/usr/share/gap/lib/primality.gd is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 | #############################################################################
##
#W primality.gd GAP library Jack Schmidt
##
##
#Y Copyright (C) 2005 Jack Schmidt
##
## This file contains declarations for the primality test in the integers.
##
##############################################################################
##
## Bibiliography
##
## http://www.ams.org/mathscinet-getitem?mr=572872
## http://links.jstor.org/sici?sici=0025-5718%28197504%2929%3A130%3C620%3ANPCAFO%3E2.0.CO%3B2-N
## @article{BLS1975,
## AUTHOR = {Brillhart, John and Lehmer, D. H. and Selfridge, J. L.},
## TITLE = {New primality criteria and factorizations of {$2\sp{m}\pm 1$}},
## JOURNAL = {Math. Comp.},
## FJOURNAL = {Mathematics of Computation},
## VOLUME = {29},
## YEAR = {1975},
## PAGES = {620--647},
## ISSN = {0025-5718},
## MRCLASS = {10A25},
## MRNUMBER = {MR0384673 (52 \#5546)},
## MRREVIEWER = {Jean-Marie De Koninck},
## }
##
## http://www.ams.org/mathscinet-getitem?mr=572872
## http://links.jstor.org/sici?sici=0025-5718%28198007%2935%3A151%3C1003%3ATPT%3E2.0.CO%3B2-D
## @article{PSW1980,
## AUTHOR = {Pomerance, Carl and Selfridge, J. L. and Wagstaff, Jr., Samuel
## S.},
## TITLE = {The pseudoprimes to {$25\cdot 10\sp{9}$}},
## JOURNAL = {Math. Comp.},
## FJOURNAL = {Mathematics of Computation},
## VOLUME = {35},
## YEAR = {1980},
## NUMBER = {151},
## PAGES = {1003--1026},
## ISSN = {0025-5718},
## CODEN = {MCMPAF},
## MRCLASS = {10A40 (10-04 10A25)},
## MRNUMBER = {MR572872 (82g:10030)},
## }
##
## http://www.ams.org/mathscinet-getitem?mr=583518
## http://links.jstor.org/sici?sici=0025-5718%28198010%2935%3A152%3C1391%3ALP%3E2.0.CO%3B2-N
## @article {BW1980,
## AUTHOR = {Baillie, Robert and Wagstaff, Jr., Samuel S.},
## TITLE = {Lucas pseudoprimes},
## JOURNAL = {Math. Comp.},
## FJOURNAL = {Mathematics of Computation},
## VOLUME = {35},
## YEAR = {1980},
## NUMBER = {152},
## PAGES = {1391--1417},
## ISSN = {0025-5718},
## CODEN = {MCMPAF},
## MRCLASS = {10A25},
## MRNUMBER = {MR583518 (81j:10005)},
## MRREVIEWER = {V. C. Harris},
## }
##
##############################################################################
## Section 1
DeclareGlobalVariable("CompositeSPP2",
"Composite <10^7 that are strong psp base 2 and have no factor <1000");
DeclareGlobalVariable("CCANT_1_7_3_q11");
DeclareGlobalVariable("CCANT_1_7_3_q63");
DeclareGlobalVariable("CCANT_1_7_3_q64");
DeclareGlobalVariable("CCANT_1_7_3_q65");
#############################################################################
##
#F IsSquareInt(<n>)
##
## <ManSection>
## <Func Name="IsSquareInt" Arg='n'/>
##
## <Description>
## <Ref Func="IsSquareInt"/> tests whether the (positive) integer <A>n</A>
## is square of an integer or not.
## This test is much faster than the simpler <C>RootInt</C><M>(n)^2=n</M>
## because of the initial residue tests.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("IsSquareInt");
## Section 2
DeclareGlobalFunction("IsStrongPseudoPrimeBaseA");
DeclareGlobalFunction("IsBPSWLucasPseudoPrime");
DeclareGlobalFunction("IsLucasPseudoPrimeDP");
DeclareGlobalFunction("IsStrongLucasPseudoPrimeDP");
DeclareGlobalFunction("IsBPSWPseudoPrime");
DeclareGlobalFunction("IsBPSWPseudoPrime_VerifyCorrectness");
## Section 3
DeclareGlobalFunction("PrimalityProof_FindFermat");
DeclareGlobalFunction("PrimalityProof_FindLucas");
DeclareGlobalFunction("PrimalityProof_FindStructure");
