This file is indexed.

/usr/share/gap/lib/primality.gi is in gap-libs 4r6p5-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
#############################################################################
##
#W  primality.gi    GAP library          Jack Schmidt
##
##
#Y  Copyright (C)  2005 Jack Schmidt
##
##  This file contains declarations for the primality test in the integers.
##

##  This file is meant to improve the primality testing in GAP in two
##  significant ways. (1) IsProbablyPrimeInt has been sped up, and perhaps
##  been better documented. (2) IsPrimeInt can now use N+-1 primality proving
##  algorithms to prove primality (proofs can be produced for all primes
##  less than 10^18, and for most primes up to 10^50 or more). A proof
##  verifier is included to demonstrate the simplicity of the proofs.
##
##  This file is split into five parts. 
## 
##  (1) Prerequisites, including efficient IsSquareInt
##  routine. Some short tables are also included.
## 
##  (2) The optimized Baillie-Pomerance-Selfridge-Wagstaff
##  pseudoprimality test with subtests properly labelled and explained,
##  and bounds given at a more precise level.
## 
##  (3) The primality proof production code, which finds a machine
##  verifiable proof for the primality of a (probable) prime. It is
##  based on the paper Brillhart, Lehmer, Selfridge's "New Primality
##  Criteria and Factorizations of 2^m +-1", 1975, hereafter referred
##  to as BLS1975. This paper is available on JSTOR and is very clearly
##  written.
## 
##  (4) The primality proof verifier, which detects if the proposed
##  proof in fact satisfies the conditions of one of the results in BLS1975.
## 
##  (5) A pretty interface to GAP, with result caching and warnings in
##  the rare event IsPrimeInt is unable to prove primality.
##
#T  Further work: The following would be good future tasks for the
#T  interested developer:
#T
#T  (1) Recursive verification: It is standard for primality proofs
#T  to require "lemmas" where other numbers are proved prime as well.
#T  Currently I make no use of this (and it is not needed for N < 10^18)
#T  so it is not implemented.
#T
#T  (2) Theoretical extensions of BLS1975: one should be able to more
#T  carefully handle the case of multiple composite factors of N+-1
#T  in the earlier portions of the paper, to bring results like Theorem 21
#T  into wider use.
#T
#T  (3) Other tests: One can easily verify ECPP machine proofs, and they
#T  can coexist in the current format. Unfortunately finding ECPP proofs
#T  is a difficult task. Another test, the APRCL, might also be suitable.
#T  However, verification of its certificates is extremely complex and
#T  some experts warn "the probability of an implementation error in the
#T  verification routine is much higher than the probability that a 
#T  composite BPSW is found". GAP does have rudimentary support for the
#T  needed algebraic structures, but initial testing shows the overhead
#T  of arithmetic in these rings is an insurmountable obstacle for N in
#T  in the appropriate range.
#T
#T  (4) Direct interface to PARI-lib. For a number of reasons, it might
#T  be advantageous to allow use of PARI from within GAP. 
##
##  Testing: All primes < 10^7 tested. All 236021 "Brent factors" tested,
##  but two such primes could not be proven prime (1.8*10^104 and 3.2*10^86). 
##
##############################################################################

##############################################################################
##
##  Section 1: Prerequisites
##
##  (a) record our tables of small primes and pseudoprimes
##  (b) Define IsSquareInt
##
##############################################################################


##############################################################################
##
##  Tables - We define a table
##  CompositeSPP2 which contains a list of
##  the composite numbers < 10^7 that are strong pseudoprimes for 
##  base 2, and that have no prime factors < 1000.
##
##############################################################################

InstallValue(CompositeSPP2,
  [ 1194649, 1678541, 2284453, 2304167, 3090091, 3125281,
  3375041, 3400013, 3898129, 4181921, 4360621, 4469471,
  4513841, 4863127, 5044033, 5173169, 5489641, 5919187,
  6226193, 6233977, 6368689, 6787327, 6952037, 7306261,
  7306561, 7820201, 8036033, 8095447, 8725753, 9006401,
  9056501, 9371251, 9729301, 9863461 ]);

##############################################################################
##
##  Caches - install flushable values into the cache if they are not already
##  installed.
##
##############################################################################
InstallFlushableValue(PrimesProofs,[]);

##############################################################################
## 
#F  IsSquareInt - Check if an integer is a square
##
##  Simple implemenation based on the ideas in Cohen's CCANT, Algorithm 1.7.3.
##  Briefly, check if N is a quadratic residue modulo some small prime powers,
##  then test if it is equal to the square of its integer square root.
##
##  Please note: This is unimaginably faster than the simpler RootInt(n)^2=n
##  because of the initial residue tests.
##
##############################################################################
InstallValue(CCANT_1_7_3_q11,List([1..11],i->0));
InstallValue(CCANT_1_7_3_q63,List([1..63],i->0));
InstallValue(CCANT_1_7_3_q64,List([1..64],i->0));
InstallValue(CCANT_1_7_3_q65,List([1..65],i->0));

