/usr/share/gap/lib/onecohom.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 | #############################################################################
##
#W onecohom.gi GAP library Frank Celler
## Alexander Hulpke
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci.,University of St Andrews,Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the methods for operations for the 1-Cohomology
##
#############################################################################
##
#F TriangulizedGeneratorsByMatrix(<gens>,<M>,<F>)
## triangulize and make base
##
InstallGlobalFunction(TriangulizedGeneratorsByMatrix,function (gens,M,F)
local m, n, i, j, k, a, r,z, z0;
gens:=ShallowCopy(gens);
M:=ShallowCopy(M);
# get the size of the matrix
m:=Length(M);
n:=Length(M[1]);
# run through all columns of the matrix
z0:=Zero(F);
i :=0;
for k in [1 .. n] do
j:=i+1;
while j<= m and M[j][k] = z0 do
j:=j+1;
od;
if j<= m then
i:=i+1;
z:=M[j][k]^-1;
a:=gens[j]; gens[j]:=gens[i]; gens[i]:=a^IntFFE(z);
r:=M[j]; M[j]:=M[i]; M[i]:=z*r;
for j in [1 .. m] do
z:=M[j][k];
if i<>j and z<>z0 then
gens[j]:=gens[j] / (gens[i]^IntFFE(z));
M[j]:=M[j] - z*M[i];
fi;
od;
fi;
od;
n:=[[],[]];
r:=0*M[1];
for i in [1 .. m] do
if M[i]<>r then
Add(n[1],gens[i]);
Add(n[2],M[i]);
fi;
od;
return n;
end);
## For all following functions,the group is given as second argument to
## allow dispatching after the group type
OCAddGeneratorsPcgs:=function(ocr,group)
local gens;
if not IsBound(ocr.pcgs) then
ocr.pcgs:=ParentPcgs(NumeratorOfModuloPcgs(ocr.modulePcgs));
fi;
Info(InfoCoh,2,"OCAddGenerators2: using standard generators");
if IsBound(ocr.pPrimeSet) then
Info(InfoCoh,3,"OCAddGenerators2: p prime set is given ",
"for standard generating set");
fi;
if IsBound(ocr.smallGeneratingSet) then
Info(InfoCoh,3,"OCAddGenerators2: small generating set is given ",
"for standard generating set");
fi;
if not IsBound(ocr.generators) then
Info(InfoCoh,2,"setting new generators");
ocr.generators:=InducedPcgs(ocr.pcgs,group)
mod NumeratorOfModuloPcgs(ocr.modulePcgs);
fi;
Info(InfoCoh,2,"OCAddGenerators2: ",Length(ocr.generators),
" generators");
if IsBound(ocr.normalIn) then
if not ForAll(ocr.module,i->i in ocr.normalIn) then
gens:=InducedPcgs(ocr.pcgs,ocr.normalIn);
else
gens:=AsList(InducedPcgs(ocr.pcgs,ocr.normalIn) mod
ocr.modulePcgs);
fi;
ocr.normalGenerators:=gens;
fi;
end;
OCAddGeneratorsGeneral:=function(ocr)
local hom,fg,fpi,fpg,nt,fam;
if IsBound(ocr.normalIn) then
Error("normalizing subgroup not allowed in general case");
fi;
if IsBound(ocr.pPrimeSet) then
Error("p prime set given in general case");
fi;
if IsBound(ocr.factorpres) then
# see if factor presentation is known already
return;
fi;
nt:=SubgroupNC(ocr.group,NumeratorOfModuloPcgs(ocr.modulePcgs));
if IsBound(ocr.factorfphom) and not IsBound(ocr.generators) then
Info(InfoCoh,1,"using provided presentation");
hom:=ocr.factorfphom;
fpg:=FreeGeneratorsOfFpGroup(Range(hom));
ocr.factorpres:=[fpg,RelatorsOfFpGroup(Range(hom))];
ocr.generators:=List(GeneratorsOfGroup(Range(hom)),
i->PreImagesRepresentative(hom,i));
else
if (Index(ocr.group,nt)>Size(nt)^3
or Index(ocr.group,nt)>500000) and not
KnownNaturalHomomorphismsPool(ocr.group,nt) then
# computing a factor representation may be too hard
hom:=false;
else
hom:=NaturalHomomorphismByNormalSubgroup(ocr.group,nt);
fg:=Image(hom,ocr.group);
ocr.factormap:=hom;
fi;
if hom<>false and (IsSolvableGroup(Range(hom))
or (IsPermGroup(Range(hom)) and Length(MovedPoints(Range(hom)))
<Length(MovedPoints(ocr.group))*2)
or (HasIsomorphismFpGroup(fg) and not IsBound(ocr.generators)))
then
Info(InfoCoh,1,"using factor representation");
if IsBound(ocr.generators) then
fpi:=IsomorphismFpGroupByGeneratorsNC(fg,List(ocr.generators,
i->Image(hom,i)),"f");
else
fpi:=IsomorphismFpGroup(fg:noshort:=true);
fi;
fpg:=FreeGeneratorsOfFpGroup(Range(fpi));
ocr.factorpres:=[fpg,RelatorsOfFpGroup(Range(fpi)),
List(MappingGeneratorsImages(fpi)[2],
i->PreImagesRepresentative(fpi,i))];
if not IsBound(ocr.generators) then
ocr.generators:=List(ocr.factorpres[3],i->PreImagesRepresentative(hom,i));
fi;
elif IsBound(ocr.generators) then
Info(InfoCoh,1,"using group representation");
fpi:=IsomorphismFpGroupByGeneratorsNC(ocr.group,ocr.generators,"f");
# else # old code
# fpi:=IsomorphismFpGroup(ocr.group:noshort:=true);
# ocr.generators:=List(MappingGeneratorsImages(fpi)[2],
# i->PreImagesRepresentative(fpi,i));
# fi;
fpg:=FreeGeneratorsOfFpGroup(Range(fpi));
ocr.factorpres:=[fpg,RelatorsOfFpGroup(Range(fpi))];
# add generating system for ocr.module to obtain a presentation of the
# factor group
fpi:= GroupHomomorphismByImagesNC(ocr.group,
FreeGroupOfFpGroup(Range(fpi)),
ocr.generators,fpg);
ocr.factorpres[2]:=Union(ocr.factorpres[2],
List(NumeratorOfModuloPcgs(ocr.modulePcgs),
i->ImagesRepresentative(fpi,i:noshort:=true)));
else
# build suitable pres for factor
Info(InfoCoh,1,"using group rep and series for factor");
fpi:=IsomorphismFpGroupByChiefSeriesFactor(ocr.group,"f",nt);
fam:=FamilyObj(One(Range(fpi)));
fpg:=FreeGeneratorsOfFpGroup(Range(fpi));
ocr.generators:=List(fpg,i->PreImagesRepresentative(fpi,
ElementOfFpGroup(fam,i)));
ocr.factorpres:=[fpg,RelatorsOfFpGroup(Range(fpi)),ocr.generators];
fi;
fi;
Info(InfoCoh,1,Length(ocr.generators)," generators,",
Length(ocr.factorpres[2])," relators");
end;
#############################################################################
##
#F OCAddGenerators(<ocr>,<group>) . . . . . . . . . add generators,local
##
InstallGlobalFunction(OCAddGenerators,function(ocr,G)
if IsBound(ocr.generatorsAdded) then
return; # avoid duplicate calls
fi;
ocr.generatorsAdded:=true;
# though using the method selection would be nicer,here the decisions are
# that involved we actually have to use a dispatcher
if IsBound(ocr.inPcComplement) # the pc complement routines interface
# directly,giving generators that form an
# pcgs
or ((IsPcGroup(G) or
(IsBound(ocr.generators) and IsGeneralPcgs(ocr.generators)))
and not IsBound(ocr.factorpres)) then
OCAddGeneratorsPcgs(ocr,G);
else
OCAddGeneratorsGeneral(ocr);
fi;
end);
#############################################################################
##
#F OCAddMatrices(<ocr>,<G>) . . . . . . . . add operation matrices,local
##
InstallGlobalFunction(OCAddMatrices,function(ocr,G)
local i,base;
