/usr/share/gap/lib/pcgsind.gd is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 | #############################################################################
##
#W pcgsind.gd GAP Library Frank Celler
##
##
#Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the operations for induced polycylic generating
## systems.
##
#############################################################################
##
#C IsInducedPcgs(<pcgs>)
##
## <#GAPDoc Label="IsInducedPcgs">
## <ManSection>
## <Filt Name="IsInducedPcgs" Arg='pcgs' Type='Category'/>
##
## <Description>
## The category of induced pcgs. This a subcategory of pcgs.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsInducedPcgs", IsPcgs );
#############################################################################
##
#O InducedPcgsByPcSequence( <pcgs>, <pcs> )
#O InducedPcgsByPcSequenceNC( <pcgs>, <pcs>[, <depths>] )
##
## <#GAPDoc Label="InducedPcgsByPcSequence">
## <ManSection>
## <Oper Name="InducedPcgsByPcSequence" Arg='pcgs, pcs'/>
## <Oper Name="InducedPcgsByPcSequenceNC" Arg='pcgs, pcs[, depths]'/>
##
## <Description>
## If <A>pcs</A> is a list of elements that form an induced pcgs
## with respect to <A>pcgs</A> this operation returns an induced pcgs
## with these elements.
## <P/>
## In the third version, the depths of <A>pcs</A> with respect to
## <A>pcgs</A> can be given (they are computed anew otherwise).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "InducedPcgsByPcSequence", [ IsPcgs, IsList ] );
DeclareOperation( "InducedPcgsByPcSequenceNC", [ IsPcgs, IsList ] );
#############################################################################
##
#A LeadCoeffsIGS( <igs> )
##
## <#GAPDoc Label="LeadCoeffsIGS">
## <ManSection>
## <Attr Name="LeadCoeffsIGS" Arg='igs'/>
##
## <Description>
## This attribute is used to store leading coefficients with respect to the
## parent pcgs. the <A>i</A>-th entry –if bound– is the leading
## exponent of the element of <A>igs</A> that has depth <A>i</A> in the
## parent.
## (It cannot be assigned to a component in the object created by
## <Ref Func="InducedPcgsByPcSequenceNC"/> as the
## permutation group methods call it from within the postprocessing,
## before this postprocessing however no coefficients may be computed.)
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "LeadCoeffsIGS", IsInducedPcgs );
#############################################################################
##
#O InducedPcgsByPcSequenceAndGenerators( <pcgs>, <ind>, <gens> )
##
## <#GAPDoc Label="InducedPcgsByPcSequenceAndGenerators">
## <ManSection>
## <Oper Name="InducedPcgsByPcSequenceAndGenerators" Arg='pcgs, ind, gens'/>
##
## <Description>
## returns an induced pcgs with respect to <A>pcgs</A> of the subgroup
## generated by <A>ind</A> and <A>gens</A>.
## Here <A>ind</A> must be an induced pcgs with respect to
## <A>pcgs</A> (or a list of group elements that form such an igs)
## and it will be used as initial sequence for the computation.
##
## <Example><![CDATA[
## gap> G := Group( (1,2,3,4),(1,2) );; P := Pcgs(G);;
## gap> I := InducedPcgsByGenerators( P, [(1,2,3,4)] );
## Pcgs([ (1,2,3,4), (1,3)(2,4) ])
## gap> J := InducedPcgsByPcSequenceAndGenerators( P, I, [(1,2)] );
## Pcgs([ (1,2,3,4), (2,4,3), (1,4)(2,3), (1,3)(2,4) ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation(
"InducedPcgsByPcSequenceAndGenerators",
[ IsPcgs, IsList, IsList ] );
#############################################################################
##
#O InducedPcgsByGenerators( <pcgs>, <gens> )
#O InducedPcgsByGeneratorsNC( <pcgs>, <gens> )
##
## <#GAPDoc Label="InducedPcgsByGenerators">
## <ManSection>
## <Oper Name="InducedPcgsByGenerators" Arg='pcgs, gens'/>
## <Oper Name="InducedPcgsByGeneratorsNC" Arg='pcgs, gens'/>
##
## <Description>
## returns an induced pcgs with respect to <A>pcgs</A>
## for the subgroup generated by <A>gens</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "InducedPcgsByGenerators", [ IsPcgs, IsCollection ] );
DeclareOperation( "InducedPcgsByGeneratorsNC", [ IsPcgs, IsCollection ] );
#############################################################################
##
#O InducedPcgsByGeneratorsWithImages( <pcgs>, <gens>, <imgs> )
##
## <ManSection>
## <Oper Name="InducedPcgsByGeneratorsWithImages" Arg='pcgs, gens, imgs'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareOperation(
"InducedPcgsByGeneratorsWithImages",
[ IsPcgs, IsCollection, IsCollection ] );
#############################################################################
##
#O CanonicalPcgsByGeneratorsWithImages( <pcgs>, <gens>, <imgs> )