BindGlobal("CCANT_1_7_3",
function(n)
local t,r,q;
  if n < 0 then return false; fi;
  if CCANT_1_7_3_q11[1]=0 then
    #initialize
    for t in [0..32] do
      CCANT_1_7_3_q11[(t^2 mod 11)+1]:=1;
      CCANT_1_7_3_q63[(t^2 mod 63)+1]:=1;
      CCANT_1_7_3_q64[(t^2 mod 64)+1]:=1;
      CCANT_1_7_3_q65[(t^2 mod 65)+1]:=1;
    od;
  fi;

  t:= n mod 64;
  if(CCANT_1_7_3_q64[t+1]=0) then return false; fi;
  r:= n mod 45045;
    if(CCANT_1_7_3_q63[(r mod 63)+1]=0) then return false;
  elif(CCANT_1_7_3_q65[(r mod 65)+1]=0) then return false;
  elif(CCANT_1_7_3_q11[(r mod 11)+1]=0) then return false;
  else q:=RootInt(n);
    return n=q^2;
  fi;
end);

InstallGlobalFunction(IsSquareInt,CCANT_1_7_3);



##############################################################################
##
#F  LucasMod(P,Q,N,k) - return the reduction modulo N of the k'th terms of 
##  the Lucas Sequences U,V associated to x^2+Px+Q.
##
##  Iterative version allows larger k (better=constant in N) memory use and
##  is about twice as fast as the recursive version for k around 1000. This
##  should be callable for k around 2^100000 or so (runtime is log(k)), but
##  the size of N is the biggest concern.
##
InstallMethod(LucasMod, 
"iterative method",
[IsInt,IsInt,IsInt,IsInt],
1,
function(P,Q,N,K)
    local Um,Vm,Qm,U2m,V2m,Q2m,U2mp1,V2mp1,Q2mp1,k,s,d,i,P2m4Q,T;
    P2m4Q := P*P-4*Q;
    s := SignInt(K);
    k := AbsInt(K);
    d := LogInt(k+1,2);
    T := 2^d;
    Um := 0;
    Vm := 2 mod N;
    Qm := 1 mod N;
    for i in [d,d-1..0] do
        # T = 2^i
        # k is the 0 through i'th least significant bits of |K|
        # "T <= k" means the i'th bit of |K| is set.
        # If we have found [Um,Vm,Qm]=Lucas(P,Q,m) for m = QuoInt(|K|,2*T),
        # then we can find [Un,Vn,Qn]=Lucas(P,Q,n) for n = QuoInt(|K|,T)
        # using n = 2*m + (i'th bit of |K| is set)
        U2m := Um*Vm mod N;
        V2m := (Vm*Vm - 2*Qm) mod N;
        Q2m := Qm*Qm mod N;
        if T <= k then # replace m with n = 2m+1
            U2mp1 := (P*U2m + V2m)/2 mod N;
            V2mp1 := (P2m4Q*U2m + P*V2m)/2 mod N;
            Q2mp1 := Q2m*Q mod N;
            Um := U2mp1;
            Vm := V2mp1;
            Qm := Q2mp1;
            k := k - T;
        else # replace m with n = 2m
            Um := U2m;
            Vm := V2m;
            Qm := Q2m;
        fi;
        T := T/2;
    od;
    if s < 0 then
        Um := -Um/Qm mod N;
        Vm := Vm/Qm mod N;
        Qm := 1/Qm mod N;
    fi;
    return [Um,Vm,Qm];
end);


##############################################################################
##
##  Section 2: Baillie-Pomerance-Selfridge-Wagstaff pseudoprimality test
##
##  (1) IsStrongPseudoPrimeBaseA
##  (2) IsLucasPseudoPrime (the BPSW version with hardcoded discriminant)
##  (3) IsBPSWPsuedoPrime - main interface to optimized test
##
##############################################################################


##############################################################################
##
#F  IsStrongPseudoPrimeBaseA(N,A) - If A does not have odd multiplicative
##  order mod N, then check -1 in <A>.
##
##############################################################################
InstallGlobalFunction(IsStrongPseudoPrimeBaseA,
function(n,A)
  local e,o,i,x;
  # find $e$ and $o$ odd such that $n-1 = 2^e * o$
  e := 0; o := n-1;   while o mod 2 = 0 do e := e+1; o := o/2; od;
  # look at the seq $A^o, A^{2 o}, A^{4 o}, .., A^{2^e o}=A^{n-1}$
  x := PowerModInt( A, o, n );
  i := 0;
  while i < e and x <> 1 and x <> n-1 do
    x := x * x mod n;
    i := i + 1;
  od;
  # if it is not of the form $.., -1, 1, 1, ..$ then $n$ is composite
  return (x = n-1 or (i = 0 and x = 1));
end);

##############################################################################
##
#F  IsBPSWLucasPseudoPrime(N) - Check if N is a Lucas pseudoprime for 
##  x^2+P*x+1 where P is the smallest positive integer such that P^2 - 4 is 
##  not a square mod N. N should be odd. N should be prime or greater
##  than 100.
##
##############################################################################
InstallGlobalFunction(IsBPSWLucasPseudoPrime,
function(N)
  local P;
  if N = 2 then return true; fi;
  if IsSquareInt(N) or IsEvenInt(N) then return false; fi;
  P:=2;
  while Jacobi( P^2-4, N ) <> -1 do P:=(P+1) mod N; if P = 2 then return fail; fi; od;
  return TraceModQF(P,N+1,N) = [2,P];
end);