# If<ocr>already has a record component 'matrices',nothing is done.
if IsBound(ocr.matrices) then
return;
fi;
Info(InfoCoh,2,"OCAddMatrices: computes linear operations");
# Construct field and log table.
base:=ocr.modulePcgs;
if Length(base)=0 then
Info(InfoCoh,2,"OCAddMatrices: module is trivial");
return;
else
ocr.char :=RelativeOrderOfPcElement(base,base[1]);
ocr.field:=GF(ocr.char);
ocr.one:=One(ocr.field);
ocr.zero:=Zero(ocr.field);
# logTable is used by 'NextCentralCO'
ocr.logTable:=[];
for i in [1 .. ocr.char - 1] do
ocr.logTable[LogFFE(i*One(ocr.field),
PrimitiveRoot(ocr.field))+1]:=i;
od;
fi;
# 'moduleMap' is constructed using 'Exponents'.
ocr.moduleMap:=function(x)
x:=ExponentsOfPcElement(ocr.modulePcgs,x)* ocr.one;
ConvertToVectorRep(x,ocr.field);
return x;
end;
ocr.matrices:=LinearOperationLayer(ocr.generators,ocr.modulePcgs);
ocr.identityMatrix:=ImmutableMatrix(ocr.field,
IdentityMat(Length(ocr.modulePcgs),ocr.field));
# List(ocr.matrices,IsMatrix);
# IsMatrix(ocr.identityMatrix);
#T ??
# Do the same for the operations of 'normalIn' if present.
if IsBound(ocr.normalIn) then
if not IsBound(ocr.normalMatrices) then
ocr.normalMatrices:=LinearOperationLayer(ocr.normalGenerators,
ocr.modulePcgs);
# List(ocr.normalMatrices,IsMatrix);
fi;
fi;
# Construct the inverse of 'moduleMap'.
ocr.vectorMap:=function(v)
local wrd, i;
wrd:=One(ocr.modulePcgs[1]);
for i in [1 .. Length(v)] do
if v[i]<>ocr.zero then
wrd:=wrd*ocr.modulePcgs[i]^IntFFE(v[i]);
fi;
od;
return wrd;
end;
end);
#############################################################################
##
#F OCAddToFunctions(<ocr>) . . . . . . . . . . add conversion,local
##
##
InstallGlobalFunction(OCAddToFunctions,function(ocr)
local base, dim, gens;
# Get the module generators.
base:=ocr.modulePcgs;
dim :=Length(base);
# If 'smallGeneratingSet' is given,neither 'cocycle' nor 'list' need the
# entries at the nongenerators.
if not IsBound(ocr.cocycleToList) then
Info(InfoCoh,2,"OCAddToFunctions: adding 'cocycleToList'");
ocr.cocycleToList:=function(c)
local w, i, j, k, L;
L:=[];
k:=0;
for i in [1 .. Length(c) / dim] do
w:=One(base[1]);
for j in [1 .. dim] do
if c[k+j]<>ocr.zero then
w:=w*base[j]^IntFFE(c[k+j]);
fi;
od;
Add(L,w);
k:=k+dim;
od;
return L;
end;
fi;
# 'listToCocycle' is almost trivial.
if not IsBound(ocr.listToCocycle) then
Info(InfoCoh,2,"OCAddToFunctions: adding 'listToCocycle'");
ocr.listToCocycle:=function(L)
local c, n;
c:=[];
for n in L do
Append(c,ocr.moduleMap(n));
od;
#IsRowVector(c);
ConvertToVectorRep(c,ocr.field);
return c;
end;
fi;
# If 'complement' is unknown,the following function does not make sense,
# so just return.
if not IsBound(ocr.complement) then
Info(InfoCoh,2,"OCAddToFunctions: no complement,returning");
return;
fi;
gens:=ocr.complementGens;
# If 'smallGeneratingSet' is not present,just correct 'complement' by
# the list 'cocycleToList'. Otherwise we need to compute the correction
# with the use of 'bigMatrices' and 'bigVectors'.
if not IsBound(ocr.cocycleToComplement) then
Info(InfoCoh,2,"OCAddToFunctions: adding 'cocycleToComplement'");
if not IsBound(ocr.smallGeneratingSet) then
ocr.cocycleToComplement:=function(c)
local L, i;
L:=ocr.cocycleToList(c);
for i in [1 .. Length(L)] do
L[i]:=gens[i]*L[i];
od;
return GroupByGenerators(L,One(base[1]));
end;
