/usr/share/gap/lib/overload.g is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 | #############################################################################
##
#W overload.g GAP library Thomas Breuer
##
##
#Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declaration and methods of ``overloaded''
## operations, that is, operations for which the meaning of the result
## depends on the arguments.
##
## Examples are `IsSolvable' and `IsNilpotent' (where we have methods for
## groups and for algebras), and `Kernel' (which in the case of a group
## homomorphism means the elements mapped to the identity of the range,
## in the case of a ring homomorphism means those mapped to the zero,
## and in the case of a group character means those mapped to the
## character degree).
##
## In these examples we seem to be safe, as no object can be both a group
## and an algebra.
##
## Such non-qualified operations should be kept to a minimum.
## (Remember the problems we had with `NewObject'.)
##
## Note that operations such as `IsCommutative' are not of this type,
## since the result means the same for any multiplicative structure.
##
## The key requirement is that no object ever exists which inherits from
## two types with distinct meanings.
## Whenever this happens, there *must* be a method installed for the meet
## of the relevant categories which decides which meaning applies,
## otherwise the meaning of the operation is at the mercy of the ranking
## system.
##
## The guideline for the implementation is the following.
## Non-qualified operations with one argument aren't attributes or
## properties.
## For each different meaning of the argument there are a corresponding
## attribute (e.g. `IsSolvableGroup') and a method that delegates to this
## attribute.
## In the library one calls the attributes directly, and the non-qualified
## operation is thought only as a shorthand for the user.
##
## (So this file should be read after all the other library files.)
##
#T Shall we print warnings when the shorthands are used?
##
#############################################################################
##
#O CoKernel( <obj> )
##
## is the cokernel of a general mapping that respects multiplicative or
## additive structure (or both, so we have to check) ...
##
DeclareOperation( "CoKernel", [ IsObject ] );
InstallMethod( CoKernel,
[ IsGeneralMapping ],
function( map )
if RespectsAddition( map ) and RespectsZero( map ) then
return CoKernelOfAdditiveGeneralMapping( map );
elif RespectsMultiplication( map ) and RespectsOne( map ) then
return CoKernelOfMultiplicativeGeneralMapping( map );
else
TryNextMethod();
fi;
end );
#############################################################################
##
#O Degree( <obj> )
##
## is the degree of a univariate Laurent polynomial, a character ...
##
DeclareOperation( "Degree", [ IsObject ] );
InstallMethod( Degree, [ IsClassFunction ], DegreeOfCharacter );
InstallMethod( Degree, [ IsRationalFunction ],
function( ratfun )
if IsLaurentPolynomial( ratfun ) then
return DegreeOfLaurentPolynomial( ratfun );
else
TryNextMethod();
fi;
end );
#############################################################################
##
#O DerivedSeries( <D> )
##
DeclareOperation( "DerivedSeries", [ IsObject ] );
# DerivedSeriesOfAlgebra no longer exists! (There are the functions
# LieDerivedSeries and PowerSubalgebraSeries).
#
InstallMethod( DerivedSeries, [ IsAlgebra ],
function( A )
if HasIsLieAlgebra(A) and IsLieAlgebra(A) then
Error(
"you can't use DerivedSeries( <L> ) for a Lie algebra <L>, you may want to try LieDerivedSeries( <L> ) instead");
else
Error(
"you can't use DerivedSeries( <A> ) for an algebra <A>, you may want to try PowerSubalgebraSeries( <A> ) instead");
fi;
end );
InstallMethod( DerivedSeries, [ IsGroup ], DerivedSeriesOfGroup );
#############################################################################
##
#O Determinant( <obj> )
##
## is the determinant of a matrix, a linear mapping, a character ...
##
DeclareOperation( "Determinant", [ IsObject ] );
InstallMethod( Determinant, [ IsMatrix ], DeterminantMat );
InstallMethod( Determinant, [ IsClassFunction ], DeterminantOfCharacter );
#############################################################################
##
#O Eigenvalues( <obj> )
##
DeclareOperation( "Eigenvalues", [ IsObject ] );
InstallOtherMethod( Eigenvalues, [ IsClassFunction, IsPosInt ],
EigenvaluesChar );
#############################################################################
##
#O IsIrreducible( <obj> )