##  There are several variations on how to choose the parameters for the Lucas
##  test. The first two are based on PSW1980, p1024, and are also found in
##  BW1980, p1401. The next two parameter choices are from BW1980 p1409.
##  The next is reported to be a suggestion of Wei Dei. The final is the version
##  used by GAP, which was the fastest in the tests I ran. GAP was 5% faster
##  than the fastest of the other variants, and with TraceModQF function, was
##  twice as fast. Therefore the following code is simply commented out, and
##  the hard-wired version left. JS

#BPSWLucasParameters_PSW1980_A := function(N)
#  local D,o;
#  D:=5; o:=1; 
#  while Jacobi(D,N) <> -1 do D:=(-D-2*o) mod N; o:=-o; od;
#  return [D,1,(1-D)/4 mod N];
#end;
#BPSWLucasParameters_PSW1980_B := function(N)
#  local D,P;
#  D:=5;
#  while Jacobi(D,N) <> -1 do D:=D+4; od;
#  P:=RootInt(D);
#  P:=P + ((P+1) mod 2);
#  while P^2 < D do P:=P+2; od;
#  return [D mod N,P mod N,(P^2-D)/4 mod N];
#end;
#BPSWLucasParameters_BW1980_Astar := function(N)
#  local D,o;
#  D:=5; o:=1; 
#  while Jacobi(D,N) <> -1 do D:=(-D-2*o) mod N; o:=-o; od;
#  if (1-D)/4 mod N in [1,N-1] then return [5,5,5]; fi;
#  return [D,1,(1-D)/4 mod N];
#end;
#BPSWLucasParameters_BW1980_Bstar := function(N)
#  local D,P;
#  D:=5;
#  while Jacobi(D,N) <> -1 do D:=D+4; od;
#  P:=RootInt(D);
#  P:=P + ((P+1) mod 2);
#  while P^2 < D do P:=P+2; od;
#  if (P^2-D)/4 mod N in [1,N-1] then return [D,(P+2) mod N,(P+(P^2-D)/4 + 1) mod N]; fi;
#  return [D mod N,P mod N,(P^2-D)/4 mod N];
#end;
#BPSWLucasParameters_WeiDei := function(N)
#  local D,k;
#  k:=1;
#  while Jacobi((2*k+1)^2 - 4,N) = 1 do k:=k+1; od;
#  D:=(2*k+1)^2 - 4;
#  return [D,1,(1-D)/4];
#end;
#BPSWLucasParameters_GAP := function(N)
#  local P;
#  P:=2;
#  while Jacobi( P^2-4, N ) <> -1 do P:=(P+1) mod N; if P = 2 then return fail; fi; od;
#  return [ (P^2-4) mod N, P, 1 ];
#end;
#InstallGlobalFunction(IsBPSWLucasPseudoPrime,
#function(N)
#  local params, func, lucas;
#  if N = 2 then return true; fi;
#  if IsSquareInt(N) or IsEvenInt(N) then return false; fi;
#  if ValueOption("BPSWLucasParameters") = fail 
#  then func:=BPSWLucasParameters_GAP;
#  else func:=ValueOption("BPSWLucasParameters");
#  fi;
#  if ValueOption("BPSWLucasTest") = fail then 
#    if func = BPSWLucasParameters_GAP 
#    then lucas:=function(N,D,P) return TraceModQF(P,N+1,N) = [2,P]; end;
#    else lucas:=IsLucasPseudoPrimeDP;
#    fi;
#  else lucas:=ValueOption("BPSWLucasTest");
#  fi;
#  params := CALL_FUNC_LIST(func,[N]);
#  if Jacobi(params[1],N) = 0 and params[1] < N and 0 < params[1] then return false; fi;
#  return CALL_FUNC_LIST(lucas,[N, params[1], params[2]]);
#end);

##############################################################################
##
#F  IsLucasPseudoPrimeDP(N,D,P) - Check if N is a Lucas pseudoprime for 
##  x^2+P*x+(P^2-D)/4. D must be a nonsquare mod N, and N must be odd or prime.
##
##############################################################################
InstallGlobalFunction(IsLucasPseudoPrimeDP,
function(N,D,P)
  local Q;
  if N = 2 then return true; fi;
  Q := (P^2-D)/4 mod N;
  if not ( IsOddInt(N) and 0 <> Q mod N and Jacobi(D,N) = -1 ) then Error(); fi;
  return IsOddInt(N) and 0 <> Q mod N and Jacobi(D,N) = -1 and 0 = LucasMod(P,Q,N,N+1)[1];
end);