else
# Get the correcting list. The nongenerator correction are given
# by m_i + n_1*C_ij+... for i a nongenerator index and j a
# generator index. m_i is stored in<bigVectors>and C_ij is
# stored in<bigMatrices>.
ocr.cocycleToComplement:=function(c)
local L, i, n, j;
L:=[];
for i in [1 .. Length(c) / dim] do
n:=c{[(i-1)*dim+1 .. i*dim]};
L[ocr.smallGeneratingSet[i]]:=n;
od;
for i in [1 .. Length(gens)] do
if not IsBound(L[i]) then
n:=ocr.bigVectors[i];
for j in ocr.smallGeneratingSet do
n:=n+L[j]*ocr.bigMatrices[i][j];
od;
L[i]:=n;
fi;
od;
for i in [1 .. Length(L)] do
L[i]:=gens[i]*ocr.vectorMap(L[i]);
od;
return GroupByGenerators(L,One(base[1]));
end;
fi;
fi;
# As the IGS might be used especially here,first do not bind
OCAddToFunctions2(ocr,ocr.generators);
end);
InstallMethod(OCAddToFunctions2,"pc group",true,[IsRecord,IsModuloPcgs],
2,function(ocr,pcgs)
local gens;
gens:=ocr.complementGens;
if not IsBound(ocr.complementToCocycle) then
ocr.origgens:=ocr.generators;
Info(InfoCoh,2,"OCAddToFunctions: adding 'complementToCocycle'");
if not IsBound(ocr.smallGeneratingSet) then
ocr.complementToCocycle:=function(K)
local L, i;
# get the generators corresponding to the pcgs
L:=CorrespondingGeneratorsByModuloPcgs(ocr.origgens,
GeneratorsOfGroup(K));
for i in [1 .. Length(gens)] do
L[i]:=LeftQuotient(gens[i],L[i]);
od;
return ocr.listToCocycle(L);
end;
else
Error("not yet implemented");
ocr.complementToCocycle:=function(K)
local L, S, i, j;
L:=CanonicalPcgs(InducedPcgsByGenerators(ocr.generators,
GeneratorsOfGroup(K)));
S:=[];
for i in [1 .. Length(ocr.smallGeneratingSet)] do
j:=ocr.smallGeneratingSet[i];
S[i] :=LeftQuotient(gens[j],L[j]);
od;
return ocr.listToCocycle(S);
end;
fi;
fi;
end);
InstallMethod(OCAddToFunctions2,"generic",true,[IsRecord,IsList],0,
function(ocr,gens)
local Ngens;
gens:=ocr.complementGens;
if not IsBound(ocr.complementToCocycle) then
Info(InfoCoh,2,"OCAddToFunctions: adding 'complementToCocycle'");
if not IsBound(ocr.smallGeneratingSet) then
Ngens:=NumeratorOfModuloPcgs(ocr.modulePcgs);
ocr.complementToCocycle:=function(K)
local L,i,hom;
# create a homomorphism to decompose into generators
hom:= GroupHomomorphismByImagesNC(ocr.group,K,
Concatenation(GeneratorsOfGroup(K),Ngens),
Concatenation(GeneratorsOfGroup(K),List(Ngens,i->One(K))));
L:=[];
for i in [1 .. Length(gens)] do
L[i]:=LeftQuotient(gens[i],
ImagesRepresentative(hom,gens[i]));
od;
return ocr.listToCocycle(L);
end;
else
Error("this should not happen");
fi;
fi;
end);
#############################################################################
##
#F OCAddCentralizer(<ocr>,<B>) . . . . . . . add centralizer by base<B>
##
OCAddCentralizer:=function(ocr,B)
ocr.centralizer:=GroupByGenerators(List(B,ocr.vectorMap),
One(ocr.group));
end;
#############################################################################
##
#F OCOneCoboundaries(<ocr>) . . . . . . . . . . one cobounds main routine
##
InstallGlobalFunction(OCOneCoboundaries,function(ocr)
local B, S, L, T, i, j;
# Add the important record components for coboundaries.
if IsBound(ocr.oneCoboundaries) then
return ocr.oneCoboundaries;
fi;
Info(InfoCoh,1,"OCOneCoboundaries: coboundaries and centralizer");
OCAddGenerators(ocr,ocr.group);
OCAddMatrices(ocr,ocr.generators);
# Construct (1 - M[1], ...,1 - M[n]).
if IsBound(ocr.smallGeneratingSet) then
S:=ocr.smallGeneratingSet;
else
S:=[1 .. Length(ocr.generators)];
fi;
L:=[];
T:=ocr.identityMatrix;
for i in [1 .. Length(T)] do
L[i]:=[];
for j in S do
Append(L[i],T[i] - ocr.matrices[j][i]);
od;
od;
IsMatrix(L);
# If there are no equations,return.
if Length(S) = 0 then
Info(InfoCoh,1,"OCOneCoboundaries: group is trivial");
ocr.oneCoboundaries:=FullRowSpace(ocr.field,0);
ocr.centralizer:=SubgroupNC(ocr.group,ocr.modulePcgs);
return ocr.oneCoboundaries;
fi;
# Find a base for the one coboundaries.
B:=TriangulizedGeneratorsByMatrix(ocr.modulePcgs ,L,ocr.field);
ocr.oneCoboundaries:=VectorSpace(ocr.field,B[2],Zero(ocr.field)*L[1]);
ocr.triangulizedBase:=B[1];
Info(InfoCoh,1,"OCOneCoboundaries: |B^1| = ",ocr.char,
"^",Dimension(ocr.oneCoboundaries));
ocr.heads:=[];
j:=1;
i:=1;
while i<= Length(B[2]) and j<= Length(B[2][1]) do
if B[2][i][j]<>ocr.zero then
ocr.heads[i]:=j;
i:=i+1;
fi;
j:=j+1;
od;
# Now get the nullspace, this is the centralizer.
OCAddCentralizer(ocr,NullspaceMat(L));
Info(InfoCoh,1,"OCOneCoboundaries: |C| = ",ocr.char,
"^",Length(GeneratorsOfGroup(ocr.centralizer)));
OCAddToFunctions(ocr);
return ocr.oneCoboundaries;
end);
