This file is indexed.

/usr/share/gap/lib/oldmatint.gi is in gap-libs 4r6p5-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
#############################################################################
##
#A  oldmatint.gi                   GAP library                 Robert Wainwright
##
##
#Y  Copyright (C)  1997,  St Andrews
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file is preserved to keep the old routines available. It is not
##  read in by default.
## 
##  This file contains old methods for functions that compute Hermite and
##  Smith normal forms of integer matrices, with or without the HNF/SNF
##  expressed as the linear combination of the input.  The code is based
##  on (and in parts identical to) code written by Bohdan Majewski.

##


##############################################################################
##
#F  MatInt_BestRow( <rec>, <row>, <index>)  ......... an auxiliary function for NormHnf
##
BindGlobal("MatInt_BestRow", function( A, i, h ) 

local j, # row index; goes between i and the last row A.m
      r, # index of the row with the minimum norm so far
     cn, # (c)urrent (n)orm; norm of the current vector
     mn; # (m)inimum (n)orm; minimum so far, naturally

   r := 0; mn := 0;
   for j in [i .. A.m] do
      if A.T[j][h] <> 0 then
	 if r = 0 then
	    mn := A.T[j]*A.T[j];
	    r  := j;
	 else
	    cn := A.T[j]*A.T[j];
	    if cn < mn then
	       mn := cn;
	       r  := j;
	    fi;
	 fi;
      fi;
   od;
Info(InfoMatInt,4,"MatInt_BestRow returning ",r);

   return r;
end);

##############################################################################
##
#F  NormHnf( <array> [, <bool/rat>]) ... the Hermite NF of the first parameter
##
BindGlobal("NormHnf", function( arg )

local  A, # a record (number or rows, no of columns, int matrix)
       h, # head (first nonzero) of the pivot row
 i, j, k, # local indexes
 r, t, q,qq, # auxiliary variables
enf_flag, # set to true if the user wishes Echelon form only
frac; # off-diagonal reduction coefficient


    if not IsMatrix(arg[1]) then
       PrintTo("*errout*", "use: NormHnf( <array> [, <bool/ frac> ]);\n");
       return fail;
    fi;

    frac:=1;			
    enf_flag := false;
    if Length(arg) = 2 then
       if arg[2] = true then
	  enf_flag := true;
       elif IsRat(arg[2]) then 
	  frac:=arg[2];
       fi;
    fi;

    A := rec( T :=arg[1], m := Length(arg[1]), n := Length(arg[1][1]) );

    i := 1;
    while i <= A.m do
Info(InfoMatInt,2,"NormHnf - i:= ",i);
       h := A.n;
       j := i;
       while j <= A.m and h > i do
         t := PositionNot(A.T[j],0);
	 if t < h then
	    h := t;
	 fi;
	 j := j + 1;
       od;

       k := MatInt_BestRow(A, i, h);

       repeat
          if k <> i then # swap row i and k
             t      := A.T[i];
             A.T[i] := A.T[k];
             A.T[k] := t;
          fi;
          
          t := A.T[i][h]; # the pivot

          for j in [i+1 .. A.m] do 
	     q := RoundCycDown(A.T[j][h]/t);
	
             if q <> 0 then
	       AddRowVector(A.T[j],A.T[i],-q);
             fi;
          od;

          # place empty rows of A at the end
	  j := i + 1;
          while j <= A.m do
	     if PositionNot(A.T[j],0) <= A.n then
		j := j + 1;
	     else
                t        := A.T[j];     # swap out an empty row
                A.T[j]   := A.T[A.m];
                A.T[A.m] := t;
                A.m      := A.m - 1;
             fi;
          od;

          k := MatInt_BestRow(A, i + 1, h);
       until k = 0;
       i := i + 1;
   od;
   for i in [1 .. A.m] do
      j := PositionNot(A.T[i],0);
      if A.T[i][j] < 0 then
	 A.T[i] := -A.T[i];
      fi;
   od;

   if not enf_flag then
      for i in [A.m, A.m-1 .. 1] do
	 for j in [i+1 .. A.m] do
	    h := PositionNot(A.T[j],0);
	    t := A.T[i][h];
	    r := A.T[j][h];
	    qq:=t mod r;
	    q := (t - qq)/r;
            if qq>frac*r then q:=q+1;	fi;
	AddRowVector(A.T[i],A.T[j],-q);
	 od;
      od;
   fi;
   return A.T;      
#return same size as orig.  If only want non-zero rows return A.T{[1 .. A.m]};
end);

##############################################################################
##
#F  CaCHnf( <array> ) .................. the Hermite NF of the first parameter
##
BindGlobal("CaCHnf",function( H )

local h, i, j, k, l, m, n, q, t, v, A;

   A:=MutableCopyMat(H);
   m := Length(A);
   n := Length(A[1]);

   # skip initial all zero rows
   i := 1;
   while i <= m and PositionNot(A[i],0) > n do
      i := i + 1;
   od;

   # if i > m there is nothing left; return a null vector
   if i > m then
      return [];
   fi;
for t in [1..m] do
  if t<>i then 
   Unbind(H[t]);
  fi;
od;

