Length(l) do
for j in [1..i] do
cg:=CommutatorSubgroup(l[i],l[j]);
ch:=CommutatorSubgroup(m[i],m[j]);
pg:=Position(l,cg);
if pg=fail then
Add(l,cg);
Add(m,ch);
else
while m[pg]<>ch do
pg:=Position(l,cg,pg+1);
if pg=fail then
Add(l,cg);
Add(m,ch);
pg:=Length(m);
fi;
od;
fi;
od;
i:=i+1;
od;
return [l,m];
end);
#############################################################################
##
#F MorClassLoop(<range>,<classes>,<params>,<action>) loop over classes list
## to find generating sets or Iso/Automorphisms up to inner automorphisms
##
## classes is a list of records like the ones returned from
## MorMaxFusClasses.
##
## params is a record containing optional components:
## gens generators that are to be mapped
## from preimage group (that contains gens)
## to image group (as it might be smaller than 'range')
## free free generators
## rels some relations that hold in from, given as list [word,order]
## dom a set of elements on which automorphisms act faithful
## aut Subgroup of already known automorphisms
## condition function that must return `true' on the homomorphism.
##
## action is a number whose bit-representation indicates the action to be
## taken:
## 1 homomorphism
## 2 injective
## 4 surjective
## 8 find all (in contrast to one)
##
MorClassOrbs:=function(G,C,R,D)
local i,cl,cls,rep,x,xp,p,b,g;
i:=Index(G,C);
if i>20000 or i<Size(D) then
return List(DoubleCosetRepsAndSizes(G,C,D),j->j[1]);
else
if not IsBound(C!.conjclass) then
cl:=[R];
cls:=[R];
rep:=[One(G)];
i:=1;
while i<=Length(cl) do
for g in GeneratorsOfGroup(G) do
x:=cl[i]^g;
if not x in cls then
Add(cl,x);
AddSet(cls,x);
Add(rep,rep[i]*g);
fi;
od;
i:=i+1;
od;
SortParallel(cl,rep);
C!.conjclass:=cl;
C!.conjreps:=rep;
fi;
cl:=C!.conjclass;
rep:=[];
b:=BlistList([1..Length(cl)],[]);
p:=1;
repeat
while p<=Length(cl) and b[p] do
p:=p+1;
od;
if p<=Length(cl) then
b[p]:=true;
Add(rep,p);
cls:=[cl[p]];
for i in cls do
for g in GeneratorsOfGroup(D) do
x:=i^g;
xp:=PositionSorted(cl,x);
if not b[xp] then
Add(cls,x);
b[xp]:=true;
fi;
od;
od;
fi;
p:=p+1;
until p>Length(cl);
return C!.conjreps{rep};
fi;
end;
InstallGlobalFunction(MorClassLoop,function(range,clali,params,action)
local id,result,rig,dom,tall,tsur,tinj,thom,gens,free,rels,len,ind,cla,m,
mp,cen,i,j,imgs,ok,size,l,hom,cenis,reps,repspows,sortrels,genums,wert,p,
e,offset,pows,TestRels,pop,mfw,derhom,skip,cond;
len:=Length(clali);
if ForAny(clali,i->Length(i)=0) then
return []; # trivial case: no images for generator
fi;
id:=One(range);
if IsBound(params.aut) then
result:=params.aut;
rig:=true;
if IsBound(params.dom) then
dom:=params.dom;
else
dom:=false;
fi;
else
result:=[];
rig:=false;
fi;
# extra condition?
if IsBound(params.condition) then
cond:=params.condition;
else
cond:=fail;
fi;
tall:=action>7; # try all
if tall then
action:=action-8;
fi;
derhom:=fail;
tsur:=action>3; # test surjective
if tsur then
size:=Size(params.to);
action:=action-4;
if Index(range,DerivedSubgroup(range))>1 then
derhom:=NaturalHomomorphismByNormalSubgroup(range,DerivedSubgroup(range));
fi;
fi;
tinj:=action>1; # test injective
if tinj then
action:=action-2;
fi;
thom:=action>0; # test homomorphism
if IsBound(params.gens) then
gens:=params.gens;
fi;
if IsBound(params.rels) then
free:=params.free;
rels:=params.rels;
if Length(rels)=0 then
rels:=false;
fi;
elif thom then
free:=GeneratorsOfGroup(FreeGroup(Length(gens)));
mfw:=MorFroWords(free);
# get some more
if Product(List(gens,Order))<2000 then
for i in Cartesian(List(gens,i->[1..Order(i)])) do
Add(mfw,Product(List([1..Length(gens)],z->free[z]^i[z])));
od;
fi;
rels:=List(mfw,i->[i,Order(MappedWord(i,free,gens))]);
else
rels:=false;
fi;
if rels<>false then
# sort the relators according to the generators they contain
genums:=List(free,i->GeneratorSyllable(i,1));
genums:=List([1..Length(genums)],i->Position(genums,i));
sortrels:=List([1..len],i->[]);
pows:=List([1..len],i->[]);
for i in rels do
l:=len;
wert:=0;
m:=[];
for j in [1..NrSyllables(i[1])] do
p:=genums[GeneratorSyllable(i[1],j)];
e:=ExponentSyllable(i[1],j);
Append(m,[p,e]); # modified extrep
AddSet(pows[p],e);
if p<len then
wert:=wert+2; # conjugation: 2 extra images
l:=Minimum(l,p);
fi;
wert:=wert+AbsInt(e);
od;
Add(sortrels[l],[m,i[2],i[2]*wert,[1,3..Length(m)-1],i[1]]);
od;
# now sort by the length of the relators
for i in [1..len] do
Sort(sortrels[i],function(x,y) return x[3]<y[3];end);
od;
offset:=1-Minimum(List(Filtered(pows,i->Length(i)>0),
i->i[1])); # smallest occuring index
# test the relators at level tlev and set imgs
TestRels:=function(tlev)
local rel,k,j,p,start,gn,ex;
if Length(sortrels[tlev])=0 then
imgs:=List([tlev..len-1],i->reps[i]^(m[i][mp[i]]));
imgs[Length(imgs)+1]:=reps[len];
return true;
fi;
if IsPermGroup(range) then
# test by tracing points
for rel in sortrels[tlev] do
start:=1;
p:=start;
k:=0;
repeat
for j in rel[4] do
gn:=rel[1][j];
ex:=rel[1][j+1];
if gn=len then
p:=p^repspows[gn][ex+offset];
else
p:=p/m[gn][mp[gn]];
p:=p^repspows[gn][ex+offset];
p:=p^m[gn][mp[gn]];
fi;
od;
k:=k+1;
