This file is indexed.

/usr/share/gap/lib/pcgsind.gd is in gap-libs 4r6p5-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
#############################################################################
##
#W  pcgsind.gd                  GAP Library                      Frank Celler
##
##
#Y  Copyright (C)  1996,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This  file  contains  the operations   for  induced polycylic  generating
##  systems.
##

#############################################################################
##
#C  IsInducedPcgs(<pcgs>)
##
##  <#GAPDoc Label="IsInducedPcgs">
##  <ManSection>
##  <Filt Name="IsInducedPcgs" Arg='pcgs' Type='Category'/>
##
##  <Description>
##  The category of induced pcgs. This a subcategory of pcgs.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsInducedPcgs", IsPcgs );


#############################################################################
##
#O  InducedPcgsByPcSequence( <pcgs>, <pcs> )
#O  InducedPcgsByPcSequenceNC( <pcgs>, <pcs>[, <depths>] )
##
##  <#GAPDoc Label="InducedPcgsByPcSequence">
##  <ManSection>
##  <Oper Name="InducedPcgsByPcSequence" Arg='pcgs, pcs'/>
##  <Oper Name="InducedPcgsByPcSequenceNC" Arg='pcgs, pcs[, depths]'/>
##
##  <Description>
##  If <A>pcs</A> is a list of elements that form an induced pcgs
##  with respect to <A>pcgs</A> this operation returns an induced pcgs
##  with these elements.
##  <P/>
##  In the third version, the depths of <A>pcs</A> with respect to
##  <A>pcgs</A> can be given (they are computed anew otherwise).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "InducedPcgsByPcSequence", [ IsPcgs, IsList ] );
DeclareOperation( "InducedPcgsByPcSequenceNC", [ IsPcgs, IsList ] );

#############################################################################
##
#A  LeadCoeffsIGS( <igs> )
##
##  <#GAPDoc Label="LeadCoeffsIGS">
##  <ManSection>
##  <Attr Name="LeadCoeffsIGS" Arg='igs'/>
##
##  <Description>
##  This attribute is used to store leading coefficients with respect to the
##  parent pcgs. the <A>i</A>-th entry &ndash;if bound&ndash; is the leading
##  exponent of the element of <A>igs</A> that has depth <A>i</A> in the
##  parent.
##  (It cannot be assigned to a component in the object created by
##  <Ref Func="InducedPcgsByPcSequenceNC"/> as the
##  permutation group methods call it from within the postprocessing,
##  before this postprocessing however no coefficients may be computed.)
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "LeadCoeffsIGS", IsInducedPcgs );


#############################################################################
##
#O  InducedPcgsByPcSequenceAndGenerators( <pcgs>, <ind>, <gens> )
##
##  <#GAPDoc Label="InducedPcgsByPcSequenceAndGenerators">
##  <ManSection>
##  <Oper Name="InducedPcgsByPcSequenceAndGenerators" Arg='pcgs, ind, gens'/>
##
##  <Description>
##  returns an induced pcgs with respect to <A>pcgs</A> of the subgroup
##  generated by <A>ind</A> and <A>gens</A>.
##  Here <A>ind</A> must be an induced pcgs with respect to
##  <A>pcgs</A> (or a list of group elements that form such an igs)
##  and it will be used as initial sequence for the computation.
##
##  <Example><![CDATA[
##  gap> G := Group( (1,2,3,4),(1,2) );;  P := Pcgs(G);;
##  gap> I := InducedPcgsByGenerators( P, [(1,2,3,4)] );
##  Pcgs([ (1,2,3,4), (1,3)(2,4) ])
##  gap> J := InducedPcgsByPcSequenceAndGenerators( P, I, [(1,2)] );
##  Pcgs([ (1,2,3,4), (2,4,3), (1,4)(2,3), (1,3)(2,4) ])
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation(
    "InducedPcgsByPcSequenceAndGenerators",
    [ IsPcgs, IsList, IsList ] );