#   H := [ A[i] ];
   k := 1;

   while i <= m do
      # add row i of A to H
      v := MutableCopyMat(A[i]);

      h := PositionNot(v,0);
      for j in [1 .. k] do
         if PositionNot(H[j],0) = h then
            repeat
               q := RoundCycDown(v[h]/H[j][h]);
               if q <> 0 then
	AddRowVector(v,H[j],-q);
               fi;

               if v[h] <> 0 then
                  q := RoundCycDown(H[j][h]/v[h]);
	AddRowVector(H[j],v,-q);
                  if H[j][h] = 0 then 
                     if v[h] < 0 
                        then t := -v;
                        else t :=  v;
                     fi;
                     v := H[j];
                     H[j] := t;
                  fi;
               fi;
            until v[h] = 0;
            h := PositionNot(v,0);
         elif PositionNot(H[j],0) > h then
            if v[h] < 0
               then t := -v;
               else t :=  v;
            fi;
            v := H[j];
            H[j] := t;
            h := PositionNot(v,0);
         fi;
      od;

      if h <= n then
         k := k + 1;
         if v[h] < 0 
            then H[k] := -v;
            else H[k] :=  v;
         fi;
      fi;

      if H[k][PositionNot(H[k],0)] < 0 then
         H[k] := -H[k];
      fi;
      for j in [k-1,k-2 .. 1] do
         if H[j][PositionNot(H[j],0)] < 0 then
            H[j] := -H[j];
         fi;
         for l in [j+1 .. k] do
            h := PositionNot(H[l],0);
            q := H[j][h]/H[l][h];
            if not IsInt(q) and H[j][h] < 0 then
               q := q - SignInt(H[l][h]);
            fi;
            q := Int(q);	
            AddRowVector(H[j],H[l],-q);
         od;
      od;
      i := i + 1;
   od;
for i in [Length(H)+1..m] do
  Add(H,List([1..n],x->0));
od;
   return H;
end);

#############################################################################
##
#F  LcNormHnf( <array> [,< Bool/Rat >] )  . the HNF and the transforming matrix
##
BindGlobal("LcNormHnf" , function( arg )

local  A, # a record (number or rows, no of columns, int matrix)
       P, # unimodular matrix, such that A.T = P*arg[1]
       h, # head (first nonzero) of the pivot row
 i, j, k, # local indexes
 r, t, q,qq, # auxiliary variables
enf_flag, # set to true if the user wishes Echelon form only
frac;

    if not IsMatrix(arg[1]) then
       PrintTo("*errout*", "use: NormHnf( <array> [, <Bool/Rat>]);\n");
       return fail;
    fi;

    frac:=1;
    enf_flag := false;
    if Length(arg) = 2 then
       if arg[2] = true then
	  enf_flag := true;
       elif IsRat(arg[2]) then
          frac:=arg[2];      
       fi;
    fi;

    A := rec( T := MutableCopyMat(arg[1]), m := Length(arg[1]), n := Length(arg[1][1]) );
    P := IdentityMat(A.m);

    i := 1;
    while i <= A.m do
Info(InfoMatInt,2,"LcNormHnf - i:= ",i);
       h := A.n;
       j := i;
       while j <= A.m and h > i do
         t := PositionNot(A.T[j],0);
	 if t < h then
	    h := t;
	 fi;
	 j := j + 1;
       od;

       k := MatInt_BestRow(A, i, h);

       repeat
          if k <> i then # swap row i and k
             t      := A.T[i];
             A.T[i] := A.T[k];
             A.T[k] := t;
             t := P[i]; P[i] := P[k]; P[k] := t;
          fi;
          
          t := A.T[i][h]; # the pivot

          for j in [i+1 .. A.m] do 
	     q := RoundCycDown(A.T[j][h]/t);
	
             if q <> 0 then
	AddRowVector(A.T[j],A.T[i],-q);
	AddRowVector(P[j],P[i],-q);
             fi;
          od;

          # place empty rows of A at the end
	  j := i + 1;
          while j <= A.m do
	     if PositionNot(A.T[j],0) <= A.n then
		j := j + 1;
	     else
                t        := A.T[j];     # swap out an empty row
                A.T[j]   := A.T[A.m];
                A.T[A.m] := t;
                t        := P[j];
                P[j]     := P[A.m];
                P[A.m]   := t;
                A.m      := A.m - 1;
             fi;
          od;

          k := MatInt_BestRow(A, i + 1, h);
       until k = 0;
       i := i + 1;
   od;
   for i in [1 .. A.m] do
      j := PositionNot(A.T[i],0);
      if A.T[i][j] < 0 then
	 A.T[i] := -A.T[i];
         P[i]   := -P[i];
      fi;
   od;

   if not enf_flag then
      for i in [A.m, A.m-1 .. 1] do
	 for j in [i+1 .. A.m] do
	    h := PositionNot(A.T[j],0);
	    t := A.T[i][h];
	    r := A.T[j][h];
            qq:=t mod r;
	    q := (t - qq)/r;
            if qq>frac*r then q:=q+1;fi;
	AddRowVector(A.T[i],A.T[j],-q);
	AddRowVector(P[i],P[j],-q);
	 od;
      od;
   fi;
   return rec( normal := A.T, rowtrans := P );
end);

#############################################################################
#F LcCaCHnf implements Chou & Collins strategy for computing the
## hermite normal form of an integer matrix with transforming matrix
##
BindGlobal("LcCaCHnf",  function( mat )

local A,h, i, j, k, l, m, n, q, t, v, H, P;

   A:=MutableCopyMat(mat);
   m := Length(A);
   n := Length(A[1]);
   P := IdentityMat(m);