#############################################################################
##
#F IsPrimeInt( <n> ) . . . . . . . . . . . . . . . . . . . test for a prime
#F IsProbablyPrimeInt( <n> ) . . . . . . . . . . . . . . . test for a prime
##
## <#GAPDoc Label="IsPrimeInt">
## <ManSection>
## <Func Name="IsPrimeInt" Arg='n'/>
## <Func Name="IsProbablyPrimeInt" Arg='n'/>
##
## <Description>
## <Ref Func="IsPrimeInt"/> returns <K>false</K> if it can prove that
## the integer <A>n</A> is composite and <K>true</K> otherwise.
## By convention <C>IsPrimeInt(0) = IsPrimeInt(1) = false</C>
## and we define
## <C>IsPrimeInt(-</C><A>n</A><C>) = IsPrimeInt(</C><A>n</A><C>)</C>.
## <P/>
## <Ref Func="IsPrimeInt"/> will return <K>true</K> for every prime <A>n</A>.
## <Ref Func="IsPrimeInt"/> will return <K>false</K> for all composite
## <A>n</A> <M>< 10^{18}</M> and for all composite <A>n</A> that have
## a factor <M>p < 1000</M>. So for integers <A>n</A> <M>< 10^{18}</M>,
## <Ref Func="IsPrimeInt"/> is a proper primality test. It is conceivable that
## <Ref Func="IsPrimeInt"/> may return <K>true</K> for some composite
## <A>n</A> <M>> 10^{18}</M>, but no such <A>n</A> is currently known.
## So for integers <A>n</A> <M>> 10^{18}</M>, <Ref Func="IsPrimeInt"/>
## is a probable-primality test. <Ref Func="IsPrimeInt"/> will issue a
## warning when its argument is probably prime but not a proven prime.
## (The function <Ref Func="IsProbablyPrimeInt"/> will do a similar
## calculation but not issue a warning.) The warning can be switched off by
## <C>SetInfoLevel( InfoPrimeInt, 0 );</C>, the default level is <M>1</M>
## (also see <Ref Oper="SetInfoLevel"/> ).
## <P/>
## If composites that fool <Ref Func="IsPrimeInt"/> do exist, they would be extremely
## rare, and finding one by pure chance might be less likely than finding a
## bug in &GAP;. We would appreciate being informed about any example of a
## composite number <A>n</A> for which <Ref Func="IsPrimeInt"/> returns <K>true</K>.
## <P/>
## <Ref Func="IsPrimeInt"/> is a deterministic algorithm, i.e., the computations involve
## no random numbers, and repeated calls will always return the same result.
## <Ref Func="IsPrimeInt"/> first does trial divisions by the primes less than 1000.
## Then it tests that <A>n</A> is a strong pseudoprime w.r.t. the base 2.
## Finally it tests whether <A>n</A> is a Lucas pseudoprime w.r.t. the smallest
## quadratic nonresidue of <A>n</A>. A better description can be found in the
## comment in the library file <File>primality.gi</File>.
## <P/>
## The time taken by <Ref Func="IsPrimeInt"/> is approximately proportional to the third
## power of the number of digits of <A>n</A>. Testing numbers with several
## hundreds digits is quite feasible.
## <P/>
## <Ref Func="IsPrimeInt"/> is a method for the general operation <Ref Oper="IsPrime"/>.
## <P/>
## Remark: In future versions of &GAP; we hope to change the definition of
## <Ref Func="IsPrimeInt"/> to return <K>true</K> only for proven primes (currently, we lack
## a sufficiently good primality proving function). In applications, use
## explicitly <Ref Func="IsPrimeInt"/> or <Ref Func="IsProbablyPrimeInt"/>
## with this change in mind.
## <Example><![CDATA[
## gap> IsPrimeInt( 2^31 - 1 );
## true
## gap> IsPrimeInt( 10^42 + 1 );
## false
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
UnbindGlobal( "IsPrimeInt" );
DeclareGlobalFunction( "IsPrimeInt" );
DeclareGlobalFunction( "IsProbablyPrimeInt" );
#############################################################################
##
#F PrimalityProof(<n>)
##
## <#GAPDoc Label="PrimalityProof">
## <ManSection>
## <Func Name="PrimalityProof" Arg='n'/>
##
## <Description>
## Construct a machine verifiable proof of the primality of (the probable
## prime) <A>n</A>, following the ideas of <Cite Key="BLS1975"/>.
##
## The proof consists of various Fermat and Lucas pseudoprimality tests,
## which taken as a whole prove the primality. The proof is represented
## as a list of witnesses of two kinds. The first kind, <C>[ "F", divisor,
## base ]</C>, indicates a successful Fermat pseudoprimality test, where
## <A>n</A> is a strong pseudoprime at <K>base</K> with order not divisible by
## <M>(<A>n</A>-1)/divisor</M>. The second kind, <C>[ "L", divisor,
## discriminant, P ]</C> indicates a successful Lucas pseudoprimality test,
## for a quadratic form of given <K>discriminant</K> and middle term <K>P</K>
## with an extra check at <M>(<A>n</A>+1)/divisor</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("PrimalityProof");
## Section 4
DeclareGlobalFunction("PrimalityProof_VerifyWitness");
DeclareGlobalFunction("PrimalityProof_VerifyStructure");
DeclareGlobalFunction("PrimalityProof_Verify");
## Section 5
DeclareGlobalVariable("PrimesProofs");
#############################################################################
##
#E
|