##
## <#GAPDoc Label="CanonicalPcgsByGeneratorsWithImages">
## <ManSection>
## <Oper Name="CanonicalPcgsByGeneratorsWithImages" Arg='pcgs, gens, imgs'/>
##
## <Description>
## computes a canonical, <A>pcgs</A>-induced pcgs for the span of
## <A>gens</A> and simultaneously does the same transformations on
## <A>imgs</A>, preserving thus a correspondence between <A>gens</A> and
## <A>imgs</A>.
## This operation is used to represent homomorphisms from a pc group.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation(
"CanonicalPcgsByGeneratorsWithImages",
[ IsPcgs, IsCollection, IsCollection ] );
#############################################################################
##
#O AsInducedPcgs( <parent>, <pcs> )
##
## <ManSection>
## <Oper Name="AsInducedPcgs" Arg='parent, pcs'/>
##
## <Description>
## Obsolete function, potentially erraneous. DO NOT USE!
## returns an induced pcgs with <A>parent</A> as parent pcgs and to the
## sequence of elements <A>pcs</A>.
## </Description>
## </ManSection>
##
DeclareOperation(
"AsInducedPcgs",
[ IsPcgs, IsList ] );
#############################################################################
##
#A ParentPcgs( <pcgs> )
##
## <#GAPDoc Label="ParentPcgs">
## <ManSection>
## <Attr Name="ParentPcgs" Arg='pcgs'/>
##
## <Description>
## returns the pcgs by which <A>pcgs</A> was induced.
## If <A>pcgs</A> was not induced, it simply returns <A>pcgs</A>.
## <Example><![CDATA[
## gap> G := Group( (1,2,3,4),(1,2) );;
## gap> P := Pcgs(G);;
## gap> K := InducedPcgsByPcSequence( P, [(1,2,3,4),(1,3)(2,4)] );
## Pcgs([ (1,2,3,4), (1,3)(2,4) ])
## gap> ParentPcgs( K );
## Pcgs([ (3,4), (2,4,3), (1,4)(2,3), (1,3)(2,4) ])
## gap> IsInducedPcgs( K );
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "ParentPcgs", IsInducedPcgs );
#############################################################################
##
#A CanonicalPcgs( <pcgs> )
##
## <#GAPDoc Label="CanonicalPcgs">
## <ManSection>
## <Attr Name="CanonicalPcgs" Arg='pcgs'/>
##
## <Description>
## returns the canonical pcgs corresponding to the induced pcgs <A>pcgs</A>.
## <Example><![CDATA[
## gap> G := Group((1,2,3,4),(5,6,7));
## Group([ (1,2,3,4), (5,6,7) ])
## gap> P := Pcgs(G);
## Pcgs([ (5,6,7), (1,2,3,4), (1,3)(2,4) ])
## gap> I := InducedPcgsByPcSequence(P, [(5,6,7)*(1,3)(2,4),(1,3)(2,4)] );
## Pcgs([ (1,3)(2,4)(5,6,7), (1,3)(2,4) ])
## gap> CanonicalPcgs(I);
## Pcgs([ (5,6,7), (1,3)(2,4) ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "CanonicalPcgs", IsInducedPcgs );
#############################################################################
##
#P IsCanonicalPcgs( <pcgs> )
##
## <#GAPDoc Label="IsCanonicalPcgs">
## <ManSection>
## <Prop Name="IsCanonicalPcgs" Arg='pcgs'/>
##
## <Description>
## An induced pcgs is canonical if the matrix of the exponent vectors of
## the elements of <A>pcgs</A> with respect to the <Ref Func="ParentPcgs"/>
## value of <A>pcgs</A> is in Hermite normal form
## (see <Cite Key="SOGOS"/>). While a subgroup can have various
## induced pcgs with respect to a parent pcgs a canonical pcgs is unique.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsCanonicalPcgs", IsInducedPcgs );
#############################################################################
##
#P IsParentPcgsFamilyPcgs( <pcgs> )