   # skip initial all zero rows
   i := 1;
   while i <= m and PositionNot(A[i],0) > n do
      i := i + 1;
   od;

   # if i > m there is nothing left; return a null vector
   if i > m then
      return rec(normal := [], rowtrans := P);
   fi;

   if A[i][PositionNot(A[i],0)] < 0 
      then H := [ -A[i] ]; t := -P[i];
      else H := [  A[i] ]; t :=  P[i];
   fi;
   P[i] := P[1];
   P[1] := t;
   k := 1;
   i := i + 1;

   while i <= m do
      # add row i of A to H
      v := MutableCopyMat(A[i]);
      h := PositionNot(v,0);
      for j in [1 .. k] do
         if PositionNot(H[j],0) = h then
            repeat
               q := RoundCycDown(v[h]/H[j][h]);

               if q <> 0 then
	AddRowVector(v,H[j],-q);
	AddRowVector(P[i],P[j],-q);
               fi;

               if v[h] <> 0 then
                  q := RoundCycDown(H[j][h]/v[h]);
	AddRowVector(H[j],v,-q);
	AddRowVector(P[j],P[i],-q);
                   if H[j][h] = 0 then 
                     if v[h] < 0 then 
                        t := -v; v := H[j]; H[j] := t;
                        t := -P[i]; P[i] := P[j]; P[j] := t;
                     else 
                        t :=  v; v := H[j]; H[j] := t;
                        t := P[i]; P[i] := P[j]; P[j] := t;
                     fi;
                  fi;
               fi;

            until v[h] = 0;
            h := PositionNot(v,0);
         elif PositionNot(H[j],0) > h then
            if v[h] < 0 then 
               t := -v; v := H[j]; H[j] := t;
               t := -P[i]; P[i] := P[j]; P[j] := t;
            else
               t := v; v := H[j]; H[j] := t;
               t := P[i]; P[i] := P[j]; P[j] := t;
            fi;
            h := PositionNot(v,0);
         fi;
      od;

      if h <= n then
         k := k + 1;
         if v[h] < 0 then
            v    := -v;
            P[i] := -P[i];
         fi;
         if k < i then
            t := P[i]; P[i] := P[k]; P[k] := t;
         fi;
         H[k] := v;
      fi;

      if H[k][PositionNot(H[k],0)] < 0 then
         H[k] := -H[k];
         P[k] := -P[k];
      fi;
      for j in [k-1,k-2 .. 1] do
         if H[j][PositionNot(H[j],0)] < 0 then
            H[j] := -H[j];
            P[j] := -P[j];
         fi;
         for l in [j+1 .. k] do
            h := PositionNot(H[l],0);
            q := H[j][h]/H[l][h];
            if not IsInt(q) and H[j][h] < 0 then
               q := q - SignInt(H[l][h]);
            fi;
            q := Int(q);
            AddRowVector(P[j],P[l],-q);
            AddRowVector(H[j],H[l],-q);
         od;
      od;
      i := i + 1;
   od;

for i in [Length(H)+1..m] do
  Add(H,List([1..n],x->0));
od;
   return rec(normal := H, rowtrans := P);
end);


##############################################################################
##
#F  LcLLLHnf( <array> [, <rat>] ) .. the Hermite NF and the transforming matrix
##
BindGlobal("LcLLLHnf", function(arg)

local alpha, # LLL's sensitivity; 1/4 <= alpha <= 1
          c, # current column
       i, j, # indicies
    k, kmax, # indicies of current row, and the last row with GS coeff's
       m, n, # the number of rows and columns in the matrix
       q, t, # temporary variables
          s, # counts the rows of the quotient space
    BB, mmu, # temporary variables for mu's and B's
   b, mu, B, # matrix being reduced, GS coefficients and the length vec
        RED, # reduction procedure
          P; # final matrix and the transforming matrix E = P*A

   RED := function( l )
      if b[l][c] <> 0 then
         q := RoundCycDown(b[k][c]/b[l][c]);
      else
         q := RoundCycDown(mu[k][l]);
      fi;

      if q <> 0 then # \ldots and subtract $q b_l$ from $b_k$;

        AddRowVector(b[k],b[l],-q);
        AddRowVector(P[k],P[l],-q);

         # adjust 'mu', \ldots
         mu[k][l] := mu[k][l] - q;
         for i in [1 .. l-1 ] do  
            if mu[l][i] <> 0 then
               mu[k][i] := mu[k][i] - q * mu[l][i];
            fi;
         od;
      fi;
   end;

   if Length(arg) < 1 or Length(arg) > 2 then
      PrintTo("*errout*", "use: LLLHnf(<array> [, <sensitivity> ]);\n");
   fi;

   b := MutableCopyMat( arg[1] );
   m := Length(b);
   n := Length(b[1]);
   P := IdentityMat(m);

   if IsBound(arg[2]) and IsRat(arg[2]) then
      alpha := arg[2];
      if alpha < 1/4 or alpha > 1 then
         PrintTo("*errout*", "Sensitivity error. Using the default\n");
         alpha := 3/4;
      fi;
   else
      alpha := 3/4;
   fi;

   # sort rows according the the position of the leading nonzero
   SortParallel(b, P, function(x, y) return PositionNot(x,0) > PositionNot(y,0); end);

   s := 0; # counts the rows of quotient space

   # skip all rows that are already in the echelon normal form
   while PositionNot(b[m-s],0) < PositionNot(b[m-s-1],0) do
      s := s + 1;
   od;

   c    := PositionNot(b[m-s],0);
   kmax := 1;
   B    := [ b[1]*b[1] + P[1]*P[1] ];
   mu   := [ [ ] ];

   while c <= n do
      # step 1, initialize
  

      k := 2;
      while k <= m - s do
         # step 2, incremental Gram-Schmidt
         if k > kmax then
            kmax  := k;
            mu[k] := [];
            for j in [1 .. k-1] do
               mmu := b[k]*b[j] + P[k]*P[j];
               for i in [1 .. j-1] do
                  mmu := mmu - mu[j][i]*mu[k][i];
               od;
               mu[k][j] := mmu;
            od;
            for j in [1 .. k-1] do
               mu[k][j] := mu[k][j]/B[j];
            od;