# until we have the power or we detected a smaller potential order.
until k>=rel[2] or (p=start and IsInt(rel[2]/k));
if p<>start then
return false;
fi;
od;
fi;
imgs:=List([tlev..len-1],i->reps[i]^(m[i][mp[i]]));
imgs[Length(imgs)+1]:=reps[len];
if tinj then
return ForAll(sortrels[tlev],i->i[2]=Order(MappedWord(i[5],
free{[tlev..len]}, imgs)));
else
return ForAll(sortrels[tlev],
i->IsInt(i[2]/Order(MappedWord(i[5],
free{[tlev..len]}, imgs))));
fi;
end;
else
TestRels:=x->true; # to satisfy the code below.
fi;
# backtrack over all classes in clali
l:=ListWithIdenticalEntries(len,1);
ind:=len;
while ind>0 do
ind:=len;
Info(InfoMorph,3,"step ",l);
# test class combination indicated by l:
cla:=List([1..len],i->clali[i][l[i]]);
reps:=List(cla,Representative);
skip:=false;
if derhom<>fail then
if not Size(Group(List(reps,i->Image(derhom,i))))=Size(Image(derhom)) then
#T The group `Image( derhom )' is abelian but initially does not know this;
#T shouldn't this be set?
#T Then computing the size on the l.h.s. may be sped up using `SubgroupNC'
#T w.r.t. the (abelian) group.
skip:=true;
Info(InfoMorph,3,"skipped");
fi;
fi;
if not skip then
if rels<>false and IsPermGroup(range) then
# and precompute the powers
repspows:=List([1..len],i->[]);
for i in [1..len] do
for j in pows[i] do
repspows[i][j+offset]:=reps[i]^j;
od;
od;
fi;
#cenis:=List(cla,i->Intersection(range,Centralizer(i)));
# make sure we get new groups (we potentially add entries)
cenis:=[];
for i in cla do
cen:=Intersection(range,Centralizer(i));
if IsIdenticalObj(cen,Centralizer(i)) then
m:=Size(cen);
cen:=SubgroupNC(range,GeneratorsOfGroup(cen));
SetSize(cen,m);
fi;
Add(cenis,cen);
od;
# test, whether a gen.sys. can be taken from the classes in <cla>
# candidates. This is another backtrack
m:=[];
m[len]:=[id];
# positions
mp:=[];
mp[len]:=1;
mp[len+1]:=-1;
# centralizers
cen:=[];
cen[len]:=cenis[len];
cen[len+1]:=range; # just for the recursion
i:=len-1;
# set up the lists
while i>0 do
#m[i]:=List(DoubleCosetRepsAndSizes(range,cenis[i],cen[i+1]),j->j[1]);
m[i]:=MorClassOrbs(range,cenis[i],reps[i],cen[i+1]);
mp[i]:=1;
pop:=true;
while pop and i<=len do
pop:=false;
while mp[i]<=Length(m[i]) and TestRels(i)=false do
mp[i]:=mp[i]+1; #increment because of relations
Info(InfoMorph,4,"early break ",i);
od;
if i<=len and mp[i]>Length(m[i]) then
Info(InfoMorph,3,"early pop");
pop:=true;
i:=i+1;
if i<=len then
mp[i]:=mp[i]+1; #increment because of pop
fi;
fi;
od;
if pop then
i:=-99; # to drop out of outer loop
elif i>1 then
cen[i]:=Centralizer(cen[i+1],reps[i]^(m[i][mp[i]]));
fi;
i:=i-1;
od;
if pop then
Info(InfoMorph,3,"allpop");
i:=len+2; # to avoid the following `while' loop
else
i:=1;
Info(InfoMorph,3,"loop");
fi;
while i<len do
if rels=false or TestRels(1) then
if rels=false then
# otherwise the images are set by `TestRels' as a side effect.
imgs:=List([1..len-1],i->reps[i]^(m[i][mp[i]]));
imgs[len]:=reps[len];
fi;
Info(InfoMorph,4,"orders: ",List(imgs,Order));
# computing the size can be nasty. Thus try given relations first.
ok:=true;
if rels<>false then
if tinj then
ok:=ForAll(rels,i->i[2]=Order(MappedWord(i[1],free,imgs)));
else
ok:=ForAll(rels,i->IsInt(i[2]/Order(MappedWord(i[1],free,imgs))));
fi;
fi;
# check surjectivity
if tsur and ok then
ok:= Size( SubgroupNC( range, imgs ) ) = size;
fi;
if ok and thom then
Info(InfoMorph,3,"testing");
imgs:=GroupGeneralMappingByImagesNC(params.from,range,gens,imgs);
SetIsTotal(imgs,true);
if tsur then
SetIsSurjective(imgs,true);
fi;
ok:=IsSingleValued(imgs);
if ok and tinj then
ok:=IsInjective(imgs);
fi;
fi;
if ok and cond<>fail then
ok:=cond(imgs);
fi;
if ok then
Info(InfoMorph,2,"found");
# do we want one or all?
if tall then
if rig then
if not imgs in result then
result:= GroupByGenerators( Concatenation(
GeneratorsOfGroup( result ), [ imgs ] ),
One( result ) );
# note its niceo
hom:=NiceMonomorphismAutomGroup(result,dom,gens);
SetNiceMonomorphism(result,hom);
SetIsHandledByNiceMonomorphism(result,true);
Size(result);
Info(InfoMorph,2,"new ",Size(result));
fi;
else
Add(result,imgs);
fi;
else
return imgs;
fi;
fi;
fi;
mp[i]:=mp[i]+1;
while i<=len and mp[i]>Length(m[i]) do
mp[i]:=1;
i:=i+1;
if i<=len then
mp[i]:=mp[i]+1;
fi;
od;
while i>1 and i<=len do
while i<=len and TestRels(i)=false do
Info(InfoMorph,4,"intermediate break ",i);
mp[i]:=mp[i]+1;
while i<=len and mp[i]>Length(m[i]) do
Info(InfoMorph,3,"intermediate pop ",i);
i:=i+1;
if i<=len then
mp[i]:=mp[i]+1;
fi;
od;
od;