#############################################################################
##
#O  InducedPcgsByGenerators( <pcgs>, <gens> )
#O  InducedPcgsByGeneratorsNC( <pcgs>, <gens> )
##
##  <#GAPDoc Label="InducedPcgsByGenerators">
##  <ManSection>
##  <Oper Name="InducedPcgsByGenerators" Arg='pcgs, gens'/>
##  <Oper Name="InducedPcgsByGeneratorsNC" Arg='pcgs, gens'/>
##
##  <Description>
##  returns an induced pcgs with respect to <A>pcgs</A>
##  for the subgroup generated by <A>gens</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "InducedPcgsByGenerators", [ IsPcgs, IsCollection ] );
DeclareOperation( "InducedPcgsByGeneratorsNC", [ IsPcgs, IsCollection ] );


#############################################################################
##
#O  InducedPcgsByGeneratorsWithImages( <pcgs>, <gens>, <imgs> )
##
##  <ManSection>
##  <Oper Name="InducedPcgsByGeneratorsWithImages" Arg='pcgs, gens, imgs'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareOperation(
    "InducedPcgsByGeneratorsWithImages",
    [ IsPcgs, IsCollection, IsCollection ] );

#############################################################################
##
#O  CanonicalPcgsByGeneratorsWithImages( <pcgs>, <gens>, <imgs> )
##
##  <#GAPDoc Label="CanonicalPcgsByGeneratorsWithImages">
##  <ManSection>
##  <Oper Name="CanonicalPcgsByGeneratorsWithImages" Arg='pcgs, gens, imgs'/>
##
##  <Description>
##  computes a canonical, <A>pcgs</A>-induced pcgs for the span of
##  <A>gens</A> and simultaneously does the same transformations on
##  <A>imgs</A>, preserving thus a correspondence between <A>gens</A> and
##  <A>imgs</A>.
##  This operation is used to represent homomorphisms from a pc group.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation(
    "CanonicalPcgsByGeneratorsWithImages",
    [ IsPcgs, IsCollection, IsCollection ] );


#############################################################################
##
#O  AsInducedPcgs( <parent>, <pcs> )
##
##  <ManSection>
##  <Oper Name="AsInducedPcgs" Arg='parent, pcs'/>
##
##  <Description>
##  Obsolete function, potentially erraneous. DO NOT USE!
##  returns an induced pcgs with <A>parent</A> as parent pcgs and to the
##  sequence of elements <A>pcs</A>.
##  </Description>
##  </ManSection>
##
DeclareOperation(
    "AsInducedPcgs",
    [ IsPcgs, IsList ] );


#############################################################################
##
#A  ParentPcgs( <pcgs> )
##
##  <#GAPDoc Label="ParentPcgs">
##  <ManSection>
##  <Attr Name="ParentPcgs" Arg='pcgs'/>
##
##  <Description>
##  returns the pcgs by which <A>pcgs</A> was induced.
##  If <A>pcgs</A> was not induced, it simply returns <A>pcgs</A>.
##  <Example><![CDATA[
##  gap> G := Group( (1,2,3,4),(1,2) );;
##  gap> P := Pcgs(G);;
##  gap> K := InducedPcgsByPcSequence( P, [(1,2,3,4),(1,3)(2,4)] );
##  Pcgs([ (1,2,3,4), (1,3)(2,4) ])
##  gap> ParentPcgs( K );
##  Pcgs([ (3,4), (2,4,3), (1,4)(2,3), (1,3)(2,4) ])
##  gap> IsInducedPcgs( K );
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "ParentPcgs", IsInducedPcgs );