##############################################################################
##
#F  IsStrongLucasPseudoPrimeDP(N,D,P) - Check if N is a strong Lucas 
##  pseudoprime for x^2+P*x+(P^2-D)/4. N must be odd or prime.
##
##############################################################################
InstallGlobalFunction(IsStrongLucasPseudoPrimeDP,
function(N,D,P)
  local Q,d,s,J,L,r,Qi;
  if N = 2 then return true; fi;
  if N in [-1,0,1] then return false; fi;
  if not ( IsOddInt(N) and GcdInt(N,D)=1 ) then return false; fi;
  Q := (P^2-D)/4 mod N;
  J := Jacobi(D,N);
  d := N - J; s:=0; while IsEvenInt(d) do s:=s+1; d:=d/2; od; # Now N-(D/N) = 2^s * d, d odd
  L := LucasMod(P,Q,N,d);
  # Does n divide U_d ?
  if L[1] = 0 then return true; fi;
  # Does n divide V_{2^r d} for some r=0,1,...,s-1 ?
  Qi := PowerModInt(Q,d,N);
  for r in [0..s-1] do
    if L[2] = 0 then return true; fi;
    # L is [Ui,Vi], make it [U2i,V2i] = [ Ui*Vi, Vi^2 - 2Q^i], where i=2^s d
    L[1] := L[1]*L[2] mod N;
    L[2] := (L[2]^2 - 2*Qi) mod N;
    Qi   := Qi*Qi mod N;
  od;
  return false;
end);

##############################################################################
##
#F  IsBSPWPseudoPrime(N) - Check if N is a Baillie-Pomerance-Selfridge-Wagstaff
##  pseudoprime (that is, N is a possibly composite number with no proper
##  divisors less than 1000, N is a strong pseudoprime base 2, and N is a
##  Lucas pseudoprime as above.
##
##  Note by http://www.chalcedon.demon.co.uk/rgep/spsp-13.gz we have that if
##  N < 10^13 is a BPSW-pp, then N is in fact prime.
##
##############################################################################
InstallGlobalFunction(IsBPSWPseudoPrime,
function(n)
  # Step 1 handle n with prime factors < 103
  # 1a: if n < 103, then n is prime exactly when it is listed
  # 1b: if n is even and >=103, then it is not prime
  # 1c-g: if n has a prime factor < 103, then it is not coprime
  # to 3*5*..*101 split up into factors < 2^28.
  # 1h: A composite number with no factors < 103 must itself be >= 103^2
  n := AbsInt(n);
  if n < 1000 then return n in Primes;
  elif 0 = n mod 2 then return false; 
  elif 1<>GcdInt(n,257041785) then return false; # 3*5*7*11*13*17*19*53
  elif 1<>GcdInt(n, 11559991) then return false; # 83*79*43*41
  elif 1<>GcdInt(n,259860509) then return false; # 89*73*47*37*23
  elif 1<>GcdInt(n, 12596323) then return false; # 97*71*59*31
  elif 1<>GcdInt(n, 11970823) then return false; # 101*67*61*29
  elif n < 10609 then return true; 
  fi;

  # Step 2 handle n with prime factors < 1000
  # Note that if n < 1000 we have already finished.
  # 2a: Check Gcd(n,Product(Primes{[27..168]}) = 1 if n < 2^100 [worst case 145 divisions]
  # 2b: otherwise trial divide by the primes between 103 and 997 inclusive [142 divisions]
  # 2c: If n < 1009^2 is composite, then it has a prime factor < 1009
  if n < 2^100 and 1<>GcdInt(n,
841284107844892882230924743483896036230303226400884429367479745\
182396425076313801080105888842525657179186823477095844441732607\
309415612117497325122570590402649274666448191740488756513678929\
402959775310209214502833707784648441319210161128261125112776114\
119620471154579797706399078932717575475133487349361392344929340\
84356041841547537781640044258066541550710400764797315999285813)
  then return false;
  elif n >= 2^100 and ForAny(Primes, p -> 0 = n mod p)
  then return false;
  elif n < 1018081 then return true; 
  fi;

  # Step 3 check if strong pseudo-prime base 2
  # 3a: check for strong pseudo-prime base
  # 3b: the composite pseudo-primes base 2 less than 10^7 with no 
  # factors < 1000 are listed in CompositeSPP2
  if not IsStrongPseudoPrimeBaseA(n,2) then return false; 
  elif n < 10^7 then return not n in CompositeSPP2; 
  fi;

  # Step 4 Check for Lucas pseudo prime
  # 4a: Check if it is a Lucas pseudo prime
  # 4c: There are no composite < 10^13 which are Lucas pseudo primes,
  # are strong pseudo primes base 2
  # See http://www.chalcedon.demon.co.uk/rgep/psp-12.gz
  # and http://www.chalcedon.demon.co.uk/rgep/psp13.gz
  # or  http://www.chalcedon.demon.co.uk/rgep/spsp-13.gz
  # This concludes the BPSW probablistic primality test.
  if not IsBPSWLucasPseudoPrime(n) then return false;
  elif n < 10^13 then return true; 
  fi;