#############################################################################
##
#F OCConjugatingWord(<ocr>,<c1>,<c2>) . . . . . . . . . . . . . . local
##
## Compute a Word n in<ocr.module>such that<c1>^ n =<c2>.
##
InstallGlobalFunction(OCConjugatingWord,function(ocr,c1,c2)
local B, w, v, j;
B:=ocr.triangulizedBase;
w:=One(ocr.modulePcgs[1]);
v:=c2 - c1;
for j in [1 .. Length(ocr.heads)] do
#if IntFFE(v[ocr.heads[j]])<>false then
w:=w*B[j]^IntFFE(v[ocr.heads[j]]);
#fi;
od;
return w;
end);
#############################################################################
##
#F OCAddRelations(<ocr>,<gens>) . . . . . . . . . . . add relations,local
##
InstallMethod(OCAddRelations,"pc group",true,[IsRecord,IsModuloPcgs],0,
function(ocr,gens )
local p, w, r, i, j, k,mpcgs;
# If<ocr>has a record component 'relators',nothing is done.
if IsBound(ocr.relators) then
return;
fi;
Info(InfoCoh,2,"OCAddRelations: computes pc-presentation");
# Construct the factor pcgs
mpcgs :=ocr.generators;
# Start with the power-relations. If g1^p = g2^3*g4^5*g5,then
# the relator g1 ^ -p * g2 ^ 3 *g4^5*g5 is used,because it
# contains only one negative exponent.
ocr.relators:=[];
for i in [1 .. Length(mpcgs)] do
p:=RelativeOrders(mpcgs)[i];
r:=rec(generators:=[i],powers:=[-p] );
w:=ExponentsOfRelativePower(mpcgs,i);
for j in [1 .. Length(w)] do
if w[j]<>0 then
Add(r.generators,j);
Add(r.powers,w[j]);
fi;
od;
r.usedGenerators:=Set(r.generators);
Add(ocr.relators,r);
od;
# Now compute the conjugated words. If g1^g2 = g3^5*g4^2,then
# the relator (g1^-1)^g2*g3^5*g4^2 is used,as it contains
# only two negative exponents.
for i in [1 .. Length(mpcgs) - 1] do
for j in [i+1 .. Length(mpcgs)] do
r:=rec(generators:=[i,j,i],powers:=[-1,-1,1]);
w:=mpcgs[j]^mpcgs[i];
w:=ExponentsOfPcElement(mpcgs,w);
for k in [1 .. Length(w)] do
if w[k]<>0 then
Add(r.generators,k);
Add(r.powers,w[k]);
fi;
od;
r.usedGenerators:=Set(r.generators);
Add(ocr.relators,r);
od;
od;
end);
InstallMethod(OCAddRelations,"perm group",true,[IsRecord,IsList],0,
function(ocr,gens )
local r,fg,rel,i,j,w;
# If<ocr>has a record component 'relators',nothing is done.
if IsBound(ocr.relators) then
return;
fi;
Info(InfoCoh,2,"OCAddRelations: fetch presentation");
# it is not the right place to get a presentation here,as we may have
# chosen the wrong generators before. So we just fetch it.
fg:=ocr.factorpres[1];
r:=ocr.factorpres[2];
# now rewrite the relators into the OC form
ocr.relators:=[];
for i in r do
rel:=rec(generators:=[],powers:=[]);
w:=ExtRepOfObj(i);
j:=1;
while j<Length(w) do
Add(rel.generators,w[j]);
Add(rel.powers,w[j+1]);
j:=j+2;
od;
rel.usedGenerators:=Set(rel.generators);
Add(ocr.relators,rel);
od;
end);
BindGlobal("OCTestRelations",function(ocr,gens)
local i,j,e,g;
g:=GroupByGenerators(NumeratorOfModuloPcgs(ocr.modulePcgs));
for i in ocr.relators do
e:=One(gens[1]);
for j in [1..Length(i.generators)] do
e:=e*gens[i.generators[j]]^i.powers[j];
od;
if not e in g then
Error("relator wrong");
fi;
od;
return true;
end);
#############################################################################
##
#M NormalRelations(<ocr>,<G>,<gens>) . . rels for normal complements,local
##
InstallMethod(OCNormalRelations,"pc group",
true,[IsRecord,IsPcGroup,IsListOrCollection],0,
function(ocr,G,gens)
local i,j,k,
relations,
r,
w,mpcgs;
Info(InfoCoh,2,"computes rels for normal complements");
Error("this still has to be fixed!");
mpcgs:=InducedPcgsByGeneratorsNC(ocr.pcgs,
Concatenation(ocr.generators,ocr.modulePcgs)) mod
ocr.modulePcgs;
# Compute g_i^s_j for all generators s_j in 'normalGenerators' and all
# i in<generators>.
relations:=[];
for i in [1 .. Length(gens)] do
for j in [1 .. Length(ocr.normalGenerators)] do
r:=rec(generators:=[],
powers :=[],
conjugated:=[i,j]);
w:=ocr.generators[gens[i]]^ocr.normalGenerators[j];
w:=ExponentsOfPcElement(mpcgs,w);
for k in [1 .. Length(w)] do
if w[k]<>0 then
Add(r.generators,k);
Add(r.powers,w[k]);
fi;
od;
r.usedGenerators:=Set(r.generators);
Add(relations,r);
od;
od;
return relations;
end);
#############################################################################
##
#M OCAddSumMatrices(<ocr>,<gens>) . . . . . . . . . . . add sums,local
##
InstallMethod(OCAddSumMatrices,"pc group",true,[IsRecord,IsPcgs],0,
function(ocr,pcgs)
local i, j;
if not IsBound(ocr.maximalPowers) then
Info(InfoCoh,2,"maximal powers = relative orders");
ocr.maximalPowers:=List(ocr.generators,
i->RelativeOrderOfPcElement(pcgs,i));
fi;
# At first add all powers, such that powerMatrices[ i ][ j] is
# matrices[ i ] ^j for j = 1 ... p,if p is the maximal power for the
# i.th generator.
if not IsBound(ocr.powerMatrices) then
Info(InfoCoh,2,"AddSumMatrices: adding power matrices");
ocr.powerMatrices:=[];
for i in [1 .. Length(ocr.matrices)] do
ocr.powerMatrices[i]:=[ocr.matrices[i]];
for j in [2 .. ocr.maximalPowers[i]] do
ocr.powerMatrices[i][j] :=
ocr.powerMatrices[i][j - 1]*ocr.matrices[i];
od;
od;
fi;