            B[k] := b[k]*b[k] + P[k]*P[k];
            for j in [1 .. k-1] do
               B[k] := B[k] - mu[k][j]^2*B[j];
            od;
         fi;

         # step 3, test LLL condition

         # substep 3.1, RED(k, k-1)
         RED(k-1);

         while (AbsInt(b[k-1][c]) > AbsInt(b[k][c])) or (b[k-1][c] = b[k][c] and B[k] < (alpha - mu[k][k-1]^2 ) * B[k-1]) do
            # algorithm SWAP(k)
            t := b[k]; b[k] := b[k-1]; b[k-1] := t;
            t := P[k]; P[k] := P[k-1]; P[k-1] := t;
            for j in [1 .. k-2] do
               t := mu[k][j]; mu[k][j] := mu[k-1][j]; mu[k-1][j] := t;
            od;

            mmu        := mu[k][k-1];
            BB         := B[k] + mmu*mmu*B[k-1];
            q          := B[k-1]/BB;

            mu[k][k-1] :=  mmu * q;
            B[k]       := B[k] * q;
            B[k-1]     := BB;

            for i in [k+1 .. kmax] do
               t          := mu[i][k];
               mu[i][k]   := mu[i][k-1] - mmu*t;
               mu[i][k-1] := t + mu[k][k-1]*mu[i][k];
            od;

            # k := max(2, k-1)
            if k > 2 then
               k := k - 1;
            fi;

            # execute subalgorithm RED(k, k-1)
            RED(k-1);
         od;

         # execute subalgorithm RED for i = k-2, k-3, ...1
         for i in [k-2, k-3 .. 1] do
            RED(i);
         od;

         k := k + 1;
         # step 4, Finished?
      od;
     

      s    := s + 1;
      kmax := kmax - 1;

      c := n+1; 
      for i in [1 .. m - s] do
         c := Minimum(c, PositionNot(b[i],0));
      od;
   od;

   s := m - s + 1;
   # rows s .. m form the quotient space
   # rows 1 .. s - 1 for the null space

   # use the remaining rows to create the Hermite normal form of b
   if b[s][PositionNot(b[s],0)] < 0 then
      b[s] := -b[s];
      P[s] := -P[s];
   fi;
   for i in [s + 1 .. m] do
      if b[i][PositionNot(b[i],0)] < 0 then
         b[i] := -b[i];
         P[i] := -P[i];
      fi;
      for j in [i-1, i-2 .. s] do
         k := PositionNot(b[j],0);
         q := b[i][k]/b[j][k];
         if not IsInt(q) then
            if b[i][k] < 0 
               then q := Int(q) - SignInt(b[j][k]);
               else q := Int(q);
            fi;
         fi;
       AddRowVector(b[i],b[j],-q);
       AddRowVector(P[i],P[j],-q);
      od;
   od;

   # use the null space to reduce the quotient space
   # for each vector in the quotient space compute its Gram-Schmidt
   # orthogonalization and use procedure Proper (B.Vallee) to bring
   # it closer to the shortest vector

   for k in [s .. m] do
      # Gram Schmidt for the k-th vector
      mu[k] := [ ];
      for j in [1 .. s-1] do
         mmu := P[k]*P[j];
         for i in [1 .. j-1] do
            mmu := mmu - mu[j][i]*mu[k][i];
         od;
         mu[k][j] := mmu;
      od;
      for j in [1 .. s-1] do
         mu[k][j] := mu[k][j]/B[j];
      od;

      for j in [s-1, s-2 .. 1] do
         # RED(j), however we want to avoid testing column c
         q := RoundCycDown(mu[k][j]);
         if q <> 0 then       

        AddRowVector(P[k],P[j],-q);
            for i in [1 .. j-1] do
               if mu[j][i] <> 0 then
                  mu[k][i] := mu[k][i] - q*mu[j][i];
               fi;
            od;
         fi;
      od;
   od;
b:=Reversed(b{[s .. m]});
for k in [Length(b)+1..m] do
  Add(b,List([1..n],x->0));
od;

 return rec( normal := b, rowtrans := Reversed(P));

 #  return rec( normal := Reversed(b{[s .. m]}), rowtrans := Reversed(P));
end);

#############################################################################
##
##  start of smith normal form  code     
##

#############################################################################
##
#F  MatMax ( <array> )  . . . . . returns the value of the element with the
##                                largest absolute value in matrix A
BindGlobal("MatMax", function(A, f)

local i, j, e, x;

   x := 0;
   for i in [f .. Length(A)] do
      for e in A[i] do
	 if e < 0 then e := -1*e; fi;
	 if e > x then x := e;    fi;
      od;
   od;
   return x;
end);


##############################################################################
##
#F  NormDiagonalize( <array> )  . . . .  a norm driven integer matrix diagonalization  algorithm
##
BindGlobal("NormDiagonalize", function( S )

local t, # a temporary variable, for row swaps and such
    RNm, # row norms
    CNm, # column norms
   m, n, # the number or rows and columns of S
  i,j,k, # indices
      d, # the index of the current diagonal entry
      q, # quotient of two entries, most of the time
    RId, # index of the "best" row
    CId, # index of the "best" column
    CMn, # smallest so far column norm
    RMn, # smallest so far row norm
   done; # flag, set to true if the d-th diagonal element is computed

   m   := Length(S);
   n   := Length(S[1]);