if i<=len then # i>len means we completely popped. This will then
# also pop us out of both `while' loops.
cen[i]:=Centralizer(cen[i+1],reps[i]^(m[i][mp[i]]));
i:=i-1;
#m[i]:=List(DoubleCosetRepsAndSizes(range,cenis[i],cen[i+1]),j->j[1]);
m[i]:=MorClassOrbs(range,cenis[i],reps[i],cen[i+1]);
mp[i]:=1;
else
Info(InfoMorph,3,"allpop2");
fi;
od;
od;
fi;
# 'free for increment'
l[ind]:=l[ind]+1;
while ind>0 and l[ind]>Length(clali[ind]) do
l[ind]:=1;
ind:=ind-1;
if ind>0 then
l[ind]:=l[ind]+1;
fi;
od;
od;
return result;
end);
#############################################################################
##
#F MorFindGeneratingSystem(<G>,<cl>) . . find generating system with an few
## as possible generators from the first classes in <cl>
##
InstallGlobalFunction(MorFindGeneratingSystem,function(arg)
local G,cl,lcl,len,comb,combc,com,a,cnt,s,alltwo;
G:=arg[1];
cl:=arg[2];
Info(InfoMorph,1,"FindGenerators");
# throw out the 1-Class
cl:=Filtered(cl,i->Length(i)>1 or Size(i[1].representative)>1);
alltwo:=Set(Factors(Size(G)))=[2];
#create just a list of ordinary classes.
lcl:=List(cl,i->Concatenation(List(i,j->j.classes)));
len:=1;
len:=Maximum(1,Length(MinimalGeneratingSet(
Image(IsomorphismPcGroup((G/DerivedSubgroup(G))))))-1);
while true do
len:=len+1;
Info(InfoMorph,2,"Trying length ",len);
# now search for <len>-generating systems
comb:=UnorderedTuples([1..Length(lcl)],len);
combc:=List(comb,i->List(i,j->lcl[j]));
# test all <comb>inations
com:=0;
while com<Length(comb) do
com:=com+1;
# don't try only order 2 generators unless its a 2-group
if Set(List(Flat(combc[com]),i->Order(Representative(i))))<>[2] or
alltwo then
a:=MorClassLoop(G,combc[com],rec(to:=G),4);
if Length(a)>0 then
return a;
fi;
fi;
od;
od;
end);
#############################################################################
##
#F Morphium(<G>,<H>,<DoAuto>) . . . . . . . .Find isomorphisms between G and H
## modulo inner automorphisms. DoAuto indicates whether all
## automorphism are to be found
## This function thus does the main combinatoric work for creating
## Iso- and Automorphisms.
## It needs, that both groups are not cyclic.
##
InstallGlobalFunction(Morphium,function(G,H,DoAuto)
local len,combi,Gr,Gcl,Ggc,Hr,Hcl,bg,bpri,x,
gens,i,c,hom,free,elms,price,result,rels,inns,bcl,vsu;
IsSolvableGroup(G); # force knowledge
gens:=SmallGeneratingSet(G);
len:=Length(gens);
Gr:=MorRatClasses(G);
Gcl:=MorMaxFusClasses(Gr);
Ggc:=List(gens,i->First(Gcl,j->ForAny(j,j->ForAny(j.classes,k->i in k))));
combi:=List(Ggc,i->Concatenation(List(i,i->i.classes)));
price:=Product(combi,i->Sum(i,Size));
Info(InfoMorph,1,"generating system ",Sum(Flat(combi),Size),
" of price:",price,"");
if ((not HasMinimalGeneratingSet(G) and price/Size(G)>10000)
or Sum(Flat(combi),Size)>Size(G)/10 or IsSolvableGroup(G))
and ValueOption("nogensyssearch")<>true then
if IsSolvableGroup(G) then
gens:=IsomorphismPcGroup(G);
gens:=List(MinimalGeneratingSet(Image(gens)),
i->PreImagesRepresentative(gens,i));
Ggc:=List(gens,i->First(Gcl,j->ForAny(j,j->ForAny(j.classes,k->i in k))));
combi:=List(Ggc,i->Concatenation(List(i,i->i.classes)));
bcl:=ShallowCopy(combi);
Sort(bcl,function(a,b) return Sum(a,Size)<Sum(b,Size);end);
bg:=gens;
bpri:=Product(combi,i->Sum(i,Size));
for i in [1..7*Length(gens)-12] do
repeat
for c in [1..Length(gens)] do
if Random([1,2,3])<2 then
gens[c]:=Random(G);
else
x:=bcl[Random(Filtered([1,1,1,1,2,2,2,3,3,4],k->k<=Length(bcl)))];
gens[c]:=Random(Random(x));
fi;
od;
until Index(G,SubgroupNC(G,gens))=1;
Ggc:=List(gens,i->First(Gcl,
j->ForAny(j,j->ForAny(j.classes,k->i in k))));
combi:=List(Ggc,i->Concatenation(List(i,i->i.classes)));
Append(bcl,combi);
Sort(bcl,function(a,b) return Sum(a,Size)<Sum(b,Size);end);
price:=Product(combi,i->Sum(i,Size));
Info(InfoMorph,3,"generating system of price:",price,"");
if price<bpri then
bpri:=price;
bg:=gens;
fi;
od;
gens:=bg;
else
gens:=MorFindGeneratingSystem(G,Gcl);
fi;
Ggc:=List(gens,i->First(Gcl,j->ForAny(j,j->ForAny(j.classes,k->i in k))));
combi:=List(Ggc,i->Concatenation(List(i,i->i.classes)));
price:=Product(combi,i->Sum(i,Size));
Info(InfoMorph,1,"generating system of price:",price,"");
fi;
if not DoAuto then
Hr:=MorRatClasses(H);
Hcl:=MorMaxFusClasses(Hr);
fi;
vsu:=SomeVerbalSubgroups(G,H);
if List(vsu[1],Size)<>List(vsu[2],Size) then
# cannot be candidates
return [];
fi;