# Now all sums, such that sumMatrices[i][j] is the sum from k = 0
# upto j - 1 over matrices[i]^k for j = 1 ... p.
if not IsBound(ocr.sumMatrices) then
Info(InfoCoh,2,"AddSumMatrices: adding sum matrices");
ocr.sumMatrices:=[];
for i in [1 .. Length(ocr.matrices)] do
ocr.sumMatrices[i]:=[ocr.identityMatrix];
for j in [2 .. ocr.maximalPowers[i]] do
ocr.sumMatrices[i][j] :=
ocr.sumMatrices[i][j-1]+ocr.powerMatrices[i][j-1];
od;
od;
fi;
end);
InstallMethod(OCAddSumMatrices,"perm group",true,[IsRecord,IsList],0,
function(ocr,gens)
local i,j;
if not IsBound(ocr.maximalPowers) then
Info(InfoCoh,2,"AddSumMatrices: maximal power = 1");
ocr.maximalPowers:=List(ocr.generators,x->1);
fi;
# At first add all powers, such that powerMatrices[ i ][ j] is
# matrices[ i ] ^j for j = 1 ... p,if p is the maximal power for the
# i.th generator.
if not IsBound(ocr.powerMatrices) then
Info(InfoCoh,2,"AddSumMatrices: adding power matrices");
ocr.powerMatrices:=[];
for i in [1 .. Length(ocr.matrices)] do
ocr.powerMatrices[i]:=[ocr.matrices[i]];
for j in [2 .. ocr.maximalPowers[i]] do
ocr.powerMatrices[i][j] :=
ocr.powerMatrices[i][j - 1]*ocr.matrices[i];
od;
od;
fi;
# Now all sums, such that sumMatrices[i][j] is the sum from k = 0
# upto j - 1 over matrices[i]^k for j = 1 ... p.
if not IsBound(ocr.sumMatrices) then
Info(InfoCoh,2,"AddSumMatrices: adding sum matrices");
ocr.sumMatrices:=[];
for i in [1 .. Length(ocr.matrices)] do
ocr.sumMatrices[i]:=[ocr.identityMatrix];
for j in [2 .. ocr.maximalPowers[i]] do
ocr.sumMatrices[i][j] :=
ocr.sumMatrices[i][j-1]+ocr.powerMatrices[i][j-1];
od;
od;
fi;
end);
#############################################################################
##
#F OCEquationMatrix(<ocr>,<r>,<n>) . . . . . . . . . . . . . . . local
##
InstallGlobalFunction(OCEquationMatrix,function(ocr,r,n)
local mat, i, j, v, vv;
Info(InfoCoh,3,"OCEquationMatrix: matrix number ",n);
mat:=ocr.identityMatrix - ocr.identityMatrix;
if not n in r.usedGenerators then return mat; fi;
# For j:=generators[i], v:=powers[i], M operations:
#
# if j = n and v>0,then
# mat = mat*M[j]^v+sum_{k=0}^{v-1} M[j]^k
# if j = n and v<0,then
# mat = (mat - sum_{k=0}^{-v-1} M[j]^k)*M[j]^v
# if j<>n,then
# mat = mat*M[j]^v
#
for i in [1 .. Length(r.generators)] do
j :=r.generators[i];
vv:=r.powers[i];
# Repeat,until we used up all powers.
while vv<>0 do
if AbsInt(vv)>AbsInt(ocr.maximalPowers[j]) then
v :=SignInt(vv)*ocr.maximalPowers[j];
vv:=vv - v;
else
v :=vv;
vv:=0;
fi;
if j = n and v>0 then
mat:=mat*ocr.powerMatrices[j][v]+ocr.sumMatrices[j][v];
elif j = n and v<0 then
mat:= (mat - ocr.sumMatrices[j][-v])
*(ocr.powerMatrices[j][-v]^-1);
elif j<>n and v>0 then
mat:=mat*ocr.powerMatrices[j][v];
elif j<>n and v<0 then
mat:=mat*(ocr.powerMatrices[j][-v]^-1);
else
Info(InfoCoh,2,"OCEquationMatrix: zero power");
fi;
od;
od;
# if<r> has an entry 'conjugated' the records is no relator for a
# presentation,but belongs to relation
# (g_i n_i)^s_j = r
# which is used to determinate normal complements. [i,j] is bound to
# 'conjugated'. If i<><n>,we can forget about it,but otherwise -s_j
# must be added.
if IsBound(r.conjugated) and r.conjugated[1] = n then
mat:=mat - ocr.normalMatrices[r.conjugated[2]];
fi;
return mat;
end);
#############################################################################
##
#M OCAddBigMatrices(<ocr>,<generators>) . . . . . . . . . . . . . local
##
InstallMethod(OCAddBigMatrices,"general",true,[IsRecord,IsList],0,
function(ocr,G)
local i, j, n, w, small, nonSmall;
# If no small generating set is known simply return.
if not IsBound(ocr.smallGeneratingSet) then
Info(InfoCoh,2,"AddBigMatrices: no small generating set");
return;
fi;
small:=ocr.smallGeneratingSet;
nonSmall:=Difference([1 .. Length(ocr.generators)],small);
if not IsBound(ocr.bigMatrices) then
ocr.bigMatrices:=List([1 .. Length(ocr.generators)],x->[]);
Info(InfoCoh,2,"AddBigMatrices: adding bigMatrices");
for i in nonSmall do
for j in small do
ocr.bigMatrices[i][j]:=OCEquationMatrix(ocr,
ocr.generatorsInSmall[i],j);
od;
od;
fi;
# Compute n_(i) for non small generators i.
if not IsBound(ocr.bigVectors) then
Info(InfoCoh,2,"AddBigMatricesOC: adding bigVectors");
ocr.bigVectors:=[];
for i in nonSmall do
n:=ocr.generators[i]^-1;
w:=ocr.generatorsInSmall[i];
for j in [1 .. Length(w.generators)] do
n:=n*ocr.generators[w.generators[j]]^w.powers[j];
od;
ocr.bigVectors[i]:=ocr.moduleMap(n);
od;
fi;
end);
#############################################################################
##
#F OCSmallEquationMatrix(<ocr>,<r>,<n>) . . . . . . . . . . . . . local
##
InstallGlobalFunction(OCSmallEquationMatrix,function(ocr,r,n)
local mat, i, j, v, vv;
Info(InfoCoh,3,"OCSmallEquationMatrix: matrix number ",n);
mat:=ocr.identityMatrix - ocr.identityMatrix;
#<n>must a small generator.