   RNm := List(S, x -> x*x);
   CNm := [ ];
   for k in [1 .. n] do
      CNm[k] := S{[1 .. m]}[k]*S{[1 .. m]}[k];
   od;
   d := 1;

   repeat
      # pivot selection
      # first we sort rows d .. m. Zero rows are the heaviest
      # for other rows the standard Euclidean Length is used
      # this is a simple implementation that uses Insertion Sort
      for j in [d+1 .. m] do
         if RNm[j] <> 0 then
            t := S[j]; q := RNm[j]; k := j - 1;
            while k >= d and (RNm[k] = 0 or q < RNm[k]) do
               RNm[k+1] := RNm[k];
               S[k+1]   := S[k];
               k        := k-1;
            od;
            RNm[k+1] := q;
           S[k+1]   := t;
         fi;
      od;
  
      # eliminate all zero rows, by decreasing m suitably
      while RNm[m] = 0 do
         m := m - 1;
      od;
   
      if d = m then
         S[d][d] := Gcd(S[d]{[d .. n]});
         # clean out the last row.
         S[d]{[d+1..n]} := [d+1..n] * 0;
         return;
      elif d > m then
         return;
      fi;

      j := d; k := d;
      while S[j][k] = 0 do
         j := j + 1;
         if j > m then
            j := d;
            k := k + 1;
         fi;
      od;

      CMn := RNm[j]*CNm[k];
      CId := k; RId := j;
      k   := k + 1;
      while k <= n do
         j := d;
         while j <= m and S[j][k] = 0 do
            j := j + 1;
         od;
         if j <= m then
            RMn := RNm[j]*CNm[k];
            if RMn < CMn then
               CId := k; RId := j; CMn := RMn;
            fi;
         fi;
         k := k + 1;
      od;

      # swap rows and columns so that pivot becomes the d-th,d-th element
      t := S[d]; S[d] := S[RId]; S[RId] := t;
      if CId <> d then
         for k in [d .. m] do
            t := S[k][d]; S[k][d] := S[k][CId]; S[k][CId] := t;
         od;
      fi;

      # pivot in place; proceed to zero the d-th row and column
Info(InfoMatInt,3,"NormDiagonalize - working on column ",d);
      done := false;
      repeat
         # row operations first 
         for k in [d+1 .. m] do
            q := RoundCycDown(S[k][d]/S[d][d]);
            if q <> 0 then
	AddRowVector(S[k],S[d],-q);
            fi;
         od;

         # column operations follow
         
         for k in [d+1 .. n] do
            q := RoundCycDown(S[d][k]/S[d][d]);
            if q <> 0 then 
              # subtract column d from column k, q times
              for j in [d .. m] do
                S[j][k] := S[j][k] - q*S[j][d];
              od;
            fi;
         od;

         # recompute norms, as we need to choose another pivot
         RNm{[d .. m]} := List(S{[d .. m]}, x -> x*x);
         for k in [d .. n] do
            CNm[k] := S{[d .. m]}[k]*S{[d .. m]}[k];
         od;

         # find the best pivot in the d-th row
         CMn := 0;
         for k in [d+1 .. n] do
            if S[d][k] <> 0 then
               if CMn = 0 or CNm[k] < CMn then
                  CId := k; CMn := CNm[k];
               fi;
             fi;
         od;
         # find the best pivot in the d-th column
         RMn := 0;
         for k in [d+1 .. m] do
            if S[k][d] <> 0 then
               if RMn = 0 or RNm[k] < RMn then
                  RId := k; RMn := RNm[k];
               fi;
            fi;
         od;
   
         if CMn = 0 then
            if RMn = 0 then
               done := true;
            else # swap row RId and d
               t := S[d]; S[d] := S[RId]; S[RId] := t;
            fi;
         else
            if RMn = 0 then # swap column CId and d
               for k in [d .. m] do
                  t := S[k][d]; S[k][d] := S[k][CId]; S[k][CId] := t;
               od;
            else
               if RNm[d]*CMn < CNm[d]*RMn then
                  for k in [d .. m] do
                     t := S[k][d]; S[k][d] := S[k][CId]; S[k][CId] := t;
                  od;
               else
                  t := S[d]; S[d] := S[RId]; S[RId] := t;
               fi;
            fi;
         fi;
      until done;
      if S[d][d] < 0 then
         S[d][d] := -S[d][d];
      fi;
      
      d := d + 1;
   until d > m;
end);

##############################################################################
##
#F  DiagToSNF( <array> )  . . . .  collects diagonal entries and ensures their
##                                divisibility cond for the diagonal matrix S
BindGlobal("DiagToSNF", function( S )

local g, i, L, n,z;