  # Step 5 Give up and call it a pseudoprime.
  return true;
end);

#############################################################################
##
#F  IsBPSWPseudoPrime_VerifyCorrectness() - Verify the BPSW correctly
##  marks strong Fermat pseudoprimes base 2 as composite for N < 10^13.
##  This function is not used in the code, but only there for testing
##
#############################################################################
InstallGlobalFunction(IsBPSWPseudoPrime_VerifyCorrectness,
function()
  local io,line;
  io:=InputOutputLocalProcess(DirectoryCurrent(), 
    Filename(DirectoriesSystemPrograms(), "lynx"),
    ["-dump","http://www.chalcedon.demon.co.uk/rgep/spsp-13.gz"]);
  repeat 
    line := ReadLine(io);
    if line=fail or line[Size(line)] <> '\n' then Error("Bad line!"); fi;
    line := Int(Chomp(line));
    if IsBPSWPseudoPrime(line) <> false then Error("Wrong output!"); fi;
  until line = 9998974546471;
  CloseStream(io);
end);

#############################################################################
##
##  Section 3: Primality proof production, based on BLS 1975
##
##  (1) Find witnesses for each divisor (either Fermat or Lucas)
##  (2) Suitable Factor N+-1 to decide which witness are needed
##  (3) Main routine
##  (4) Simpler main routine which appears to be very adequate
##
#############################################################################

##  Applicability: A number of results are used from BLS1975, but perhaps
##  Theorem 21 has the widest theoretical use. In short, if one factors
##  the odd parts of N+-1 into E,F (possibly composite) factors each of
##  which has no prime divisors less than B and into various smaller prime
##  factors, and if N < B^(E+F+Max(E,F)), then Fermat and Lucas witnesses 
##  for those factors suffice to prove primality. In particular, if N < B^3,
##  then we will succeed in our proof production. Currently GAP's FactorsInt
##  gives us a value of B=10^6, and applicability for N < 10^18.

##############################################################################
##
#F  PrimalityProof_FindFermat(N,P) - find a base A such that
##  N is a strong Fermat pseudoprime base A and such that
##  GcdInt(A^((N-1)/P)-1,N)=1.
##
##  Return [true,A] if such a base is found, or [false,B] if N
##  has been proven composite (where B may help to verify this).
##
##############################################################################
InstallGlobalFunction(PrimalityProof_FindFermat,
function(N,p)
  local Np,a,b,c,g;
  Np:=(N-1)/p;
  a:=2;
  while true do
    b:=PowerModInt(a,Np,N);
    if(1<>b) then break; fi;
    a:=a+1; 
    if(a=N) then return [fail]; fi;
  od;
  c:=PowerModInt(b,p,N);
  if(1 <> c) then return [false,a]; fi;
  g:=GcdInt(b-1,N);
  if 1 < g and g < N then return [false,g]; fi;
  return [true,a];
end);

##############################################################################
##
#F  PrimalityProof_FindLucas(N,D,K) - Find a polynomial
##  x^2+P*x+Q with discriminant D=P^2-4Q such that the
##  associated LucasSequence U satisfies U(N+1) = 0 mod N
##  and Gcd(U((N+1)/K),N)=1.
##
##  Return [true,P] if such a polynomial is found, and
##  [false,B] if N is shown to be composite (where B
##  may help to verify this).
##
##############################################################################
InstallGlobalFunction(PrimalityProof_FindLucas,
function(N,D,K)
  local P,Q,g;
  P:=2;
  Q:=((P^2-D)/4) mod N;
  while true do
    if 0 <> LucasMod(P,Q,N,N+1)[1] then return [false,P,Q]; fi;
    g:=GcdInt(N, LucasMod(P,Q,N,(N+1)/K)[1]);
    if 1<g and g<N then return [false,g]; 
    elif 1=g then return [true,P];
    fi;
    Q:=(Q+P+1) mod N;
    P:=(P+2) mod N;
    if(P=0) then return [fail]; fi;
  od;
end);


##############################################################################
##
#F  PrimalityProof_FindStructure(N) - Find divisors of N+-1 which can be 
##  used to prove primality of N based on the ideas in BLS1975.
##
##  The return value is a list of pairs [T,div] where T is the name of a test
##  (either "F" or "L") and div is a divisor of N+-1.
##
##  This routine requires a partial factorization routine.
##
##############################################################################
InstallGlobalFunction(PrimalityProof_FindStructure,
function(N)
  local cheap, FactIntPartial, factorsp, factorsm, sqrtN,
    F1s, F1, R1, F2s, F2, R2, B, to_check, p, s, r;

  cheap:=ValueOption("cheap");
  FactIntPartial:=ValueOption("FactIntPartial");
  if(cheap=fail) then cheap:=true; fi;
  if(FactIntPartial=fail) then FactIntPartial:=true; fi;

  # try straightforward method first
  if cheap=true and FactIntPartial=true then
    to_check:=Concatenation(
      List(Set(PartialFactorization(N-1,7)),p->["F",p]),
      List(Set(PartialFactorization(N+1,7)),p->["L",p]));
    if [] <> PrimalityProof_VerifyStructure(N,to_check)
    then return to_check;
    else Info(InfoPrimeInt,1,"Straightforward Fermat-Lucas primality proof failed on ",N);
    fi;
  fi;

  sqrtN:=RootInt(N);
  B:=10^6;

  factorsm:=Factors(N-1 : cheap:=cheap, FactIntPartial:=FactIntPartial);

  if not IsList(factorsm[1]) then
    factorsm:=[factorsm,[1]];
  fi;
  F1s:=Set(factorsm[1]);
  F1:=Product(factorsm[1]);
  R1:=Product(factorsm[2]);