if not n in ocr.smallGeneratingSet then
Error("<n> is no small generator");
fi;
# Warning: if<n>is not in <r.usedGenerators>we cannot return,as the
# nonsmall generators may yield a result.
# For j:=generators[i], v:=powers[i], M operations:
#
# If j is a small generator,everthing is as usual.
#
# if j = n and v>0, then
# mat = mat*M[j]^v+sum_{k=0}^{v-1} M[j]^k
# if j = n and v<0, then
# mat = (mat - sum_{k=0}^{-v-1} M[j]^k)*M[j]^v
# if j<>n,then
# mat = mat*M[j]^v
#
# If j is not a small generator, then j<>n. But we need to correct
#<mat>using the<bigMatrices>:
#
# n_j = n_(j)+...+n_n^C_jn+...
#
# if v>0,then
# mat = mat*M[j]^v+C_jn*sum_{k=0}^{v-1} M[j]^k
# If v<0,then
# mat = (mat - C_jn*sum_{k=0}^{-v-1} M[j]^k)*M[j]^v
#
for i in [1 .. Length(r.generators)] do
j :=r.generators[i];
vv:=r.powers[i];
while vv<>0 do
if AbsInt(vv)>AbsInt(ocr.maximalPowers[j]) then
v :=SignInt(vv)*ocr.maximalPowers[j];
vv:=vv - v;
else
v :=vv;
vv:=0;
fi;
if j in ocr.smallGeneratingSet then
if j = n and v>0 then
mat:=mat*ocr.powerMatrices[j][v]
+ocr.sumMatrices[j][v];
elif j = n and v<0 then
mat:=(mat - ocr.sumMatrices[j][-v])
*(ocr.powerMatrices[j][-v]^-1);
elif j<>n and v>0 then
mat:=mat*ocr.powerMatrices[j][v];
elif j<>n and v<0 then
mat:=mat*(ocr.powerMatrices[j][-v]^-1);
else
Info(InfoCoh,2,"EquationMatrixOC: zero power");
fi;
else
if v>0 then
mat:=mat*ocr.powerMatrices[j][v]
+ocr.bigMatrices[j][n]*ocr.sumMatrices[j][v];
elif v<0 then
mat:=(mat-ocr.bigMatrices[j][n]*ocr.sumMatrices[j][-v])
*(ocr.powerMatrices[j][-v]^-1);
else
Info(InfoCoh,2,"EquationMatrixOC: zero power");
fi;
fi;
od;
od;
# If<r> has an entry <conjugated> the records is no relator for a
# presentation,but belongs to relation
# (g_i n_i)^s_j =<r>
# which is used to determinate normal complements. [i,j] is bound to
# 'conjugated'. If i<><n>,we can forget about it,but otherwise s_j
# must be added. i is always a small generator.
if IsBound(r.conjugated) and r.conjugated[1] = n then
mat:=mat - ocr.normalMatrices[r.conjugated[2]];
fi;
return mat;
end);
#############################################################################
##
#F OCEquationVector(<ocr>,<r>) . . . . . . . . . . . . . . . . . . local
##
InstallGlobalFunction(OCEquationVector,function(ocr,r)
local n,i;
# If <r> has an entry 'conjugated' the records is no relator for a
# presentation,but belongs to relation
# (g_i n_i)^s_j =<r>
# which is used to determinate normal complements. [i,j] is bound to
# <conjugated>.
if IsBound(r.conjugated) then
n:=(ocr.generators[r.conjugated[1]]
^ocr.normalGenerators[r.conjugated[2]])^-1;
else
n:=ocr.identity;
fi;
for i in [1 .. Length(r.generators)] do
n:=n*ocr.generators[r.generators[i]]^r.powers[i];
od;
Assert(1,n in GroupByGenerators(NumeratorOfModuloPcgs(ocr.modulePcgs)));
return ShallowCopy(ocr.moduleMap(n));
end);
#############################################################################
##
#F OCSmallEquationVector(<ocr>,<r>) . . . . . . . . . . . . . . . . local
##
InstallGlobalFunction(OCSmallEquationVector,function(ocr,r)
local n, a, i, nonSmall, v, vv, j;
# if<r>has an entry 'conjugated' the records is no relator for a
# presentation,but belongs to relation
# (g_i n_i)^s_j =<r>
# which is used to determinate normal complements. [i,j] is bound to to
# 'conjugated'. i is always a small generator.
if IsBound(r.conjugated) then
n:=(ocr.generators[r.conjugated[1]]
^ocr.normalGenerators[r.conjugated[2]])^-1;
else
n:=ocr.identity;
fi;
# At first the vector of the relator itself.
for i in [1 .. Length(r.generators)] do
n:=n*ocr.generators[r.generators[i]]^r.powers[i];
od;
n:=ocr.moduleMap(n);
# Each non small generators in<r>gives an additional vector. It
# must be shifted through the relator.
nonSmall:=Difference([1 .. Length(ocr.generators)],
ocr.smallGeneratingSet);
a:=n - n;
for i in [1 .. Length(r.generators)] do
j :=r.generators[i];
vv:=r.powers[i];
while vv<>0 do
if AbsInt(vv)>AbsInt(ocr.maximalPowers[j]) then
v :=SignInt(vv)*ocr.maximalPowers[j];
vv:=vv - v;
else
v :=vv;
vv:=0;
fi;
if j in nonSmall then
if v>0 then
a:=a*ocr.powerMatrices[j][v]+ocr.bigVectors[j]
*ocr.sumMatrices[j][v];
elif v<0 then
a:=(a - ocr.bigVectors[j]
*ocr.sumMatrices[j][-v])
*(ocr.powerMatrices[j][-v]^-1);
else
Info(InfoCoh,2,"OCSmallEquationVector: zero power");
fi;
else
if v>0 then
a:=a*ocr.powerMatrices[j][v];
elif v<0 then
a:=a*(ocr.powerMatrices[j][-v]^-1);
else
Info(InfoCoh,2,"OCSmallEquationVector: zero power");
fi;
fi;
od;
od;
return ShallowCopy(n+a);
end);
#############################################################################
##
#F OCAddComplement(<ocr>,<K>) . . . . . . . . . . . . . . . . . . . local
##
InstallMethod(OCAddComplement,"pc group",true,
[IsRecord,IsPcGroup,IsListOrCollection],0,
function(ocr,G,K)
ocr.complementGens:=K;
Assert(1,ForAll([1..Length(ocr.complementGens)],i->
ExponentsOfPcElement(ocr.generators,ocr.complementGens[i])
=ExponentsOfPcElement(ocr.generators,ocr.generators[i])));
K:=InducedPcgsByGeneratorsNC(NumeratorOfModuloPcgs(ocr.generators),K);
ocr.complement:=SubgroupNC(ocr.group,K);
end);
InstallMethod(OCAddComplement,"generic",true,
[IsRecord,IsGroup,IsListOrCollection],0,
function(ocr,G,K)
ocr.complement:=SubgroupNC(ocr.group,K);
ocr.complementGens:=K;
end);