# now test, whether it is worth, to compute a finer congruence
# then ALSO COMPUTE NEW GEN SYST!
# [...]
if not DoAuto then
combi:=[];
for i in Ggc do
c:=Filtered(Hcl,
j->Set(List(j,k->k.size))=Set(List(i,k->k.size))
and Length(j[1].classes)=Length(i[1].classes)
and Size(j[1].class)=Size(i[1].class)
and Size(j[1].representative)=Size(i[1].representative)
# This test assumes maximal fusion among the rat.classes. If better
# congruences are used, they MUST be checked here also!
);
if Length(c)<>1 then
# Both groups cannot be isomorphic, since they lead to different
# congruences!
Info(InfoMorph,2,"different congruences");
return fail;
else
Add(combi,c[1]);
fi;
od;
combi:=List(combi,i->Concatenation(List(i,i->i.classes)));
fi;
# filter by verbal subgroups
for i in [1..Length(gens)] do
c:=Filtered([1..Length(vsu[1])],j->gens[i] in vsu[1][j]);
c:=Filtered(combi[i],k->
c=Filtered([1..Length(vsu[2])],j->Representative(k) in vsu[2][j]));
if Length(c)<Length(combi[i]) then
Info(InfoMorph,1,"images improved by verbal subgroup:",
Sum(combi[i],Size)," -> ",Sum(c,Size));
combi[i]:=c;
fi;
od;
# combi contains the classes, from which the
# generators are taken.
#free:=GeneratorsOfGroup(FreeGroup(Length(gens)));
#rels:=MorFroWords(free);
#rels:=List(rels,i->[i,Order(MappedWord(i,free,gens))]);
#result:=rec(gens:=gens,from:=G,to:=H,free:=free,rels:=rels);
result:=rec(gens:=gens,from:=G,to:=H);
if DoAuto then
inns:=List(GeneratorsOfGroup(G),i->InnerAutomorphism(G,i));
if Sum(Flat(combi),Size)<=MORPHEUSELMS then
elms:=[];
for i in Flat(combi) do
if not ForAny(elms,j->Representative(i)=Representative(j)) then
# avoid duplicate classes
Add(elms,i);
fi;
od;
elms:=Union(List(elms,AsList));
Info(InfoMorph,1,"permrep on elements: ",Length(elms));
Assert(2,ForAll(GeneratorsOfGroup(G),i->ForAll(elms,j->j^i in elms)));
result.dom:=elms;
inns:= GroupByGenerators( inns, IdentityMapping( G ) );
hom:=NiceMonomorphismAutomGroup(inns,elms,gens);
SetNiceMonomorphism(inns,hom);
SetIsHandledByNiceMonomorphism(inns,true);
result.aut:=inns;
else
elms:=false;
fi;
result:=rec(aut:=MorClassLoop(H,combi,result,15));
if elms<>false then
result.elms:=elms;
result.elmsgens:=Filtered(gens,i->i<>One(G));
inns:=SubgroupNC(result.aut,GeneratorsOfGroup(inns));
fi;
result.inner:=inns;
else
result:=MorClassLoop(H,combi,result,7);
fi;
return result;
end);
#############################################################################
##
#F AutomorphismGroupAbelianGroup(<G>)
##
InstallGlobalFunction(AutomorphismGroupAbelianGroup,function(G)
local i,j,k,l,m,o,nl,nj,max,r,e,au,p,gens,offs;
# trivial case
if Size(G)=1 then
au:= GroupByGenerators( [], IdentityMapping( G ) );
i:=NiceMonomorphismAutomGroup(au,[One(G)],[One(G)]);
SetNiceMonomorphism(au,i);
SetIsHandledByNiceMonomorphism(au,true);
SetIsAutomorphismGroup( au, true );
SetIsFinite(au,true);
return au;
fi;
# get standard generating system
gens:=IndependentGeneratorsOfAbelianGroup(G);
au:=[];
# run by primes
p:=Set(Factors(Size(G)));
for i in p do
l:=Filtered(gens,j->IsInt(Order(j)/i));
nl:=Filtered(gens,i->not i in l);
#sort by exponents
o:=List(l,j->LogInt(Order(j),i));
e:=[];
for j in Set(o) do
Add(e,[j,l{Filtered([1..Length(o)],k->o[k]=j)}]);
od;
# construct automorphisms by components
for j in e do
nj:=Concatenation(List(Filtered(e,i->i[1]<>j[1]),i->i[2]));
r:=Length(j[2]);
# the permutations and addition
if r>1 then
Add(au,GroupHomomorphismByImagesNC(G,G,Concatenation(nl,nj,j[2]),
#(1,2)
Concatenation(nl,nj,j[2]{[2]},j[2]{[1]},j[2]{[3..Length(j[2])]})));
Add(au,GroupHomomorphismByImagesNC(G,G,Concatenation(nl,nj,j[2]),
#(1,..,n)
Concatenation(nl,nj,j[2]{[2..Length(j[2])]},j[2]{[1]})));
#for k in [0..j[1]-1] do
k:=0;
Add(au,GroupHomomorphismByImagesNC(G,G,Concatenation(nl,nj,j[2]),
#1->1+i^k*2
Concatenation(nl,nj,[j[2][1]*j[2][2]^(i^k)],
j[2]{[2..Length(j[2])]})));
#od;
fi;
# multiplications
for k in List( Flat( GeneratorsPrimeResidues(i^j[1])!.generators ),
Int ) do
Add(au,GroupHomomorphismByImagesNC(G,G,Concatenation(nl,nj,j[2]),
#1->1^k
Concatenation(nl,nj,[j[2][1]^k],j[2]{[2..Length(j[2])]})));
od;
od;
# the mixing ones
for j in [1..Length(e)] do
for k in [1..Length(e)] do
if k<>j then