  # BLS1975 Cor1
  if F1 > sqrtN then 
    F1:=1;
    to_check:=[];
    for p in Reversed(F1s) do
      AddSet(to_check,p);
      F1:=F1*p^Number(factorsm[1],q->p=q);
      if(F1 > sqrtN) then break; fi;
    od;
    return List(to_check,p->["F",p]);
  # BLS1975 Cor3
  elif B*F1 > sqrtN then 
    to_check:=F1s;
    AddSet(to_check,R1);
    return List(to_check,p->["F",p]);
  fi;
  s:=QuoInt(R1,2*F1);
  r:=2*F1*s-R1;
  # BLS1975 Th7
  if N < (B*F1+1)*(2*F1^2+(r-B)*F1+1) and (s=0 or not IsSquareInt(r^2-8*s)) then 
    to_check:=F1s;
    AddSet(to_check,R1);
    return List(to_check,p->["F",p]);
  fi;
  
  factorsp:=Factors(N+1 : cheap:=cheap, FactIntPartial:=FactIntPartial);
  if not IsList(factorsp[1]) then
    factorsp:=[factorsp,[1]];
  fi;
  F2s:=Set(factorsp[1]);
  F2:=Product(factorsp[1]);
  R2:=Product(factorsp[2]);

  # BLS1975 Cor8
  if F2 > sqrtN + 1 then 
    F2:=1;
    to_check:=[];
    for p in Reversed(F2s) do
      AddSet(to_check,p);
      F2:=F2*p^Number(factorsp[1],q->p=q);
      if F2 > sqrtN + 1 then break; fi;
    od;
    return List(to_check,p->["L",p]);
  # BLS1975 Cor3
  elif B*F2 > sqrtN then 
    to_check:=F2s;
    AddSet(to_check,R2);
    return List(to_check,p->["L",p]);
  fi;
  s:=BestQuoInt(R2,2*F2);
  r:=R2-2*F2*s;
  # BLS1975 Th19
  if N < (B*F2-1)*(2*F2^2 + (B-AbsInt(r))*F2 + 1) and (s=0 or not IsSquareInt(r^2+8*s)) then
    to_check:=F2s;
    AddSet(to_check,R2);
    return List(to_check,p->["L",p]);
  fi;

  # BLS1975 Cor11
  if B^3*F1^2*F2 > 2*N or B^3*F1*F2^2 > 2*N then
    return Union(List(F1s,p->["F",p]),List(F2s,p->["L",p]),[ ["F",R1], ["L",R2]]);
  fi;

  if cheap = true then return PrimalityProof_FindStructure(N:cheap:=false); fi;

  return fail;
end);

##############################################################################
##
#F  PrimalityProof(N) - Construct a machine verifiable proof of the primality
##  of (the probable prime) N, following the ideas of the paper Brillhart, 
##  Lehmer, Selfridge's "New Primality Criteria and Factorizations of 2^m +-1", 
##  1975.
##
##############################################################################
InstallGlobalFunction(PrimalityProof,
function(N)
  local factors,certs,D,J,p,ret;

  if(N<=2) then return fail;
  elif 0 = N mod 2 then return false;
  fi;

  factors:=PrimalityProof_FindStructure(N);
  if(factors=fail) then return fail; fi;

  if(ForAny(factors,p->p[1]="L")) then
    D:=1;
    repeat 
      D:=(D+1) mod N; 
      if(D=0) then Error(); return fail; fi;
      J:=Jacobi(D,N); 
      if(J=0) then Error(); return false; fi; 
    until J=-1;
  fi;
  certs:=[];
  for p in factors do
    if p[1]="F" then 
      ret:=PrimalityProof_FindFermat(N,p[2]);
      if(ret[1]=fail) then 
        Print("\n\n");
        Print("# !!! Please email support@gap-system.org the following:\n");
        Print("# !!! PrimalityProof(",HexStringInt(N),") failed at F",p[2],"\n\n\n");
        Error("# !!! You have probably found a bug. Theoretically <n> is composite.");
        return fail;
      elif(ret[1]=false) then
        if 0 = N mod ret[2] and 1<ret[2] and ret[2]<N
        then Error("# PrimalityProof: ",N," is composite (divisible by ",ret[2],").");
        elif 0 <> ret[2] mod N and 1 <> PowerModInt(ret[2],N-1,N)
        then Error("# PrimalityProof: ",N," is composite (",ret[2],"^",N-1," mod N is not 1).");
        else Error("# PrimalityProof: unknown error. N is supposedly composite.");
        fi;
        return false;
      elif(ret[1]=true) then
        Add(certs,["F",p[2],ret[2]]);
      fi;
    elif p[1]="L" then
      ret:=PrimalityProof_FindLucas(N,D,p[2]);
      if(ret[1]=fail) then 
        Print("\n\n");
        Print("# !!! Please email support@gap-system.org the following:\n");
        Print("# !!! PrimalityProof(",HexStringInt(N),") failed at L",p[2],"\n\n\n");
        Error("# !!! You have probably found a bug. Theoretically <n> is composite.");
        return fail;
      elif(ret[1]=false) then
        if 0 = N mod ret[2] and 1<ret[2] and ret[2]<N
        then Error("# PrimalityProof: ",N," is composite (divisible by ",ret[2],").");
        elif 0 <> LucasMod(ret[2],ret[3],N,N-1)[1] mod N 
        then Error("# PrimalityProof: ",N," is composite (Lucas(",ret[2],",",ret[3],",N-1) mod N is not 0).");
        else Error("# PrimalityProof: unknown error. N is supposedly composite.");
        fi;
        return false;
      elif(ret[1]=true) then
        Add(certs,["L",p[2],D,ret[2]]);
      fi;
    else
      Error("Unknown certification requested.");
      return fail;
    fi;
  od;
  return certs;
end);