   L := [ ];z:=0;
   for i in [1 .. Minimum(Length(S), Length(S[1])) ] do
     if S[i][i] <> 0 then
        Add(L, AbsInt(S[i][i]));
   else z:=z+1;
     fi;
   od;
   n := Length(L);
   i := 2;
   while i <= n do
      g := L[i];
      while i > 1 and g < L[i-1] do
         L[i] := L[i-1];
         i    := i - 1;
      od;
      L[i] := g;
      Info(InfoMatInt,3,"DiagToSNF: ",i);
      Info(InfoMatInt,4,"DiagToSNF: ",L);
      if i = 1 then i := 2; fi;
      if L[i] mod L[i-1] <> 0 then
         g      := Gcd(L[i], L[i-1]);
         L[i]   := L[i]*L[i-1]/g;
         i      := i - 1;
         while i > 1 and g < L[i-1] do
            L[i] := L[i-1];
            i    := i - 1;
         od;
         L[i] := g;
      Info(InfoMatInt,3,"DiagToSNF: ",i);
      Info(InfoMatInt,4,"DiagToSNF: ",L);
      fi;
      if i = 1 or L[i] mod L[i-1] = 0 then
          i := i + 1;
      fi;
   od;
L{[n+1..n+z]}:=List([1..z],x->0);
   return L;
end);

##############################################################################
##
#F  NormSnf( <array> )  . . . . . . Computes the Smith Normal form of matrix A
##
BindGlobal("NormSnf", function( S )

    local  M,  # temp matrix
           n,  # length of leading diagonal
           m;  # counter
    
   if not IsMatrix(S) then
      PrintTo("*errout*", "Use: NormSnf( <matrix> );\n");
      return fail;
  fi;
  
  n := Minimum(Length(S), Length(S[1]));
 
   M:=NullMat(Length(S),Length(S[1]));
   NormDiagonalize( S );
   M:=DiagToSNF(S);
   for m in [1..Length(M)] do
     S[m][m]:=M[m];
   od;
   for m in [Length(M)+1..n] do
     S[m][m]:=0;
   od;  
   return  S;
end);

##############################################################################
##
#F  CaCDiagonalize( <array> )  . . . . . diagonalizes a matrix using Chou & Collins
##
BindGlobal("CaCDiagonalize", function( S )

local h, # point to the first nonzero in the current row
      H, # heads of vectors, i.e., indices of the leading nonzeros
  i,j,k, # as usually, indices
   m, n, # the number of rows and columns in S
      q, # usually quotient for row operations
      t, # a temporary variable for all sorts of things
  modfd, # indicates whether the column phase is necessary
  dirty; # indicates whether any upward row operations took place

   m := Length(S);
   n := Length(S[1]);

   # it is generally recommended to sort matrix S before
   # executing Chou and Collins' algorithm. It is commented
   # out, as the sorting has rather bad effect if S is already
   # in partial hermite normal form (sorting jumbles things up)
   # however in general, if S hasn't been touched before, it
   # is highly beneficial to sort the matrix. (Maybe one could
   # sort it so that it resembles HNF as much as possible, and
   # only rows that have leading nonzeros in the same column
   # would be sorted according to their Euclidean length

   # Sort(S, function(x, y) return x*x < y*y; end);

   dirty := false;
   repeat
      H := [ ]; # clear Heads array
      # get rid of initial empty rows
      i := 1;
      while ForAll(S[i], e -> e = 0) do
         i := i + 1;

      od;
      if i > 1 then
         S := S{[i .. m]};
         m := m - i + 1;
      fi;

      dirty := not dirty;
      i := 1;
      Add(H, PositionNot(S[1],0));

      while i < m do
         i := i + 1;
         # introduce the i-th row of S to the partial SNF(S)

         h := PositionNot(S[i],0);
         modfd := false; # set to true if columns require modifications
         for j in [1 .. i-1] do
            if H[j] = h then
               repeat
                  q := RoundCycDown(S[i][h]/S[j][h]);
                  if q <> 0 then
	AddRowVector(S[i],S[j],-q);
                  fi;

                  if S[i][h] <> 0 then
                     modfd := true;
                     q := RoundCycDown(S[j][h]/S[i][h]);
	   AddRowVector(S[j],S[i],-q);
                     if S[j][h] = 0 then 
                        if S[i][h] < 0 
                           then t := -S[i];
                           else t :=  S[i];
                        fi;
                        S[i] := S[j];
                        S[j] := t;
                     fi;
                  fi;
               until S[i][h] = 0;
               h := PositionNot(S[i],0);
            elif PositionNot(S[j],0) > h then
               if S[i][h] < 0
                  then t := -S[i];
                  else t :=  S[i];
               fi;
               S[i] := S[j];
               S[j] := t;
               t    := H[j];
               H[j] := h;
               h    := t;
               modfd:= true;
            fi;
         od;

         dirty := dirty or modfd;
         if h <= n then
            Add(H, h);
            modfd := true;
         else
            S{[i .. m-1]} := S{[i+1 .. m]};
            Unbind(S[m]);
            m := m - 1;
            i := i - 1;
         fi;

         if modfd then
            if S[i][H[i]] < 0 then
               S[i] := -S[i];
            fi;
            for j in [i-1,i-2 .. 1] do
               if S[j][H[j]] < 0 then
                  S[j] := -S[j];
               fi;
               for k in [j+1 .. i] do
                  h := H[k];
                  q := S[j][h]/S[k][h];
                  if not IsInt(q) and S[j][h] < 0 then
                     q := q - SignInt(S[k][h]);
                  fi;
                  q := Int(q);
                  if q <> 0 then
	AddRowVector(S[j],S[k],-q);
                     dirty := true;
                  fi;
               od;
            od;
         fi;
        
      od;
      # transpose S and swap m and n
      S := MutableTransposedMat(S);
      t := m; m := n; n := t;
   until not dirty;
   return S;
end);

##############################################################################
##
#F  CaCSnf( <array> )  . . . . . . . Computes the Smith Normal form of matrix A
##
BindGlobal("CaCSnf", function( S )

local  m,M,N;# temporary variable
  
   if not IsMatrix(S) then
      PrintTo("*errout*", "Use: CaCSnf( <matrix> );\n");
      return fail;
   fi;