nj:=Concatenation(List(e{Difference([1..Length(e)],[j,k])},i->i[2]));
offs:=Maximum(0,e[k][1]-e[j][1]);
if Length(e[j][2])=1 and Length(e[k][2])=1 then
max:=Minimum(e[j][1],e[k][1])-1;
else
max:=0;
fi;
for m in [0..max] do
Add(au,GroupHomomorphismByImagesNC(G,G,
Concatenation(nl,nj,e[j][2],e[k][2]),
Concatenation(nl,nj,[e[j][2][1]*e[k][2][1]^(i^(offs+m))],
e[j][2]{[2..Length(e[j][2])]},e[k][2])));
od;
fi;
od;
od;
od;
for i in au do
SetIsBijective(i,true);
j:=MappingGeneratorsImages(i);
if j[1]<>j[2] then
SetIsInnerAutomorphism(i,false);
fi;
SetFilterObj(i,IsMultiplicativeElementWithInverse);
od;
au:= GroupByGenerators( au, IdentityMapping( G ) );
SetIsAutomorphismGroup(au,true);
SetIsFinite(au,true);
SetInnerAutomorphismsAutomorphismGroup(au,TrivialSubgroup(au));
if IsFinite(G) then
SetIsFinite(au,true);
SetIsGroupOfAutomorphismsFiniteGroup(au,true);
fi;
return au;
end);
#############################################################################
##
#F IsomorphismAbelianGroups(<G>)
##
InstallGlobalFunction(IsomorphismAbelianGroups,function(G,H)
local o,p,gens,hens;
# get standard generating system
gens:=IndependentGeneratorsOfAbelianGroup(G);
gens:=ShallowCopy(gens);
# get standard generating system
hens:=IndependentGeneratorsOfAbelianGroup(H);
hens:=ShallowCopy(hens);
o:=List(gens,i->Order(i));
p:=List(hens,i->Order(i));
SortParallel(o,gens);
SortParallel(p,hens);
if o<>p then
return fail;
fi;
o:=GroupHomomorphismByImagesNC(G,H,gens,hens);
SetIsBijective(o,true);
return o;
end);
BindGlobal("AutomorphismGroupMorpheus",function(G)
local a,b,c,p;
a:=Morphium(G,G,true);
if IsList(a.aut) then
a.aut:= GroupByGenerators( Concatenation( a.aut, a.inner ),
IdentityMapping( G ) );
a.inner:=SubgroupNC(a.aut,a.inner);
else
# test whether we really want to keep the stored nice monomorphism
b:=Range(NiceMonomorphism(a.aut));
p:=LargestMovedPoint(b); # degree of the nice rep.
# first class sizes for non central generators. Their sum is what we
# admit as domain size
c:=Filtered(List(ConjugacyClasses(G),Size),i->i>1);
Sort(c);
c:=c{[1..Minimum(Length(c),Length(GeneratorsOfGroup(G)))]};
if p>100 and ((not IsPermGroup(G)) or (p>4*LargestMovedPoint(G)
and (p>1000 or p>Sum(c)
or ForAll(GeneratorsOfGroup(a.aut),IsConjugatorAutomorphism)
or Size(a.aut)/Size(G)<p/10*LargestMovedPoint(G)))) then
# the degree looks rather big. Can we do better?
Info(InfoMorph,2,"test automorphism domain ",p);
c:=GroupByGenerators(GeneratorsOfGroup(a.aut),One(a.aut));
AssignNiceMonomorphismAutomorphismGroup(c,G);
if IsPermGroup(Range(NiceMonomorphism(c))) and
LargestMovedPoint(Range(NiceMonomorphism(c)))<p then
Info(InfoMorph,1,"improved domain ",
LargestMovedPoint(Range(NiceMonomorphism(c))));
a.aut:=c;
a.inner:=SubgroupNC(a.aut,GeneratorsOfGroup(a.inner));
fi;
fi;
fi;
SetInnerAutomorphismsAutomorphismGroup(a.aut,a.inner);
SetIsAutomorphismGroup( a.aut, true );
if HasIsFinite(G) and IsFinite(G) then
SetIsFinite(a.aut,true);
SetIsGroupOfAutomorphismsFiniteGroup(a.aut,true);
fi;
return a.aut;
end);
InstallGlobalFunction(AutomorphismGroupFittingFree,function(g)
local s, c, acts, ttypes, ttypnam, k, act, t, j, iso, w, wemb, a, au,
auph, aup, n, wl, genimgs, thom, ahom, emb, lemb, d, ge, stbs, orb, base,
newbas, obas, p, r, orpo, imgperm, invmap, hom, i, gen,gens,tty,count;
#write g in a nice form
count:=ValueOption("count");if count=fail then count:=0;fi;
s:=Socle(g);
if IsSimpleGroup(s) then
return AutomorphismGroupMorpheus(g);
fi;
c:=ChiefSeriesThrough(g,[s]);
acts:=[];
ttypes:=[];
ttypnam:=[];
k:=g;
for i in [1..Length(c)-1] do
if IsSubset(s,c[i]) and not HasAbelianFactorGroup(c[i],c[i+1]) then
act:=WreathActionChiefFactor(g,c[i],c[i+1]);
Add(acts,act);
t:=act[4];
tty:=IsomorphismTypeInfoFiniteSimpleGroup(t);
j:=1;
while j<=Length(ttypes) do
if ttypnam[j]=tty then
iso:=IsomorphismGroups(t,acts[ttypes[j][1]][4]);
Add(ttypes[j],[Length(acts),iso]);
j:=Length(ttypes)+10;
fi;
j:=j+1;
od;
if j<Length(ttypes)+2 then
Add(ttypes,[Length(acts)]);
Add(ttypnam,tty);
Info(InfoMorph,1,"New isomorphism type: ",
ttypnam[Length(ttypnam)].name);
fi;
fi;
od;
# now build the wreath products
w:=[];
wemb:=[];
for i in ttypes do
t:=acts[i[1]][4];
a:=acts[i[1]][3];
au:=AutomorphismGroupMorpheus(t);
