/usr/share/gap/lib/pcgsnice.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 | #############################################################################
##
#W pcgsnice.gi GAP library Heiko Theißen
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
#############################################################################
##
#M Pcgs( <G> ) . . . . . . . . . . . . . . . . . . . . via nice monomorphism
##
InstallMethod( Pcgs, "via niceomorphism", true,
[ IsGroup and IsHandledByNiceMonomorphism ], 0,
function( G )
local nice, npcgs, pcgs;
nice := NiceMonomorphism( G );
npcgs := Pcgs( NiceObject( G ) );
if npcgs = fail then
return fail;
fi;
pcgs := List( npcgs, gen -> PreImagesRepresentative( nice, gen ) );
pcgs := PcgsByPcSequenceNC( ElementsFamily( FamilyObj( G ) ), pcgs );
if HasIsPrimeOrdersPcgs( npcgs ) and IsPrimeOrdersPcgs( npcgs ) then
SetIsPrimeOrdersPcgs( pcgs, true );
fi;
SetNiceMonomorphism( pcgs, nice );
SetNiceObject ( pcgs, npcgs );
SetGroupOfPcgs ( pcgs, G );
SetOneOfPcgs(pcgs,One(G));
SetFilterObj ( pcgs, IsHandledByNiceMonomorphism );
return pcgs;
end );
#############################################################################
##
#M DepthOfPcElement( <pcgs>, <g> [ , <from> ] ) . . . via nice monomorphism
##
AttributeMethodByNiceMonomorphismCollElm( DepthOfPcElement,
[ IsPcgs, IsMultiplicativeElementWithInverse ] );
InstallOtherMethod( DepthOfPcElement, true,
[ IsPcgs and IsHandledByNiceMonomorphism,
IsMultiplicativeElementWithInverse,
IsPosInt ], 0,
function( pcgs, g, depth )
return DepthOfPcElement( NiceObject( pcgs ),
ImagesRepresentative( NiceMonomorphism( pcgs ), g ),
depth );
end );
#############################################################################
##
#M LeadingExponentOfPcElement( <pcgs>, <g> ) . . . . . via nice monomorphism
##
AttributeMethodByNiceMonomorphismCollElm( LeadingExponentOfPcElement,
[ IsPcgs, IsMultiplicativeElementWithInverse ] );
#############################################################################
##
#M ExponentsOfPcElement( <pcgs>, <g> [ , <poss> ] ) . via nice monomorphism
##
AttributeMethodByNiceMonomorphismCollElm( ExponentsOfPcElement,
[ IsPcgs, IsMultiplicativeElementWithInverse ] );
InstallOtherMethod( ExponentsOfPcElement, true,
[ IsPcgs and IsHandledByNiceMonomorphism,
IsMultiplicativeElementWithInverse,
IsList and IsCyclotomicCollection ], 0,
function( pcgs, g, poss )
return ExponentsOfPcElement( NiceObject( pcgs ),
ImagesRepresentative( NiceMonomorphism( pcgs ), g ),
poss );
end );
InstallOtherMethod( ExponentsOfPcElement, "perm group with 0 positions", true,
[ IsPcgs and IsHandledByNiceMonomorphism,
IsMultiplicativeElementWithInverse,
IsList and IsEmpty ], 0,
function( pcgs, g, poss )
return [ ];
end );
#############################################################################
##
#M ExponentOfPcElement( <pcgs>, <g>, <pos> ) . . . . . via nice monomorphism
##
InstallMethod( ExponentOfPcElement, "via nicoemorphism", true,
[ IsPcgs and IsHandledByNiceMonomorphism,
IsMultiplicativeElementWithInverse,
IsPosInt ], 0,
function( pcgs, g, pos )
return ExponentOfPcElement( NiceObject( pcgs ),
ImagesRepresentative( NiceMonomorphism( pcgs ), g ),
pos );
end );
#############################################################################
##
#E pcgsnice.gi . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
|