This file is indexed.

/usr/share/gap/lib/polyrat.gd is in gap-libs 4r6p5-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
#############################################################################
##
#W  polyrat.gd                 GAP Library                   Alexander Hulpke
##
##
#Y  Copyright (C)  1996,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1999 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains attributes, properties and operations for univariate
##  polynomials over the rationals
##


#############################################################################
##
#F  APolyProd(<a>,<b>,<p>)   . . . . . . . . . . polynomial product a*b mod p
##
##  <ManSection>
##  <Func Name="APolyProd" Arg='a,b,p'/>
##
##  <Description>
##  return a</E>b mod p;
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("APolyProd");

#############################################################################
##
#F  BPolyProd(<a>,<b>,<m>,<p>) . . . . . . polynomial product a*b mod m mod p
##
##  <ManSection>
##  <Func Name="BPolyProd" Arg='a,b,m,p'/>
##
##  <Description>
##  return EuclideanRemainder(PolynomialRing(Rationals),a</E>b mod p,m) mod p;
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("BPolyProd");

#############################################################################
##
#F  PrimitivePolynomial( <f> )
##
##  <#GAPDoc Label="PrimitivePolynomial">
##  <ManSection>
##  <Func Name="PrimitivePolynomial" Arg='f'/>
##
##  <Description>
##  takes a polynomial <A>f</A> with rational coefficients and computes a new
##  polynomial with integral coefficients, obtained by multiplying with the
##  Lcm of the denominators of the coefficients and casting out the content
##  (the Gcd of the coefficients). The operation returns a list
##  [<A>newpol</A>,<A>coeff</A>] with rational <A>coeff</A> such that
##  <C><A>coeff</A>*<A>newpol</A>=<A>f</A></C>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("PrimitivePolynomial",[IsPolynomial]);

#############################################################################
##
#F  BombieriNorm(<pol>)
##
##  <#GAPDoc Label="BombieriNorm">
##  <ManSection>
##  <Func Name="BombieriNorm" Arg='pol'/>
##
##  <Description>
##  computes weighted Norm [<A>pol</A>]<M>_2</M> of <A>pol</A> which is a
##  good measure for factor coefficients (see <Cite Key="BTW93"/>).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("BombieriNorm");

#############################################################################
##
#A  MinimizedBombieriNorm( <f> ) . . . Tschirnhaus transf'd polynomial
##
##  <#GAPDoc Label="MinimizedBombieriNorm">
##  <ManSection>
##  <Attr Name="MinimizedBombieriNorm" Arg='f'/>
##
##  <Description>
##  This function applies linear Tschirnhaus transformations 
##  (<M>x \mapsto x + i</M>) to the
##  polynomial <A>f</A>, trying to get the Bombieri norm of <A>f</A> small. It returns a
##  list <C>[<A>new_polynomial</A>, <A>i_of_transformation</A>]</C>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("MinimizedBombieriNorm",
   IsPolynomial and IsRationalFunctionsFamilyElement);

#############################################################################
##
#F  RootBound(<f>)
##
##  <ManSection>
##  <Func Name="RootBound" Arg='f'/>
##
##  <Description>
##  returns the bound for the norm of (complex) roots of the rational 
##  univariate polynomial <A>f</A>.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("RootBound");

#############################################################################
##
#F  OneFactorBound(<pol>)
##
##  <#GAPDoc Label="OneFactorBound">
##  <ManSection>
##  <Func Name="OneFactorBound" Arg='pol'/>
##
##  <Description>
##  returns the coefficient bound for a single factor of the rational 
##  polynomial <A>pol</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("OneFactorBound");

#############################################################################
##
#F  HenselBound(<pol>,[<minpol>,<den>]) . . . Bounds for Factor coefficients
##
##  <#GAPDoc Label="HenselBound">
##  <ManSection>
##  <Func Name="HenselBound" Arg='pol,[minpol,den]'/>
##
##  <Description>
##  returns the Hensel bound of the polynomial <A>pol</A>.
##  If the computation takes place over an algebraic extension, then
##  the minimal polynomial <A>minpol</A> and denominator <A>den</A> must be given.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("HenselBound");

#############################################################################
##
#F  TrialQuotientRPF(<f>,<g>,<b>)
##
##  <ManSection>
##  <Func Name="TrialQuotientRPF" Arg='f,g,b'/>
##
##  <Description>
##  returns <M><A>f</A>/<A>g</A></M> if coefficient bounds are given by list <A>b</A>.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("TrialQuotientRPF");

#############################################################################
##
#F  TryCombinations(<f>,...)
##
##  <ManSection>
##  <Func Name="TryCombinations" Arg='f,...'/>
##
##  <Description>
##  trial divisions after Hensel factoring.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("TryCombinations");

DeclareGlobalFunction("HeuGcdIntPolsExtRep"); # to permit recursive call
DeclareGlobalFunction("HeuGcdIntPolsCoeffs"); # univariate version

#############################################################################
##
#F  PolynomialModP(<pol>,<p>)
##
##  <#GAPDoc Label="PolynomialModP">
##  <ManSection>
##  <Func Name="PolynomialModP" Arg='pol,p'/>
##
##  <Description>
##  for a rational polynomial <A>pol</A> this function returns a polynomial over
##  the field with <A>p</A> elements, obtained by reducing the coefficients modulo
##  <A>p</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("PolynomialModP");


#############################################################################
##
#E