#############################################################################
##
#A  CanonicalPcgs( <pcgs> )
##
##  <#GAPDoc Label="CanonicalPcgs">
##  <ManSection>
##  <Attr Name="CanonicalPcgs" Arg='pcgs'/>
##
##  <Description>
##  returns the canonical pcgs corresponding to the induced pcgs <A>pcgs</A>.
##  <Example><![CDATA[
##  gap> G := Group((1,2,3,4),(5,6,7));
##  Group([ (1,2,3,4), (5,6,7) ])
##  gap> P := Pcgs(G);
##  Pcgs([ (5,6,7), (1,2,3,4), (1,3)(2,4) ])
##  gap> I := InducedPcgsByPcSequence(P, [(5,6,7)*(1,3)(2,4),(1,3)(2,4)] );
##  Pcgs([ (1,3)(2,4)(5,6,7), (1,3)(2,4) ])
##  gap> CanonicalPcgs(I);
##  Pcgs([ (5,6,7), (1,3)(2,4) ])
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "CanonicalPcgs", IsInducedPcgs );


#############################################################################
##
#P  IsCanonicalPcgs( <pcgs> )
##
##  <#GAPDoc Label="IsCanonicalPcgs">
##  <ManSection>
##  <Prop Name="IsCanonicalPcgs" Arg='pcgs'/>
##
##  <Description>
##  An induced pcgs is canonical if the matrix of the exponent vectors of
##  the elements of <A>pcgs</A> with respect to the <Ref Func="ParentPcgs"/>
##  value of <A>pcgs</A> is in Hermite normal form
##  (see <Cite Key="SOGOS"/>). While a subgroup can have various
##  induced pcgs with respect to a parent pcgs a canonical pcgs is unique.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsCanonicalPcgs", IsInducedPcgs );

#############################################################################
##
#P  IsParentPcgsFamilyPcgs( <pcgs> )
##
##  <#GAPDoc Label="IsParentPcgsFamilyPcgs">
##  <ManSection>
##  <Prop Name="IsParentPcgsFamilyPcgs" Arg='pcgs'/>
##
##  <Description>
##  This property indicates that the pcgs <A>pcgs</A> is induced with respect
##  to a family pcgs.
##  <P/>
##  This property is needed to distinguish between different independent 
##  polycyclic generating sequences which a pc group may have, since
##  the elementary operations for a non-family pcgs may not be as efficient 
##  as the elementary operations for the family pcgs.
##  <P/>
##  This can have a significant influence on the performance of algorithms
##  for polycyclic groups.
##  Many algorithms require a pcgs that corresponds to an
##  elementary abelian series
##  (see&nbsp;<Ref Func="PcgsElementaryAbelianSeries" Label="for a group"/>)
##  or even a special pcgs (see&nbsp;<Ref Sect="Special Pcgs"/>).
##  If the family pcgs has the required
##  properties, it will be used for these purposes, if not &GAP; has to work
##  with respect to a new pcgs which is <E>not</E> the family pcgs and thus
##  takes longer for elementary calculations like
##  <Ref Func="ExponentsOfPcElement"/>.
##  <P/>
##  Therefore, if the family pcgs chosen for arithmetic is not of importance
##  it might be worth to <E>change</E> to another, nicer, pcgs to speed up
##  calculations.
##  This can be achieved, for example, by using the 
##  <Ref Func="Range" Label="of a general mapping"/> value
##  of the isomorphism obtained by <Ref Func="IsomorphismSpecialPcGroup"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsParentPcgsFamilyPcgs", IsInducedPcgs,
  20 # we want this to be larger than filters like `PrimeOrderPcgs'
     # (cf. rank for `IsFamilyPcgs' in pcgsind.gd)
  );

#############################################################################
##
#A  ElementaryAbelianSubseries( <pcgs> )
##
##  <ManSection>
##  <Attr Name="ElementaryAbelianSubseries" Arg='pcgs'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareAttribute(
    "ElementaryAbelianSubseries",
    IsPcgs );