##############################################################################
##
##  Section 4: Primality proof verification
##
##  (1) Verify witnesses
##  (2) Verify the collection of witnesses would provide a primality proof
##  (3) Main interface
##
##############################################################################

##############################################################################
##
#F  PrimalityProof_VerifyWitness(N,witness) - ensure that the proposed
##  witness is valid. In other words check condition II or IV from BLS1975.
##
##############################################################################
InstallGlobalFunction(PrimalityProof_VerifyWitness,
function(N,witness)
  local type, divisor, base, D, P, Q;

  type:=witness[1];
  if( type = "F" ) then
    divisor := witness[2];
    base := witness[3];
    return IsStrongPseudoPrimeBaseA(N,base) and 
      GcdInt( PowerModInt(base,(N-1)/divisor,N)-1, N) = 1;
  elif( type = "L" ) then
    divisor := witness[2];
    D := witness[3];
    P := witness[4];
    Q := (P^2-D)/4 mod N;
    return Jacobi(D,N)=-1 and 0 = LucasMod(P,Q,N,N+1)[1]
      and 1 = GcdInt(N, LucasMod(P,Q,N,(N+1)/divisor)[1]);
  fi;
  return fail;
end);


##############################################################################
##
#F  PrimalityProof_VerifyStructure(N,witnesses) - Verify that the collection
##  of witness actually satisfies the hypotheses of one of the results in
##  BLS1975. Failure is indicated by an empty list. Success is a list:
##  [true, NameOfTheorem, AssumedPrimes, DivisorBound, SortOfPrimes ]
##
##  In this case, the routine recognized the proof but may require
##  some lemmas. Every number in AssumedPrimes must be proven prime.
##  Every number in SortOfPrimes must either be (prime and less than
##  DivisorBound) or relatively prime to Factorial(DivisorBound).
##  DivisorBound is always small enough to make this check feasible
##  (currently capped at 10^6).
##
##############################################################################
InstallGlobalFunction(PrimalityProof_VerifyStructure,
function(N,witnesses)
  local Fs,Ls,F,L,B,BF,BL, MaxB, B1, B2, F1s, F2s, R1s, R2s, F1, F2, R1, R2, r, s,
    QuadraticEstimate, GotOne, rets;
  MaxB:=10^6;

  QuadraticEstimate:=function(a,b,c)
    if b^2 - 4*a*c < 0 then return 10^100; fi;
    return Int((-b + RootInt(b^2-4*a*c))/(2*a));
  end;

  GotOne:=function(ret) Add(rets,ret); end;
  rets:=[];

  Fs:=List(Filtered(witnesses,wit->wit[1]="F"),wit->wit[2]);
  Ls:=List(Filtered(witnesses,wit->wit[1]="L"),wit->wit[2]);

  # Every number in F1s and F2s is known to be prime
  F1s:=Filtered(Fs,p->p<10^13 and IsBPSWPseudoPrime(p));
  R1s:=Filtered(Fs,p->p>10^13 or not IsBPSWPseudoPrime(p));
  F2s:=Filtered(Ls,p->p<10^13 and IsBPSWPseudoPrime(p));
  R2s:=Filtered(Ls,p->p>10^13 or not IsBPSWPseudoPrime(p));

  F1:=Product(F1s, p->p^Valuation(N-1,p));
  R1:=Product(R1s, p->p^Valuation(N-1,p));
  F2:=Product(F2s, p->p^Valuation(N+1,p));
  R2:=Product(R2s, p->p^Valuation(N+1,p));

  # Check Co1
  if F1^2 > N then GotOne([ true, "BLS1975-Co1", [] , 1 , [] ]); fi;

  # Check Cor3 and Th7
  if Size(R1s)=1 and R1s[1]=R1 and F1*R1=N-1 then

    # Check Cor3, solving for B1
    B1 := RootInt( Int(N/F1^2) );
    while B1 < MaxB and N >= (B1*F1)^2 do B1:=B1+1; od;

    if B1 < MaxB and N < (B1*F1)^2
    then GotOne([ true, "BLS1975-Co3", [], B1, R1s]); 
    fi;