auph:=IsomorphismPermGroup(au);
aup:=Image(auph);
n:=acts[i[1]][5];
for j in [2..Length(i)] do
n:=n+acts[i[j][1]][5];
od;
#T replace symmetric group by a suitable wreath product
wl:=WreathProduct(aup,SymmetricGroup(n));
# now embedd all
n:=1;
# first is slightly special
genimgs:=[];
for gen in GeneratorsOfGroup(a) do
thom:=GroupHomomorphismByImagesNC(t,t,GeneratorsOfGroup(t),
List(GeneratorsOfGroup(t),j->j^gen));
thom:=Image(auph,thom);
Add(genimgs,thom);
od;
ahom:=GroupHomomorphismByImagesNC(a,aup,GeneratorsOfGroup(a),genimgs);
emb:=acts[i[1]][2]*EmbeddingWreathInWreath(wl,acts[i[1]][1],ahom,n);
n:=n+acts[i[1]][5];
lemb:=[emb];
for j in [2..Length(i)] do
a:=acts[i[j][1]][3];
genimgs:=[];
for gen in GeneratorsOfGroup(a) do
thom:=i[j][2];
thom:=GroupHomomorphismByImagesNC(t,t,GeneratorsOfGroup(t),
List(GeneratorsOfGroup(t),
j->Image(thom,PreImagesRepresentative(thom,j)^gen)));
thom:=Image(auph,thom);
Add(genimgs,thom);
od;
ahom:=GroupHomomorphismByImagesNC(a,aup,GeneratorsOfGroup(a),genimgs);
emb:=acts[i[j][1]][2]*EmbeddingWreathInWreath(wl,acts[i[j][1]][1],ahom,n);
n:=n+acts[i[j][1]][5];
Add(lemb,emb);
od;
# now map into wl by combining
emb:=[];
for gen in GeneratorsOfGroup(g) do
Add(emb,Product(lemb,i->Image(i,gen)));
od;
emb:=GroupHomomorphismByImagesNC(g,wl,GeneratorsOfGroup(g),emb);
Add(w,wl);
Add(wemb,emb);
od;
# finally form a direct product for the different types
d:=DirectProduct(w);
emb:=[];
for gen in GeneratorsOfGroup(g) do
Add(emb,
Product([1..Length(w)],i->Image(Embedding(d,i),Image(wemb[i],gen))));
od;
emb:=GroupHomomorphismByImagesNC(g,d,GeneratorsOfGroup(g),emb);
aup:=Normalizer(d,Image(emb,g));
#reduce degree
s:=SmallerDegreePermutationRepresentation(aup);
emb:=emb*s;
aup:=Image(s,aup);
ge:=Image(emb,g);
# translate back into automorphisms
a:=[];
gens:=SmallGeneratingSet(aup);
for i in gens do
au:=GroupHomomorphismByImages(g,g,GeneratorsOfGroup(g),
List(GeneratorsOfGroup(g),
j->PreImagesRepresentative(emb,Image(emb,j)^i)));
Add(a,au);
od;
au:=Group(a);
#cleanup
Unbind(acts);Unbind(act);Unbind(ttypes);Unbind(w);Unbind(wl);
Unbind(wemb);Unbind(lemb);Unbind(ahom);Unbind(thom);Unbind(d);
# produce data to map fro au to aup:
lemb:=MovedPoints(aup);
stbs:=[];
orb:=Orbits(aup,MovedPoints(aup));
base:=BaseStabChain(StabChainMutable(aup));
newbas:=[];
for i in orb do
obas:=Filtered(base,x->x in i);
Append(newbas,obas);
p:=obas[1];
# get a set of elements that uniquely describes the point p
s:=SmallGeneratingSet(Stabilizer(ge,p));
if ForAny(Difference(i,[p]),j->ForAll(s,x->j^x=j)) then
# try once more -- there is some randomeness involved
if count<10 then
return AutomorphismGroupFittingFree(g:count:=count+1);
fi;
Error("repeated further fixpoint -- ambiguity");
fi;
stbs[p]:=s;
for j in [2..Length(obas)] do
r:=RepresentativeAction(aup,p,obas[j]);
stbs[obas[j]]:=List(s,i->i^r);
od;
od;
orpo:=List(MovedPoints(aup),x->First([1..Length(orb)],y->x in orb[y]));
imgperm:=function(autom)
local bi, s, i;
bi:=[];
for i in newbas do
s:=List(stbs[i],
x->Image(emb,Image(autom,PreImagesRepresentative(emb,x))));
s:=First(orb[orpo[i]],x->ForAll(s,j->x^j=x));
Add(bi,s);
od;
return RepresentativeAction(aup,newbas,bi,OnTuples);
end;
invmap:=GroupHomomorphismByImagesNC(aup,au,gens,a);
hom:=GroupHomomorphismByFunction(au,aup,imgperm,
function(x)
return Image(invmap,x);
end);
SetInverseGeneralMapping(hom,invmap);
SetInverseGeneralMapping(invmap,hom);
SetIsAutomorphismGroup(au,true);
SetIsGroupOfAutomorphismsFiniteGroup(au,true);
SetNiceMonomorphism(au,hom);
SetIsHandledByNiceMonomorphism(au,true);
return au;
end);
#############################################################################
##
#M AutomorphismGroup(<G>) . . group of automorphisms, given as Homomorphisms
##
InstallMethod(AutomorphismGroup,"finite groups",true,[IsGroup and IsFinite],0,
function(G)
local A;
# since the computation is expensive, it is worth to test some properties first,
# instead of relying on the method selection
if IsAbelian(G) then
A:=AutomorphismGroupAbelianGroup(G);
elif (not HasIsPGroup(G)) and IsPGroup(G) then
#if G did not yet know to be a P-group, but is -- redispatch to catch the
#`autpgroup' package method. This will be called at most once.