#############################################################################
##
#O  CanonicalPcElement( <ipcgs>, <elm> )
##
##  <#GAPDoc Label="CanonicalPcElement">
##  <ManSection>
##  <Oper Name="CanonicalPcElement" Arg='ipcgs, elm'/>
##
##  <Description>
##  reduces <A>elm</A> at the induces pcgs <A>ipcgs</A> such that the
##  exponents of the reduced result <A>r</A> are zero at the depths
##  for which there are generators in <A>ipcgs</A>.
##  Elements, whose quotient lies in the group generated by
##  <A>ipcgs</A> yield the same canonical element.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "CanonicalPcElement", [ IsInducedPcgs, IsObject ] );


#############################################################################
##
#O  SiftedPcElement( <pcgs>, <elm> )
##
##  <#GAPDoc Label="SiftedPcElement">
##  <ManSection>
##  <Oper Name="SiftedPcElement" Arg='pcgs, elm'/>
##
##  <Description>
##  sifts <A>elm</A> through <A>pcgs</A>, reducing it if the depth is the
##  same as the depth of one of the generators in <A>pcgs</A>.
##  Thus the identity is returned if <A>elm</A> lies in the group generated
##  by <A>pcgs</A>.
##  <A>pcgs</A> must be an induced pcgs (see section 
##  <Ref Sect="Subgroups of Polycyclic Groups - Induced Pcgs"/>) 
##  and <A>elm</A> must lie in the span of the parent of <A>pcgs</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation(
    "SiftedPcElement",
    [ IsInducedPcgs, IsObject ] );


#############################################################################
##
#O  HomomorphicCanonicalPcgs( <pcgs>, <imgs> )
##
##  <ManSection>
##  <Oper Name="HomomorphicCanonicalPcgs" Arg='pcgs, imgs'/>
##
##  <Description>
##  It is important that <A>imgs</A> are the images of an induced generating
##  system in their natural order, i. e. they must not be sorted according to
##  their depths in the new group, they must be sorted according to their
##  depths in the old group.
##  </Description>
##  </ManSection>
##
DeclareOperation(
    "HomomorphicCanonicalPcgs",
    [ IsPcgs, IsList ] );


#############################################################################
##
#O  HomomorphicInducedPcgs( <pcgs>, <imgs> )
##
##  <ManSection>
##  <Oper Name="HomomorphicInducedPcgs" Arg='pcgs, imgs'/>
##
##  <Description>
##  It is important that <A>imgs</A> are the images of an induced generating
##  system in their natural order, i. e. they must not be sorted according to
##  their depths in the new group, they must be sorted according to their
##  depths in the old group.
##  </Description>
##  </ManSection>
##
DeclareOperation(
    "HomomorphicInducedPcgs",
    [ IsPcgs, IsList ] );

#############################################################################
##
#O  CorrespondingGeneratorsByModuloPcgs( <mpcgs>, <imgs> )
##
##  <#GAPDoc Label="CorrespondingGeneratorsByModuloPcgs">
##  <ManSection>
##  <Oper Name="CorrespondingGeneratorsByModuloPcgs" Arg='mpcgs, imgs'/>
##
##  <Description>
##  Let <A>mpcgs</A> be a modulo pcgs for a factor of a group <M>G</M>
##  and let <M>U</M> be a subgroup of <M>G</M> generated by <A>imgs</A>
##  such that <M>U</M> covers the factor for the modulo pcgs.
##  Then this function computes elements in <M>U</M> corresponding to the
##  generators of the modulo pcgs.
##  <P/>
##  Note that the computation of induced generating sets is not possible
##  for some modulo pcgs.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("CorrespondingGeneratorsByModuloPcgs");

#############################################################################
##
#F  NORMALIZE_IGS( <pcgs>, <list> )
##
##  <ManSection>
##  <Func Name="NORMALIZE_IGS" Arg='pcgs, list'/>
##
##  <Description>
##  Obsolete function, potentially erraneous. DO NOT USE!
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("NORMALIZE_IGS");


#############################################################################
##  
#E