##
## is `true' if <obj> is an irreducible ring element or an irreducible
## character or an irreducible module ...
##
## (Note that we must be careful since characters are also ring elements,
## and for example linear characters are irreducible as characters but not
## as ring elements since they are units.)
##
DeclareOperation( "IsIrreducible", [ IsObject ] );
#T InstallMethod( IsIrreducible, [ IsAModule ], IsIrreducibleModule );
InstallMethod( IsIrreducible, [ IsClassFunction ], IsIrreducibleCharacter );
InstallMethod( IsIrreducible, [ IsRingElement ],
function( r )
if IsClassFunction( r ) then
TryNextMethod();
fi;
return IsIrreducibleRingElement( r );
end );
InstallOtherMethod(IsIrreducible,"polynomial",IsCollsElms,
[IsPolynomialRing,IsPolynomial],0,IsIrreducibleRingElement);
#############################################################################
##
#O IsMonomial( <obj> )
##
## is `true' if <obj> is a monomial group or a monomial character or
## a monomial representation or a monomial matrix or a monomial number ...
##
DeclareOperation( "IsMonomial", [ IsObject ] );
InstallMethod( IsMonomial, [ IsClassFunction ], IsMonomialCharacter );
InstallMethod( IsMonomial, [ IsGroup ], IsMonomialGroup );
InstallMethod( IsMonomial, [ IsMatrix ], IsMonomialMatrix );
InstallMethod( IsMonomial, [ IsPosInt ], IsMonomialNumber );
InstallMethod( IsMonomial, [ IsOrdinaryTable ], IsMonomialCharacterTable );
#############################################################################
##
#O IsNilpotent( <obj> )
##
## is `true' if <obj> is a nilpotent group or a nilpotent algebra or ...
##
DeclareOperation( "IsNilpotent", [ IsObject ] );
Add(SOLVABILITY_IMPLYING_FUNCTIONS,IsNilpotent);
# IsNilpotentAlgebra is now called IsLieNilpotent.
#
InstallMethod( IsNilpotent, [ IsAlgebra ],
function(A)
if HasIsLieAlgebra(A) and IsLieAlgebra(A) then
Error("you can't use IsNilpotent( <L> ) for a Lie algebra <L>, you may want to try IsLieNilpotent( <L> ) instead");
else
Error("you can't use IsNilpotent( <A> ) for an algebra <A>");
fi;
end
);
InstallMethod( IsNilpotent, [ IsGroup ], IsNilpotentGroup );
InstallMethod( IsNilpotent, [ IsOrdinaryTable ], IsNilpotentCharacterTable );
#############################################################################
##
#O IsSimple( <obj> )
##
## is `true' if <obj> is a simple group or a simple algebra or ...
##
DeclareOperation( "IsSimple", [ IsObject ] );
InstallMethod( IsSimple, [ IsAlgebra ], IsSimpleAlgebra );
#T InstallMethod( IsSimple, [ IsAModule ], IsSimpleModule );
InstallMethod( IsSimple, [ IsGroup ], IsSimpleGroup );
InstallMethod( IsSimple, [ IsOrdinaryTable ], IsSimpleCharacterTable );
#############################################################################
##
#O IsAlmostSimple( <obj> )
##
## is `true' if <obj> is an almost simple group
## or an almost simple character table or ...
##
DeclareOperation( "IsAlmostSimple", [ IsObject ] );
InstallMethod( IsAlmostSimple, [ IsGroup ], IsAlmostSimpleGroup );
InstallMethod( IsAlmostSimple, [ IsOrdinaryTable ],
IsAlmostSimpleCharacterTable );
#############################################################################
##
#O IsSolvable( <obj> )
##
## is `true' if <obj> is a solvable group or ...
##
DeclareOperation( "IsSolvable", [ IsObject ] );
Add(SOLVABILITY_IMPLYING_FUNCTIONS,IsSolvable);