LoadPackage("autpgrp"); # try to load the package if it exists
return AutomorphismGroup(G);
elif IsNilpotentGroup(G) and not IsPGroup(G) then
LoadPackage("autpgrp"); # try to load the package if it exists
A:=AutomorphismGroupNilpotentGroup(G);
elif IsSolvableGroup(G) then
if HasIsFrattiniFree(G) and IsFrattiniFree(G) then
A:=AutomorphismGroupFrattFreeGroup(G);
else
A:=AutomorphismGroupSolvableGroup(G);
fi;
elif Size(RadicalGroup(G))=1 then
# essentially a normalizer when suitably embedded
A:=AutomorphismGroupFittingFree(G);
else
A:=AutomorphismGroupMorpheus(G);
fi;
SetIsAutomorphismGroup(A,true);
SetIsGroupOfAutomorphismsFiniteGroup(A,true);
SetIsFinite(A,true);
SetAutomorphismDomain(A,G);
return A;
end);
# just in case it does not know to be finite
RedispatchOnCondition(AutomorphismGroup,true,[IsGroup],
[IsGroup and IsFinite],0);
#############################################################################
##
#M NiceMonomorphism
##
InstallMethod(NiceMonomorphism,"for automorphism groups",true,
[IsGroupOfAutomorphismsFiniteGroup],0,
function( A )
local G;
if not IsGroupOfAutomorphismsFiniteGroup(A) then
TryNextMethod();
fi;
G := Source( Identity(A) );
# this stores the niceo
AssignNiceMonomorphismAutomorphismGroup(A,G);
# as `AssignNice...' will have stored an attribute value this cannot cause
# an infinite recursion:
return NiceMonomorphism(A);
end);
#############################################################################
##
#M InnerAutomorphismsAutomorphismGroup( <A> )
##
InstallMethod( InnerAutomorphismsAutomorphismGroup,
"for automorphism groups",
true,
[ IsAutomorphismGroup and IsFinite ], 0,
function( A )
local G, gens;
G:= Source( Identity( A ) );
gens:= GeneratorsOfGroup( G );
# get the non-central generators
gens:= Filtered( gens, i -> not ForAll( gens, j -> i*j = j*i ) );
return SubgroupNC( A, List( gens, i -> InnerAutomorphism( G, i ) ) );
end );
#############################################################################
##
#F IsomorphismGroups(<G>,<H>) . . . . . . . . . . isomorphism from G onto H
##
InstallGlobalFunction(IsomorphismGroups,function(G,H)
local m;
#AH: Spezielle Methoden ?
if Size(G)=1 then
if Size(H)<>1 then
return fail;
else
return GroupHomomorphismByImagesNC(G,H,[],[]);
fi;
fi;
if IsAbelian(G) then
if not IsAbelian(H) then
return fail;
else
return IsomorphismAbelianGroups(G,H);
fi;
fi;
if Size(G)<>Size(H) then
return fail;
elif ID_AVAILABLE(Size(G)) <> fail then
if IdGroup(G)<>IdGroup(H) then
return fail;
elif ValueOption("hard")=fail
and IsSolvableGroup(G) and Size(G) <= 2000 then
return IsomorphismSolvableSmallGroups(G,H);
fi;
elif Length(ConjugacyClasses(G))<>Length(ConjugacyClasses(H)) then
return fail;
fi;
m:=Morphium(G,H,false);
if IsList(m) and Length(m)=0 then
return fail;
else
return m;
fi;
end);
#############################################################################
##
#F GQuotients(<F>,<G>) . . . . . epimorphisms from F onto G up to conjugacy
##
InstallMethod(GQuotients,"for groups which can compute element orders",true,
[IsGroup,IsGroup and IsFinite],
# override `IsFinitelyPresentedGroup' filter.
1,
function (F,G)
local Fgens, # generators of F
cl, # classes of G
u, # trial generating set's group
vsu, # verbal subgroups
pimgs, # possible images
val, # its value
best, # best generating set
bestval, # its value
sz, # |class|
i, # loop
h, # epis
len, # nr. gens tried
fak, # multiplication factor
cnt; # countdown for finish
# if we have a pontentially infinite fp group we cannot be clever
if IsSubgroupFpGroup(F) and
(not HasSize(F) or Size(F)=infinity) then
TryNextMethod();
fi;
Fgens:=GeneratorsOfGroup(F);
# if a verbal subgroup is trivial in the image, it must be in the kernel
vsu:=SomeVerbalSubgroups(F,G);
vsu:=vsu[1]{Filtered([1..Length(vsu[2])],j->IsTrivial(vsu[2][j]))};
vsu:=Filtered(vsu,i->not IsTrivial(i));
if Length(vsu)>1 then
fak:=vsu[1];
for i in [2..Length(vsu)] do
fak:=ClosureGroup(fak,vsu[i]);
od;
Info(InfoMorph,1,"quotient of verbal subgroups :",Size(fak));
h:=NaturalHomomorphismByNormalSubgroup(F,fak);
fak:=Image(h,F);
u:=GQuotients(fak,G);
cl:=[];
for i in u do
i:=GroupHomomorphismByImagesNC(F,G,Fgens,
List(Fgens,j->Image(i,Image(h,j))));
Add(cl,i);
od;
return cl;
fi;
if Size(G)=1 then
return [GroupHomomorphismByImagesNC(F,G,Fgens,
List(Fgens,i->One(G)))];
elif IsCyclic(F) then
Info(InfoMorph,1,"Cyclic group: only one quotient possible");
# a cyclic group has at most one quotient
if not IsCyclic(G) or not IsInt(Size(F)/Size(G)) then
return [];
else
# get the cyclic gens
u:=First(AsList(F),i->Order(i)=Size(F));
h:=First(AsList(G),i->Order(i)=Size(G));
# just map them
return [GroupHomomorphismByImagesNC(F,G,[u],[h])];
fi;
fi;
if IsAbelian(G) then
fak:=5;
else
fak:=50;
fi;
cl:=ConjugacyClasses(G);
# first try to find a short generating system
best:=false;
bestval:=infinity;
if Size(F)<10000000 and Length(Fgens)>2 then
len:=Maximum(2,Length(SmallGeneratingSet(
Image(NaturalHomomorphismByNormalSubgroup(F,
DerivedSubgroup(F))))));
else
len:=2;
fi;
cnt:=0;
repeat
u:=List([1..len],i->Random(F));
if Index(F,Subgroup(F,u))=1 then
# find potential images
pimgs:=[];
for i in u do
sz:=Index(F,Centralizer(F,i));
Add(pimgs,Filtered(cl,j->IsInt(Order(i)/Order(Representative(j)))
and IsInt(sz/Size(j))));
od;
# sort u in descending order -> large reductions when centralizing
SortParallel(pimgs,u,function(a,b)
return Sum(a,Size)>Sum(b,Size);
end);
val:=Product(pimgs,i->Sum(i,Size));
if val<bestval then
Info(InfoMorph,2,"better value: ",List(u,i->Order(i)),
"->",val);
best:=[u,pimgs];
bestval:=val;
fi;
fi;
cnt:=cnt+1;
if cnt=len*fak and best=false then
cnt:=0;
Info(InfoMorph,1,"trying one generator more");
len:=len+1;
fi;
until best<>false and (cnt>len*fak or bestval<3*cnt);
if ValueOption("findall")=false then
# only one
h:=MorClassLoop(G,best[2],rec(gens:=best[1],to:=G,from:=F),5);
# get the same syntax for the object returned
if IsList(h) and Length(h)=0 then
return h;
else
return [h];
fi;
else
h:=MorClassLoop(G,best[2],rec(gens:=best[1],to:=G,from:=F),13);
fi;
cl:=[];
u:=[];
for i in h do
if not KernelOfMultiplicativeGeneralMapping(i) in u then
Add(u,KernelOfMultiplicativeGeneralMapping(i));
Add(cl,i);
fi;
od;
Info(InfoMorph,1,Length(h)," found -> ",Length(cl)," homs");
return cl;
end);
#############################################################################
##
#F IsomorphicSubgroups(<G>,<H>)