#############################################################################
##
#F OCOneCocycles(<ocr>,<onlySplit>) . . . . . . one cocycles main routine
##
## If<onlySplit>,'OCOneCocycles' returns 'false' as soon as possibly if
## the extension does not split.
##
InstallGlobalFunction(OCOneCocycles,function(ocr,onlySplit)
local cobounds,cocycles, # base of one coboundaries and cocycles
dim, # dimension of module
gens, # generator numbers
len, # number of generators
K, # list of complement generators
L0, # null vector
S, R, # linear system and right hand side
rels, # relations
RS, RR, # rel linear system and right hand side
isSplit, # is split extension
N, # correct
row, # one row
tmp,i,g,j,k,n;
# If we know our cocycles return them.
if IsBound(ocr.oneCocycles) then
return ocr.oneCocycles;
fi;
# Assume it does split. This may change later.
isSplit:=true;
ocr.identity:=One(ocr.modulePcgs[1]);
Info(InfoCoh,1,"OCOneCocycles: computes cocycles and cobounds");
# We need the generators of the factorgroup with relations,all matrices
# and the cobounds. If the 'smallGeneratingSet' is given,get the big
# matrices and vectors.
cobounds:=BasisVectors(Basis(OCOneCoboundaries(ocr)));
# If we are only want normal complements,the group of cobounds must be
# trivial, otherwise there are no normal ones as the conjugated
# complements correspond with the cobounds.
if IsBound(ocr.normalIn) and cobounds<>[] then
Info(InfoCoh,1,"OneCocyclesCO: no normal complements");
return false;
fi;
# Initialize the relations and sum/big matrices.
OCAddRelations(ocr,ocr.generators);
Assert(1,OCTestRelations(ocr,ocr.generators)=true);
OCAddSumMatrices(ocr,ocr.generators);
if IsBound(ocr.smallGeneratingSet) then
OCAddBigMatrices(ocr,ocr.generators);
fi;
# Now initialize a matrix with will hold the triangulized system of
# linear equations. If 'smallGeneratingSet' is given use this, if
# 'pPrimeSet' is given do not use those.
dim:=Length(ocr.modulePcgs);
if IsBound(ocr.smallGeneratingSet) then
gens:=ocr.smallGeneratingSet;
len :=Length(ocr.smallGeneratingSet);
K :=ShallowCopy(ocr.generators);
elif IsBound(ocr.pPrimeSet) then
Info(InfoCoh,2,"OCOneCocycles: computing coprime complement");
gens:=Difference([1 .. Length(ocr.generators)],ocr.pPrimeSet);
gens:=Set(gens);
len :=Length(ocr.generators) - Length(ocr.pPrimeSet);
K :=OCCoprimeComplement(ocr,ocr.generators);
ocr.generators:=ShallowCopy(K);
else
len :=Length(ocr.generators);
gens:=[1 .. len];
K :=ShallowCopy(ocr.generators);
fi;
Info(InfoCoh,2,"OCOneCocycles: ",len," generators");
# Initialize system.
tmp:=ocr.moduleMap(ocr.identity);
L0 :=Concatenation(List([1 .. len],x->tmp));
ConvertToVectorRep(L0,ocr.field);
S:=List([1 .. len*dim],x->L0);
#R:=List([1 .. len*dim],x->Zero(ocr.field));
R:=ListWithIdenticalEntries(len*dim,Zero(ocr.field));
ConvertToVectorRep(R,ocr.field);
# Get the linear system for one relation and append it to the already
# triangulized system.
Info(InfoCoh,2,"OCOneCocycles: constructing linear equations: ");
# Get all relations.
if IsBound(ocr.normalIn) then
rels:=Concatenation(ocr.relators,
OCNormalRelations(ocr,ocr.group,gens));
else
rels:=ocr.relators;
fi;
for i in [1 .. Length(rels)] do
Info(InfoCoh,2," relation ",i," (",Length(rels),")");
RS:=[];
if IsBound(ocr.smallGeneratingSet) then
for g in gens do
Append(RS,OCSmallEquationMatrix(ocr,rels[i],g));
od;
RR:=OCSmallEquationVector(ocr,rels[i]);
MultRowVector(RR,-One(ocr.field));
else
for g in gens do
Append(RS,OCEquationMatrix(ocr,rels[i],g));
od;
RR:=OCEquationVector(ocr,rels[i]);
MultRowVector(RR,-One(ocr.field));
fi;
# The is a system for x M = v so transpose.
RS:=MutableTransposedMat(RS);
# Now append this to the triangulized system.
for j in [1 .. Length(RS)] do
k:=1;
while RS[j]<>L0 do
while RS[j][k] = ocr.zero do
k:=k+1;
od;
if S[k][k]<>ocr.zero then
RR[j]:=RR[j] - RS[j][k]*R[k];
RS[j]:=RS[j] - RS[j][k]*S[k];
else
R[k]:=RS[j][k]^-1*RR[j];
S[k]:=RS[j][k]^-1*RS[j];
RS[j]:=L0;
RR[j]:=0*RR[j];
fi;
od;
if RR[j] <>ocr.zero then
Info(InfoCoh,1,"OCOneCocycles: no split extension");
isSplit:=false;
if onlySplit then
return isSplit;
fi;
fi;
od;
IsMatrix(RS);
od;
