/usr/share/gap/lib/pcgsmodu.gd is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 | #############################################################################
##
#W pcgsmodu.gd GAP Library Frank Celler
##
##
#Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the operations for polycylic generating systems modulo
## another such system.
##
#############################################################################
##
#O ModuloPcgsByPcSequenceNC( <home>, <pcs>, <modulo> )
##
## <ManSection>
## <Oper Name="ModuloPcgsByPcSequenceNC" Arg='home, pcs, modulo'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareOperation(
"ModuloPcgsByPcSequenceNC",
[ IsPcgs, IsList, IsPcgs ] );
#############################################################################
##
#O ModuloPcgsByPcSequence( <home>, <pcs>, <modulo> )
##
## <ManSection>
## <Oper Name="ModuloPcgsByPcSequence" Arg='home, pcs, modulo'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareOperation(
"ModuloPcgsByPcSequence",
[ IsPcgs, IsList, IsPcgs ] );
#############################################################################
##
#O ModuloTailPcgsByList( <home>, <list>, <taildepths> )
##
## <ManSection>
## <Oper Name="ModuloTailPcgsByList" Arg='home, list, taildepths'/>
##
## <Description>
## constructs a modulo pcgs whose elements are <A>list</A> and whose denominator
## is the subset of <A>home</A> given by the indices in <A>taildepths</A>. <A>list</A>
## must be a list of elements of different depths so that the exponents for
## this modulo pcgs are just the exponents in home at the indices given by
## the entries in <A>list</A>. (So in particular, <A>list</A> must be a subset of
## <A>home</A> modulo the tail.) No check is performed whether the input is
## valid.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "ModuloTailPcgsByList" );
#############################################################################
##
#O ModuloPcgs( <G>, <N> )
##
## <#GAPDoc Label="ModuloPcgs">
## <ManSection>
## <Oper Name="ModuloPcgs" Arg='G, N'/>
##
## <Description>
## returns a modulo pcgs for the factor <M><A>G</A>/<A>N</A></M> which must
## be solvable, which <A>N</A> may be insolvable.
## <Ref Func="ModuloPcgs"/> will return <E>a</E> pcgs for the factor,
## there is no guarantee that it will be <Q>compatible</Q> with any other
## pcgs.
## If this is required, the <K>mod</K> operator must be used on
## induced pcgs, see <Ref Meth="\mod" Label="for two pcgs"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ModuloPcgs", [ IsGroup, IsGroup ] );
#############################################################################
##
#A DenominatorOfModuloPcgs( <pcgs> )
##
## <#GAPDoc Label="DenominatorOfModuloPcgs">
## <ManSection>
## <Attr Name="DenominatorOfModuloPcgs" Arg='pcgs'/>
##
## <Description>
## returns a generating set for the denominator of the modulo pcgs
## <A>pcgs</A>.
##
## <Example><![CDATA[
## gap> G := Group( (1,2,3,4,5),(1,2) );
## Group([ (1,2,3,4,5), (1,2) ])
## gap> P := ModuloPcgs(G, DerivedSubgroup(G) );
## Pcgs([ (4,5) ])
## gap> NumeratorOfModuloPcgs(P);
## [ (1,2,3,4,5), (1,2) ]
## gap> DenominatorOfModuloPcgs(P);
## [ (1,3,2), (2,4,3), (2,3)(4,5) ]
## gap> RelativeOrders(P);
## [ 2 ]
## gap> ExponentsOfPcElement( P, (1,2,3,4,5) );
## [ 0 ]
## gap> ExponentsOfPcElement( P, (4,5) );
## [ 1 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "DenominatorOfModuloPcgs", IsModuloPcgs );
#############################################################################
##
#A NumeratorOfModuloPcgs( <pcgs> )
##
## <#GAPDoc Label="NumeratorOfModuloPcgs">
## <ManSection>
## <Attr Name="NumeratorOfModuloPcgs" Arg='pcgs'/>
##
## <Description>
## returns a generating set for the numerator of the modulo pcgs
## <A>pcgs</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "NumeratorOfModuloPcgs", IsModuloPcgs );
#############################################################################
##
#P IsNumeratorParentPcgsFamilyPcgs( <mpcgs> )
##
## <ManSection>
## <Prop Name="IsNumeratorParentPcgsFamilyPcgs" Arg='mpcgs'/>
##
## <Description>
## This property indicates that the numerator of the modulo pcgs
## <A>mpcgs</A> is induced with respect to a family pcgs.
## </Description>
## </ManSection>
##
DeclareProperty( "IsNumeratorParentPcgsFamilyPcgs", IsModuloPcgs );
#############################################################################
##
#O ExponentsConjugateLayer( <mpcgs>, <elm>, <e> )
##
## <#GAPDoc Label="ExponentsConjugateLayer">
## <ManSection>
## <Oper Name="ExponentsConjugateLayer" Arg='mpcgs, elm, e'/>
##
## <Description>
## Computes the exponents of <A>elm</A><C>^</C><A>e</A> with respect to
## <A>mpcgs</A>; <A>elm</A> must be in the span of <A>mpcgs</A>,
## <A>e</A> a pc element in the span of the
## parent pcgs of <A>mpcgs</A> and <A>mpcgs</A> must be the modulo pcgs for
## an abelian layer. (This is the usual case when acting on a chief
## factor). In this case if <A>mpcgs</A> is induced by the family pcgs (see
## section <Ref Sect="Subgroups of Polycyclic Groups - Induced Pcgs"/>),
## the exponents can be computed directly by looking up exponents without
## having to compute in the group and having to collect a potential tail.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ExponentsConjugateLayer",
[IsModuloPcgs,IsMultiplicativeElementWithInverse,
IsMultiplicativeElementWithInverse] );
#############################################################################
##
#E
|