This file is indexed.

/usr/share/gap/lib/pcgsmodu.gd is in gap-libs 4r6p5-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#############################################################################
##
#W  pcgsmodu.gd                 GAP Library                      Frank Celler
##
##
#Y  Copyright (C)  1996,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the operations for polycylic generating systems modulo
##  another such system.
##

#############################################################################
##
#O  ModuloPcgsByPcSequenceNC( <home>, <pcs>, <modulo> )
##
##  <ManSection>
##  <Oper Name="ModuloPcgsByPcSequenceNC" Arg='home, pcs, modulo'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareOperation(
    "ModuloPcgsByPcSequenceNC",
    [ IsPcgs, IsList, IsPcgs ] );


#############################################################################
##
#O  ModuloPcgsByPcSequence( <home>, <pcs>, <modulo> )
##
##  <ManSection>
##  <Oper Name="ModuloPcgsByPcSequence" Arg='home, pcs, modulo'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareOperation(
    "ModuloPcgsByPcSequence",
    [ IsPcgs, IsList, IsPcgs ] );

#############################################################################
##
#O  ModuloTailPcgsByList( <home>, <list>, <taildepths> )
##
##  <ManSection>
##  <Oper Name="ModuloTailPcgsByList" Arg='home, list, taildepths'/>
##
##  <Description>
##  constructs a modulo pcgs whose elements are <A>list</A> and whose denominator
##  is the subset of <A>home</A> given by the indices in <A>taildepths</A>.  <A>list</A>
##  must be a list of elements of different depths so that the exponents for
##  this modulo pcgs are just the exponents in home at the indices given by
##  the entries in <A>list</A>. (So in particular, <A>list</A> must be a subset of
##  <A>home</A> modulo the tail.) No check is performed whether the input is
##  valid.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "ModuloTailPcgsByList" );

#############################################################################
##
#O  ModuloPcgs( <G>, <N> )
##
##  <#GAPDoc Label="ModuloPcgs">
##  <ManSection>
##  <Oper Name="ModuloPcgs" Arg='G, N'/>
##
##  <Description>
##  returns a modulo pcgs for the factor <M><A>G</A>/<A>N</A></M> which must
##  be solvable, which <A>N</A> may be insolvable.
##  <Ref Func="ModuloPcgs"/> will return <E>a</E> pcgs for the factor,
##  there is no guarantee that it will be <Q>compatible</Q> with any other
##  pcgs.
##  If this is required, the <K>mod</K> operator must be used on
##  induced pcgs, see <Ref Meth="\mod" Label="for two pcgs"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ModuloPcgs", [ IsGroup, IsGroup ] );


#############################################################################
##
#A  DenominatorOfModuloPcgs( <pcgs> )
##
##  <#GAPDoc Label="DenominatorOfModuloPcgs">
##  <ManSection>
##  <Attr Name="DenominatorOfModuloPcgs" Arg='pcgs'/>
##
##  <Description>
##  returns a generating set for the denominator of the modulo pcgs
##  <A>pcgs</A>.
##
##  <Example><![CDATA[
##  gap> G := Group( (1,2,3,4,5),(1,2) );
##  Group([ (1,2,3,4,5), (1,2) ])
##  gap> P := ModuloPcgs(G, DerivedSubgroup(G) );
##  Pcgs([ (4,5) ])
##  gap> NumeratorOfModuloPcgs(P);
##  [ (1,2,3,4,5), (1,2) ]
##  gap> DenominatorOfModuloPcgs(P);
##  [ (1,3,2), (2,4,3), (2,3)(4,5) ]
##  gap> RelativeOrders(P);
##  [ 2 ]
##  gap> ExponentsOfPcElement( P, (1,2,3,4,5) );
##  [ 0 ]
##  gap> ExponentsOfPcElement( P, (4,5) );
##  [ 1 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "DenominatorOfModuloPcgs", IsModuloPcgs );


#############################################################################
##
#A  NumeratorOfModuloPcgs( <pcgs> )
##
##  <#GAPDoc Label="NumeratorOfModuloPcgs">
##  <ManSection>
##  <Attr Name="NumeratorOfModuloPcgs" Arg='pcgs'/>
##
##  <Description>
##  returns a generating set for the numerator of the modulo pcgs
##  <A>pcgs</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "NumeratorOfModuloPcgs", IsModuloPcgs );

#############################################################################
##
#P  IsNumeratorParentPcgsFamilyPcgs( <mpcgs> )
##
##  <ManSection>
##  <Prop Name="IsNumeratorParentPcgsFamilyPcgs" Arg='mpcgs'/>
##
##  <Description>
##  This property indicates that the numerator of the modulo pcgs
##  <A>mpcgs</A> is induced with respect to a family pcgs.
##  </Description>
##  </ManSection>
##
DeclareProperty( "IsNumeratorParentPcgsFamilyPcgs", IsModuloPcgs );


#############################################################################
##
#O  ExponentsConjugateLayer( <mpcgs>, <elm>, <e> )
##
##  <#GAPDoc Label="ExponentsConjugateLayer">
##  <ManSection>
##  <Oper Name="ExponentsConjugateLayer" Arg='mpcgs, elm, e'/>
##
##  <Description>
##  Computes the exponents of <A>elm</A><C>^</C><A>e</A> with respect to
##  <A>mpcgs</A>; <A>elm</A> must be in the span of <A>mpcgs</A>,
##  <A>e</A> a pc element in the span of the
##  parent pcgs of <A>mpcgs</A> and <A>mpcgs</A> must be the modulo pcgs for
##  an abelian layer. (This is the usual case when acting on a chief
##  factor). In this case if <A>mpcgs</A> is induced by the family pcgs (see
##  section <Ref Sect="Subgroups of Polycyclic Groups - Induced Pcgs"/>), 
##  the exponents can be computed directly by looking up exponents without
##  having to compute in the group and having to collect a potential tail.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ExponentsConjugateLayer",
  [IsModuloPcgs,IsMultiplicativeElementWithInverse,
                IsMultiplicativeElementWithInverse] );


#############################################################################
##  
#E