# IsSolvableAlgebra is now called IsLieSolvable.
#
InstallMethod( IsSolvable, [ IsAlgebra ],
function(A)
if HasIsLieAlgebra(A) and IsLieAlgebra(A) then
Error(
"you can't use IsSolvable( <L> ) for a Lie algebra <L>, you may want to try IsLieSolvable( <L> ) instead");
else
Error("you can't use IsSolvable( <A> ) for an algebra <A>");
fi;
end );
InstallMethod( IsSolvable, [ IsGroup ], IsSolvableGroup );
InstallMethod( IsSolvable, [ IsOrdinaryTable ], IsSolvableCharacterTable );
#############################################################################
##
#O IsSporadicSimple( <obj> )
##
## is `true' if <obj> is a sporadic simple group or character table or ...
##
DeclareOperation( "IsSporadicSimple", [ IsObject ] );
InstallMethod( IsSporadicSimple, [ IsGroup ], IsSporadicSimpleGroup );
InstallMethod( IsSporadicSimple, [ IsOrdinaryTable ],
IsSporadicSimpleCharacterTable );
#############################################################################
##
#O IsSupersolvable( <obj> )
##
## is `true' if <obj> is a supersolvable group or a supersolvable algebra
## or ...
##
DeclareOperation( "IsSupersolvable", [ IsObject ] );
InstallMethod( IsSupersolvable, [ IsGroup ], IsSupersolvableGroup );
InstallMethod( IsSupersolvable, [ IsOrdinaryTable ],
IsSupersolvableCharacterTable );
#############################################################################
##
#O IsPerfect( <D> )
##
DeclareOperation( "IsPerfect", [ IsObject ] );
InstallMethod( IsPerfect, [ IsGroup ], IsPerfectGroup );
InstallMethod( IsPerfect, [ IsOrdinaryTable ], IsPerfectCharacterTable );
#############################################################################
##
#O Kernel( <obj> )
##
## is the kernel of a general mapping that respects multiplicative or
## additive structure (or both, so we must check),
## or the kernel of a character ...
##
DeclareOperation( "Kernel", [ IsObject ] );
InstallMethod( Kernel,
[ IsGeneralMapping ],
function( map )
if RespectsAddition( map ) and RespectsZero( map ) then
return KernelOfAdditiveGeneralMapping( map );
elif RespectsMultiplication( map ) and RespectsOne( map ) then
return KernelOfMultiplicativeGeneralMapping( map );
else
TryNextMethod();
fi;
end );
InstallMethod( Kernel, [ IsClassFunction ], KernelOfCharacter );
#############################################################################
##
#O LowerCentralSeries( <D> )
##
DeclareOperation( "LowerCentralSeries", [ IsObject ] );
# LowerCentralSeries is now called LieLowerCentralSeries.
#
InstallMethod( LowerCentralSeries, [ IsAlgebra ],
function(A)
if HasIsLieAlgebra(A) and IsLieAlgebra(A) then
Error("you can't use LowerCentralSeries( <L> ) for a Lie algebra <L>, you may want to try LieLowerCentralSeries( <L> ) instead");
else
Error("you can't use LowerCentralSeries( <A> ) for an algebra <A>");
fi;
end
);
InstallMethod( LowerCentralSeries, [ IsGroup ], LowerCentralSeriesOfGroup );
#############################################################################
##
#O Rank( <obj> )
##
## is the rank of a matrix or a $p$-group or ...
##
DeclareOperation( "Rank", [ IsObject ] );
InstallMethod( Rank, [ IsMatrix ], RankMat );
InstallMethod( Rank, [ IsGroup ], RankPGroup );
#############################################################################
##
#O UpperCentralSeries( <D> )
##
DeclareOperation( "UpperCentralSeries", [ IsObject ] );
# UpperCentralSeriesOfAlgebra is now called LieUpperCentralSeries.
#
InstallMethod( UpperCentralSeries, [ IsAlgebra ],
function(A)
if HasIsLieAlgebra(A) and IsLieAlgebra(A) then
Error("you can't use UpperCentralSeries( <L> ) for a Lie algebra <L>, you may want to try LieUpperCentralSeries( <L> ) instead");
else
Error("you can't use UpperCentralSeries( <A> ) for an algebra <A>");
fi;
end
);
InstallMethod( UpperCentralSeries, [ IsGroup ], UpperCentralSeriesOfGroup );
DeclareGlobalFunction( "InsertElmList" );
InstallGlobalFunction(InsertElmList, function (list, pos, elm)
Add(list,elm,pos);
end);
DeclareSynonym( "RemoveElmList", Remove);
#############################################################################
##
#E
|