   N:=NullMat(Length(S),Length(S[1]));

   CaCDiagonalize(S);
   M:=DiagToSNF(S);
  
   for m in [1..Length(M)] do
     N[m][m]:=M[m];
      S[m]:=N[m];
  od;
   return  S ;
end);

#############################################################################
##
#F  IdTransReturn(mat)  . . . . . . . return relevant identity record for mat
##
IdTransReturn:=function(arg)

local n,r;

if Length(arg[1])>0 and IsList(arg[1][1]) then n:=Length(arg[1][1]);else n:=0;fi;

r:=arg[1];

if (IsBound(arg[2]) and arg[2]) or (IsBound(arg[3]) and arg[3]) then
r:=         rec(
	normal:=arg[1]
	);

  if arg[2] then 
      r.rowtrans:=IdentityMat(Length(arg[1]));
  fi;


  if IsBound(arg[3]) and arg[3] then
     r.coltrans:=IdentityMat(n);
  fi;

fi;
return r;

end;

##############################################################################
##
#F  LcNormSnf( <array> )  . . . . . Computes the Smith Normal form of matrix A
##
LcNormSnf := function( arg )
   PrintTo("*errout*", "This function (LcNormSnf) is yet to be implemented. Sorry.\n");
   return fail;
end;

##############################################################################
##
#F  LcCaCSnf( <array> )  . . . . . Computes the Smith Normal form of matrix A
##
LcCaCSnf := function( arg )
   PrintTo("*errout*", "This function (LcCaCSnf) is yet to be implemented. Sorry.\n");
   return fail;
end;

##############################################################################
##
#F  LcLLLSnf( <array> )  . . . . . Computes the Smith Normal form of matrix A
##
LcLLLSnf := function( arg )
   PrintTo("*errout*", "This function (LcLLLSnf) is yet to be implemented. Sorry.\n");
   return fail;
end;


#############################################################################
##
#F  HNFNormDriven(<mat>[,<trans>[,<reduction>]])
#F  HNFChouCollins(<mat>[,<trans>[,<reduction>]])
#F  HNFLLLDriven(<mat>[,<trans>[,<reduction>]])
##
##  These operations have been superceded for most purposes by
##  `NormalFormIntMat' (see~"NormalFormIntMat")
##  which should in most cases be faster than any
##  of them, and produce smaller transforming matrix entries.
##
##  These operations compute the Hermite normal form of a matrix with
##  integer entries, using the strategy specified in the name. If no optional 
##  argument <trans> is given <mat> must be a  mutable matrix which will 
##  be changed by the algorithm.
##
##  If the optional integer argument <trans> is given, it determines which
##  transformation matrices will be computed. It is interpreted binary as
##  for the Smith normal form (see "SNFNormDriven") but note that only 
##  row operations are performed. The function then returns a  record with 
##  components as specified for the Smith normal form.
##
##  If the further optional argument <reduction> (a rational in the range
##  `[0..1]')
##  is given, it specifies which representatives
##  are used for entries modulo $c$ when cleaning column entries to the top. 
##  Off-diagonal entries are reduced to the range
##  \quad$\lfloor c(r-1)\rfloor\ldots \lfloor cr\rfloor$,
##  where $r$ is the value of <reduction>.
##  If <reduction> is not given, a value of 1 is assumed.
##  Note, if <trans> is given the operation does not change <mat>.
##
##  gap> m:=[ [ 14, 20 ], [ 6, 9 ] ];;
##  gap> HNFNormDriven(m);
##  [ [ 2, 2 ], [ 0, 3 ] ]
##  gap> m;
##  [ [ 2, 2 ], [ 0, 3 ] ]
##
##  gap> m:=[[14,20],[6,9]];; 
##  gap> HNFNormDriven(m,1);
##  rec( normal := [ [ 2, 2 ], [ 0, 3 ] ], rowtrans := [ [ 1, -2 ], [ -3, 7 ] ] )
##  gap> m;
##  [ [ 14, 20 ], [ 6, 9 ] ]
##  gap> last2.rowtrans*m;
##  [ [ 2, 2 ], [ 0, 3 ] ]
##
BindGlobal("HNFNormDriven", function(arg)

if Flat(arg[1])=[]  and ForAll(arg[1],x->Length(x)=Length(arg[1][1])) then return CallFuncList(IdTransReturn,[arg[1],IsBound(arg[2])]); fi;

if not IsMatrix(arg[1]) then 
  PrintTo("*errout*", "matrix required as argument\n");
   return fail;
fi;

if ForAll( Flat(arg[1]) , x -> x = 0 ) then return CallFuncList(IdTransReturn,[arg[1],IsBound(arg[2])]); fi;

if Length(arg)=1 then  return CallFuncList(NormHnf,arg);fi;
if Length(arg)=2 then 
if arg[2]=1 then return CallFuncList(LcNormHnf,arg) ;
  else 
  PrintTo("*errout*", "Transformation matrix routine only  implemented for trans=1 for this routine at present. Sorry.\n");
   return fail;
  fi;
fi;

if Length(arg)>2 then
  if arg[2]=1 then return LcNormHnf(arg[1],arg[3]);
  elif arg[2]=0 then return NormHnf(arg[1],arg[3]);
  else
  PrintTo("*errout*", "Transformation matrix routine only  implemented for trans=1 for this routine at present. Sorry.\n");
   return fail;
  fi;
fi;
end);