##
InstallMethod(IsomorphicSubgroups,"for finite groups",true,
[IsGroup and IsFinite,IsGroup and IsFinite],
# override `IsFinitelyPresentedGroup' filter.
1,
function(G,H)
local cl,cnt,bg,bw,bo,bi,k,gens,go,imgs,params,emb,clg,sg,vsu,c,i;
if not IsInt(Size(G)/Size(H)) then
Info(InfoMorph,1,"sizes do not permit embedding");
return [];
fi;
if IsTrivial(H) then
return [GroupHomomorphismByImagesNC(H,G,[],[])];
fi;
if IsAbelian(G) then
if not IsAbelian(H) then
return [];
fi;
if IsCyclic(G) then
if IsCyclic(H) then
return [GroupHomomorphismByImagesNC(H,G,[MinimalGeneratingSet(H)[1]],
[MinimalGeneratingSet(G)[1]^(Size(G)/Size(H))])];
else
return [];
fi;
fi;
fi;
cl:=ConjugacyClasses(G);
if IsCyclic(H) then
cl:=List(RationalClasses(G),Representative);
cl:=Filtered(cl,i->Order(i)=Size(H));
return List(cl,i->GroupHomomorphismByImagesNC(H,G,
[MinimalGeneratingSet(H)[1]],
[i]));
fi;
cl:=ConjugacyClasses(G);
# test whether there is a chance to embed
cnt:=0;
while cnt<20 do
bg:=Order(Random(H));
if not ForAny(cl,i->Order(Representative(i))=bg) then
return [];
fi;
cnt:=cnt+1;
od;
# find a suitable generating system
bw:=infinity;
bo:=[0,0];
cnt:=0;
repeat
if cnt=0 then
# first the small gen syst.
gens:=SmallGeneratingSet(H);
sg:=Length(gens);
else
# then something random
repeat
if Length(gens)>2 and Random([1,2])=1 then
# try to get down to 2 gens
gens:=List([1,2],i->Random(H));
else
gens:=List([1..sg],i->Random(H));
fi;
# try to get small orders
for k in [1..Length(gens)] do
go:=Order(gens[k]);
# try a p-element
if Random([1..3*Length(gens)])=1 then
gens[k]:=gens[k]^(go/(Random(Factors(go))));
fi;
od;
until Index(H,SubgroupNC(H,gens))=1;
fi;
go:=List(gens,Order);
imgs:=List(go,i->Filtered(cl,j->Order(Representative(j))=i));
Info(InfoMorph,3,go,":",Product(imgs,i->Sum(i,Size)));
if Product(imgs,i->Sum(i,Size))<bw then
bg:=gens;
bo:=go;
bi:=imgs;
bw:=Product(imgs,i->Sum(i,Size));
elif Set(go)=Set(bo) then
# we hit the orders again -> sign that we can't be
# completely off track
cnt:=cnt+Int(bw/Size(G)*3);
fi;
cnt:=cnt+1;
until bw/Size(G)*3<cnt;
if bw=0 then
return [];
fi;
vsu:=SomeVerbalSubgroups(H,G);
# filter by verbal subgroups
for i in [1..Length(bg)] do
c:=Filtered([1..Length(vsu[1])],j->bg[i] in vsu[1][j]);
#Print(List(bi[i],k->
# Filtered([1..Length(vsu[2])],j->Representative(k) in vsu[2][j])),"\n");
cl:=Filtered(bi[i],k->ForAll(c,j->Representative(k) in vsu[2][j]));
if Length(cl)<Length(bi[i]) then
Info(InfoMorph,1,"images improved by verbal subgroup:",
Sum(bi[i],Size)," -> ",Sum(cl,Size));
bi[i]:=cl;
fi;
od;
Info(InfoMorph,2,"find ",bw," from ",cnt);
if Length(bg)>2 and cnt>Size(H)^2 and Size(G)<bw then
Info(InfoPerformance,1,
"The group tested requires many generators. `IsomorphicSubgroups' often\n",
"#I does not perform well for such groups -- see the documentation.");
fi;
params:=rec(gens:=bg,from:=H);
# find all embeddings
if ValueOption("findall")=false then
# only one
emb:=MorClassLoop(G,bi,params,
# one injective homs = 1+2
3);
if IsList(emb) and Length(emb)=0 then
return emb;
fi;
emb:=[emb];
else
emb:=MorClassLoop(G,bi,params,
# all injective homs = 1+2+8
11);
fi;
Info(InfoMorph,2,Length(emb)," embeddings");
cl:=[];
clg:=[];
for k in emb do
bg:=Image(k,H);
if not ForAny(clg,i->RepresentativeAction(G,i,bg)<>fail) then
Add(cl,k);
Add(clg,bg);
fi;
od;
Info(InfoMorph,1,Length(emb)," found -> ",Length(cl)," homs");
return cl;
end);
#############################################################################
##
#E
|