# Now remove all entries above the diagonal. Let's see if a solution
# exist. As system <S> is triangulized all we have to do,is to check if
# right side <R> is null,where the diagonal is null.
Info(InfoCoh,2,"OCOneCocycles: computing nullspace and solution");
for i in [1 .. Length(S)] do
if S[i][i]<>ocr.zero then
for k in [1 .. i-1] do
if S[k][i]<>ocr.zero then
R[k]:=R[k] - S[k][i]*R[i];
S[k]:=S[k] - S[k][i]*S[i];
fi;
od;
else
if R[i]<>ocr.zero then
Info(InfoCoh,1,"OCOneCocycles: no split extension");
isSplit:=false;
if onlySplit then
return isSplit;
fi;
fi;
fi;
od;
# As <system>is triangulized,the right side is now the solution. So if
# 'smallGeneratingSet' is not given, we only need to modify the
#<complement> generators, which are not in 'pPrimeSet'. Otherwise we
# must blow up the cocycle to cover all generators not only the small
# ones.
if isSplit then
if not IsBound(ocr.smallGeneratingSet) then
N:=ocr.cocycleToList(R);
for i in [1 .. Length(N)] do
K[gens[i]]:=K[gens[i]]*N[i];
od;
else
N:=[];
for i in [1 .. Length(R) / dim] do
n:= R{ [(i-1)*dim+1 .. i*dim] };
N[ocr.smallGeneratingSet[i]]:=n;
od;
for i in [1 .. Length(K)] do
if not IsBound(N[i]) then
n:=ocr.bigVectors[i];
for j in ocr.smallGeneratingSet do
n:=n+N[j]*ocr.bigMatrices[i][j];
od;
else
n:=N[i];
fi;
K[i]:=K[i]*ocr.vectorMap(n);
od;
fi;
OCAddComplement(ocr,ocr.group,K);
OCAddToFunctions(ocr);
fi;
# System<S>is triangulized, get the nullspace.
cocycles:=[];
for i in [1 .. Length(S[1])] do
if S[i][i] = ocr.zero then
row:=ShallowCopy(L0);
for k in [1 .. i-1] do
row[k]:=S[k][i];
od;
row[i]:=- One(ocr.field);
Add(cocycles,row);
fi;
od;
IsMatrix(cocycles);
# If 'pPrimeSet' is given, we need to add zeros to cocycle at the
# positions of the pPrimeGenerators. Then the cobounds must be added in
# order to get all cocycles.
if IsBound(ocr.pPrimeSet) then
tmp:=ocr.moduleMap(ocr.identity);
for j in [1 .. Length(cocycles)] do
k:=0;
row:=[];
for i in [1 .. Length(ocr.generators)] do
if not i in ocr.pPrimeSet then
n:=cocycles[j]{ [k*dim+1 .. (k+1)*dim] };
Append(row,n);
k:=k+1;
else
Append(row,tmp);
fi;
od;
#IsRowVector(row);
ConvertToVectorRep(row,ocr.field);
cocycles[j]:=row;
od;
Append(cocycles,cobounds);
if cocycles<>[] then
cocycles:=BaseMat(cocycles);
fi;
else
if cocycles<>[] then
TriangulizeMat(cocycles);
fi;
fi;
ocr.oneCocycles:=VectorSpace(ocr.field,cocycles,
Zero(ocr.oneCoboundaries));
Info(InfoCoh,1,"OCOneCocycles: order of cocycles ",ocr.char,
"^",Dimension(ocr.oneCocycles));
return ocr.oneCocycles;
end);
#############################################################################
##
#M OneCoboundaries(<G>,<M>) . . . . . . . . . . one cobounds of<G>/<M>
##
InstallGlobalFunction(OneCoboundaries,function(G,M)
local ocr;
if not IsList(M) then
if not IsElementaryAbelian(M) then
Error("<M> must be elementary abelian");
fi;
M:=InducedPcgsWrtHomePcgs(M);
fi;
ocr:=rec(modulePcgs:=M);
if IsGroup(G) then
ocr.group:=G;
else
ocr.group:= GroupByGenerators(G);
ocr.generators:=G;
fi;
OCOneCoboundaries(ocr);
return rec(
oneCoboundaries:=ocr.oneCoboundaries,
generators :=ocr.generators,
cocycleToList :=ocr.cocycleToList,
listToCocycle :=ocr.listToCocycle);
end);
#############################################################################
##
#F OneCocycles(<G>,<M>) . . . . . . . . . . . . one cocycles of<G>/<M>
##
InstallGlobalFunction(OneCocycles,function(G,M)
local ocr,erg;
if not IsList(M) then
if not IsElementaryAbelian(M) then
Error("<M> must be elementary abelian");
fi;
M:=InducedPcgsWrtHomePcgs(M);
fi;
ocr:=rec(modulePcgs:=M);
if IsGroup(G) then
ocr.group:=G;
else
ocr.group:= GroupByGenerators(G);
ocr.generators:=G;
fi;
OCOneCocycles(ocr,false);
if IsBound(ocr.complement) then
erg:=rec(
oneCoboundaries :=ocr.oneCoboundaries,
oneCocycles :=ocr.oneCocycles,
generators :=ocr.generators,
isSplitExtension :=true,
complement :=ocr.complement,
complementGens :=ocr.complementGens,
cocycleToList :=ocr.cocycleToList,
listToCocycle :=ocr.listToCocycle,
cocycleToComplement:=ocr.cocycleToComplement,
factorGens :=ocr.generators);
if IsBound(ocr.complementToCocycle) then
erg.complementToCocycle:=ocr.complementToCocycle;
fi;
return erg;
else
return rec(
oneCoboundaries :=ocr.oneCoboundaries,
oneCocycles :=ocr.oneCocycles,
generators :=ocr.generators,
cocycleToList :=ocr.cocycleToList,
listToCocycle :=ocr.listToCocycle,
isSplitExtension :=false);
fi;
end);
#############################################################################
##
#F ComplementClassesRepresentativesEA(<G>,<N>) . complement classes to el.ab. N by 1-Cohom.
##
InstallGlobalFunction(ComplementClassesRepresentativesEA,function(g,n)
local oc,l;
oc:=OneCocycles(g,n);
if not oc.isSplitExtension then
return [];
else
if Dimension(oc.oneCocycles)=Dimension(oc.oneCoboundaries) then
return [oc.complement];
else
l:=BaseSteinitzVectors(BasisVectors(Basis(oc.oneCocycles)),
BasisVectors(Basis(oc.oneCoboundaries)));
l:=List(VectorSpace(LeftActingDomain(oc.oneCocycles),l.factorspace,
Zero(oc.oneCocycles)),
i->oc.cocycleToComplement(i));
return l;
fi;
fi;
end);
#############################################################################
##
#E onecohom.gi . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
##
|