#############################################################################
##
#F  HNFChouCollins(<mat>[,<trans>[,<reduction>]])
##
BindGlobal("HNFChouCollins", function(arg)
if Flat(arg[1])=[]  and ForAll(arg[1],x->Length(x)=Length(arg[1][1])) then return CallFuncList(IdTransReturn,[arg[1],IsBound(arg[2])]); fi;

if not IsMatrix(arg[1]) then 
  PrintTo("*errout*", "matrix required as argument\n");
   return fail;
fi;

if ForAll( Flat(arg[1]) , x -> x = 0 ) then return CallFuncList(IdTransReturn,[arg[1],IsBound(arg[2])]); fi;
if Length(arg)=1 then  return CaCHnf(arg[1]);fi;
if Length(arg)=2 then 
  if arg[2]=1 then return LcCaCHnf(arg[1]);
  elif arg[2]=0 then return CaCHnf(arg[1]);
  else 
  PrintTo("*errout*", "Transformation matrix routine only  implemented for trans=1 for this routine at present. Sorry.\n");
   return fail;
  fi;
fi;

if Length(arg)>2 then
PrintTo("*errout*", "Different Reduction routines  not yet implemented for this routine. Try the Norm driven routine.\n");
   return fail;fi;
end);

#############################################################################
##
#F  HNFLLLDriven(<mat>[,<trans>[,<reduction>]])
##
BindGlobal("HNFLLLDriven", function(arg)
local i,t;
if Flat(arg[1])=[]   and ForAll(arg[1],x->Length(x)=Length(arg[1][1])) then return CallFuncList(IdTransReturn,[arg[1],IsBound(arg[2])]); fi;
if not IsMatrix(arg[1]) then 
  PrintTo("*errout*", "matrix required as argument\n");
   return fail;
fi;

if ForAll( Flat(arg[1]) , x -> x = 0 ) then return CallFuncList(IdTransReturn,[arg[1],IsBound(arg[2])]); fi;
if Length(arg)=1 then  
t:= LcLLLHnf(arg[1]).normal;
for i in [1..Length(arg[1])] do
arg[1][i]:=t[i];
od;
return t; fi;

if Length(arg)=2 then
  if arg[2]=1 then return LcLLLHnf(arg[1]); 
  else 
  PrintTo("*errout*", "Transformation matrix routine only  implemented for trans=1 for this routine at present. Sorry.\n");
   return fail;
  fi;
fi;

if Length(arg)>2 then
PrintTo("*errout*", "Different Reduction routines  not yet  implemented for this routine.  Try the Norm driven routine. Sorry.\n");
   return fail;
fi;
end);


#############################################################################
##
#O  SNFNormDriven(<mat>[,<trans>])
#O  SNFChouCollins(<mat>[,<trans>])
##
##  These operations have been superceded for most purposes by
##  `NormalFormIntMat' (see~"NormalFormIntMat") which should in most cases
##  be faster than any
##  of them, and produce smaller transforming matrix entries.
##
##  These operations compute the Smith normal form of a matrix with
##  integer entries, using the strategy specified in the name. If no optional 
##  argument <trans> is given <mat> must be a mutable matrix which will 
##  be changed by the algorithm.
##
##  If the optional integer argument <trans> is given, it determines which
##  transformation matrices will be computed. It is interpreted binary as:
##  \beginlist
##  \item{1} Row transformations.
##
##  \item{2} Inverse row transformations.
##
##  \item{4} Column transformations.
##
##  \item{8} Inverse column transformations.
##  \endlist
##
##  The operation then returns a record with the component `normal' containing 
##   the  computed normal form and optional components `rowtrans', `rowinverse',
##  `coltrans', and `invcoltrans' which hold the computed transformation
##  matrices. Note, if <trans> is given the operation does not change <mat>.
##
##  This functionality is still to be fully implemented for SNF with transforms.
##   However, `NormalFormIntMat' performs this calculation.
##
BindGlobal("SNFNormDriven", function(arg)
if Flat(arg[1])=[]  and ForAll(arg[1],x->Length(x)=Length(arg[1][1])) then return CallFuncList(IdTransReturn,[arg[1],IsBound(arg[2]),IsBound(arg[2])]); fi;

if not IsMatrix(arg[1]) then 
  PrintTo("*errout*", "matrix required as argument\n");
   return fail;
fi;

if  ForAll( Flat(arg[1]) , x -> x = 0 ) then return CallFuncList(IdTransReturn,[arg[1],IsBound(arg[2]),IsBound(arg[2])]); fi;
if Length(arg)=1 then  return NormSnf(arg[1]);fi;
if Length(arg)=2 then return LcNormSnf(arg);fi;
end);

#############################################################################
##
#F  SNFChouCollins(<mat>[,<trans>])
##
BindGlobal("SNFChouCollins", function(arg)
if Flat(arg[1])=[]  and ForAll(arg[1],x->Length(x)=Length(arg[1][1])) then return CallFuncList(IdTransReturn,[arg[1],IsBound(arg[2]),IsBound(arg[2])]); fi;

if not IsMatrix(arg[1]) then 
  PrintTo("*errout*", "matrix required as argument\n");
   return fail;
fi;

if ForAll( Flat(arg[1]) , x -> x = 0 ) then return CallFuncList(IdTransReturn,[arg[1],IsBound(arg[2]),IsBound(arg[2])]); fi;
 if Length(arg)=1 then  return CallFuncList(CaCSnf,[arg[1]]);fi;
if Length(arg)=2 then return LcCaCSnf(arg);fi;
end);