##
## <#GAPDoc Label="IsParentPcgsFamilyPcgs">
## <ManSection>
## <Prop Name="IsParentPcgsFamilyPcgs" Arg='pcgs'/>
##
## <Description>
## This property indicates that the pcgs <A>pcgs</A> is induced with respect
## to a family pcgs.
## <P/>
## This property is needed to distinguish between different independent
## polycyclic generating sequences which a pc group may have, since
## the elementary operations for a non-family pcgs may not be as efficient
## as the elementary operations for the family pcgs.
## <P/>
## This can have a significant influence on the performance of algorithms
## for polycyclic groups.
## Many algorithms require a pcgs that corresponds to an
## elementary abelian series
## (see <Ref Func="PcgsElementaryAbelianSeries" Label="for a group"/>)
## or even a special pcgs (see <Ref Sect="Special Pcgs"/>).
## If the family pcgs has the required
## properties, it will be used for these purposes, if not &GAP; has to work
## with respect to a new pcgs which is <E>not</E> the family pcgs and thus
## takes longer for elementary calculations like
## <Ref Func="ExponentsOfPcElement"/>.
## <P/>
## Therefore, if the family pcgs chosen for arithmetic is not of importance
## it might be worth to <E>change</E> to another, nicer, pcgs to speed up
## calculations.
## This can be achieved, for example, by using the
## <Ref Func="Range" Label="of a general mapping"/> value
## of the isomorphism obtained by <Ref Func="IsomorphismSpecialPcGroup"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsParentPcgsFamilyPcgs", IsInducedPcgs,
20 # we want this to be larger than filters like `PrimeOrderPcgs'
# (cf. rank for `IsFamilyPcgs' in pcgsind.gd)
);
#############################################################################
##
#A ElementaryAbelianSubseries( <pcgs> )
##
## <ManSection>
## <Attr Name="ElementaryAbelianSubseries" Arg='pcgs'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareAttribute(
"ElementaryAbelianSubseries",
IsPcgs );
#############################################################################
##
#O CanonicalPcElement( <ipcgs>, <elm> )
##
## <#GAPDoc Label="CanonicalPcElement">
## <ManSection>
## <Oper Name="CanonicalPcElement" Arg='ipcgs, elm'/>
##
## <Description>
## reduces <A>elm</A> at the induces pcgs <A>ipcgs</A> such that the
## exponents of the reduced result <A>r</A> are zero at the depths
## for which there are generators in <A>ipcgs</A>.
## Elements, whose quotient lies in the group generated by
## <A>ipcgs</A> yield the same canonical element.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "CanonicalPcElement", [ IsInducedPcgs, IsObject ] );
#############################################################################
##
#O SiftedPcElement( <pcgs>, <elm> )
##
## <#GAPDoc Label="SiftedPcElement">
## <ManSection>
## <Oper Name="SiftedPcElement" Arg='pcgs, elm'/>
##
## <Description>
## sifts <A>elm</A> through <A>pcgs</A>, reducing it if the depth is the
## same as the depth of one of the generators in <A>pcgs</A>.
## Thus the identity is returned if <A>elm</A> lies in the group generated
## by <A>pcgs</A>.
## <A>pcgs</A> must be an induced pcgs (see section
## <Ref Sect="Subgroups of Polycyclic Groups - Induced Pcgs"/>)
## and <A>elm</A> must lie in the span of the parent of <A>pcgs</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation(
"SiftedPcElement",
[ IsInducedPcgs, IsObject ] );
#############################################################################
##
#O HomomorphicCanonicalPcgs( <pcgs>, <imgs> )
##
## <ManSection>
## <Oper Name="HomomorphicCanonicalPcgs" Arg='pcgs, imgs'/>
##
## <Description>
## It is important that <A>imgs</A> are the images of an induced generating
## system in their natural order, i. e. they must not be sorted according to
## their depths in the new group, they must be sorted according to their
## depths in the old group.
## </Description>
## </ManSection>
##
DeclareOperation(
"HomomorphicCanonicalPcgs",
[ IsPcgs, IsList ] );
#############################################################################
##
#O HomomorphicInducedPcgs( <pcgs>, <imgs> )
##
## <ManSection>
## <Oper Name="HomomorphicInducedPcgs" Arg='pcgs, imgs'/>
##
## <Description>
## It is important that <A>imgs</A> are the images of an induced generating
## system in their natural order, i. e. they must not be sorted according to
## their depths in the new group, they must be sorted according to their
## depths in the old group.
## </Description>
## </ManSection>
##
DeclareOperation(
"HomomorphicInducedPcgs",
[ IsPcgs, IsList ] );
#############################################################################
##
#O CorrespondingGeneratorsByModuloPcgs( <mpcgs>, <imgs> )
##
## <#GAPDoc Label="CorrespondingGeneratorsByModuloPcgs">
## <ManSection>
## <Oper Name="CorrespondingGeneratorsByModuloPcgs" Arg='mpcgs, imgs'/>
##
## <Description>
## Let <A>mpcgs</A> be a modulo pcgs for a factor of a group <M>G</M>
## and let <M>U</M> be a subgroup of <M>G</M> generated by <A>imgs</A>
## such that <M>U</M> covers the factor for the modulo pcgs.
## Then this function computes elements in <M>U</M> corresponding to the
## generators of the modulo pcgs.
## <P/>
## Note that the computation of induced generating sets is not possible
## for some modulo pcgs.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("CorrespondingGeneratorsByModuloPcgs");
#############################################################################
##
#F NORMALIZE_IGS( <pcgs>, <list> )
##
## <ManSection>
## <Func Name="NORMALIZE_IGS" Arg='pcgs, list'/>
##
## <Description>
## Obsolete function, potentially erraneous. DO NOT USE!
## </Description>
## </ManSection>
##
DeclareGlobalFunction("NORMALIZE_IGS");
#############################################################################
##
#E
|