/usr/share/gap/lib/polyfinf.gd is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | #############################################################################
##
#W polyfinf.gd GAP Library Frank Celler
#W & Alexander Hulpke
##
##
#Y (C) 1999 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains functions for polynomials over finite fields
##
#############################################################################
##
#F FactorsCommonDegreePol( <R>, <f>, <d> ) . . . . . . . . . . . . . factors
##
## <f> must be a square free product of irreducible factors of degree <d>
## and leading coefficient 1. <R> must be a polynomial ring over a finite
## field of size p^k.
##
DeclareGlobalFunction("FactorsCommonDegreePol");
#############################################################################
##
#F RootsRepresentativeFFPol( <R>, <f>, <n> )
##
## returns a <n>-th root of the finite field polynomial <f>.
DeclareGlobalFunction("RootsRepresentativeFFPol");
#############################################################################
##
#F OrderKnownDividendList( <l>, <pp> ) . . . . . . . . . . . . . . . . local
##
## Computes an integer n such that OnSets( <l>, n ) contains only one
## element e. <pp> must be a list of prime powers of an integer d such that
## n divides d. The functions returns the integer n and the element e.
##
DeclareGlobalFunction("OrderKnownDividendList");
#############################################################################
##
#F FFPOrderKnownDividend( <R>, <g>, <f>, <pp> ) . . . . . . . . . . . local
##
## Computes an integer n such that <g>^n = const mod <f> where <g> and <f>
## are polynomials in <R> and <pp> is list of prime powers of an integer d
## such that n divides d. The functions returns the integer n and the
## element const.
DeclareGlobalFunction("FFPOrderKnownDividend");
DeclareGlobalFunction("FFPFactors");
|