    # Check Th7, solving for B1
    s:=QuoInt(R1,2*F1);
    r:=R1-2*F1*s;
    # Want B1 large so that N>= (B1*F1+1)*(2*F1^2+(r-B1)*F1+1) 
    B1 := QuadraticEstimate( -F1^2, 2*F1^3 + r*F1^2, 2*F1^2+r*F1+1-N);
    #B1 := Int(N/(F1+1)/(2*F1^2+r*F1+1));
    while B1 < MaxB and 2*F1^2+(r-B1)*F1+1 > 0 and 
      N >= (B1*F1+1)*(2*F1^2+(r-B1)*F1+1) 
    do B1:=B1+1; od;

    if B1 < MaxB and N < (B1*F1+1)*(2*F1^2+(r-B1)*F1+1) 
    then GotOne([ 0=s or not IsSquareInt(r^2-8*s), "BLS1975-Th7", [], B1, R1s ]);
    fi;
  fi;

  # Check Cor8
  if (F2-1)^2 > N then GotOne([ true, "BLS1975-Co8", [], 1 , [] ]); fi;

  # Check Cor10 and Th19
  if Size(R2s)=1 and R2s[1]=R2 and F2*R2=N+1 then

    # Check Cor10
    # Want large B2 such that (B2*F2-1)^2 <= N
    B2 := RootInt(Int(N/F2^2));
    while B2 < MaxB and (B2*F2-1)^2 <= N do B2:=B2+1; od;

    if B2 < MaxB and N < (B2*F2-1)^2
    then GotOne([ true, "BLS1975-Co10", [], B2, R2s ]); 
    fi;

    # Check Th19
    s:=BestQuoInt(R2,2*F2);
    r:=R2-2*F2;
    # Want large B2 such that (B2*F2-1)*(2*F2^2 + (B2-|r|)*F2 +1) <= N
    B2:=QuadraticEstimate(F2^2,
      2*F2^3-F2^2*AbsInt(r), 
      F2*AbsInt(r) - 2*F2^2 - 1 - N);
    while B2 < MaxB and (B2*F2-1)*(2*F2^2 + (B2-AbsInt(r))*F2 +1) <= N 
    do B2:=B2+1; od;

    if B2 < MaxB and N < (B2*F2-1)*(2*F2^2 + (B2-AbsInt(r))*F2 +1)
    then GotOne([ s=0 or not IsSquareInt(r^2+8*s), "BLS1975-Th19", [], B2, R2s ]);
    fi;
  fi;

  # Check Cor11
  if ( R1=1 or (Size(R1s)=1 and R1s[1]=R1))
    and ( R2=1 or (Size(R2s)=1 and R2s[1]=R2))
  then
    B2 := RootInt( Int(N/F1/F2/Maximum(F1,F2)), 3);
    while B2 < MaxB and B2^3 <= N/F1/F2/Maximum(F1,F2) do B2:=B2+1; od;

    if B2 < MaxB and B2^3 > 2*N/F1/F2/Maximum(F1,F2)
    then GotOne([true, "BLS1975-Co11", [], B2, Set(Concatenation(R1s,R2s))]);
    fi;
  fi;

  # First check Theorem 21, which requires no primality assumptions
  # on the divisors (only a bound the proper prime factors of those
  # divisors).
  if F1*R1 = N-1 and F2*R2 = N+1 then

    BF := Sum(Fs,p->Valuation(N-1,p));
    BL := Sum(Ls,p->Valuation(N+1,p));
    B1 := RootInt(N,BF+BL+Maximum(BF,BL)); 
    while B1 < MaxB and N >= Maximum(B1^BF+1, B1^BL-1)*(B1^BF*B1^BL/2+1) 
    do B1:=B1+1; od;

    if B1 < MaxB and N < Maximum(B1^BF+1,B1^BL-1)*(B1^BF*B1^BL/2 + 1)
      and ForAll(Combinations(Fs,2),x->GcdInt(x[1],x[2])=1)
      and ForAll(Combinations(Ls,2),x->GcdInt(x[1],x[2])=1)
    then GotOne( [true, "BLS1975-Th21", [], B1, 
      Set(Concatenation( R1s,R2s))]);
    fi;
  fi;

  return rets;
end);

##############################################################################
##
#F  PrimalityProof_Verify(N,proof) - Verbosely verify a proposed primality
##  proof.
##
##############################################################################
InstallGlobalFunction(PrimalityProof_Verify,
function(N,proof)
  local theorems,theorem,x;
  theorems:=PrimalityProof_VerifyStructure(N,proof);
  if theorems = [] then return fail; fi;
  if not ForAll(proof, wit -> PrimalityProof_VerifyWitness(N,wit))
  then return false; fi;

  for theorem in theorems do
    Print("\nNumber proven prime by ",theorem[2],"\n");
    if( theorem[3] <> [] ) then Print("assuming each of ",theorem[3],
      "is prime\n"); fi;
    if theorem[5] <> [] then Print("assuming each of ", theorem[5],
      " have no nontrivial divisors less than ", theorem[4]);
      x := Product(Filtered(Primes,p->p<theorem[4]));
      if theorem[4] < Maximum(Primes) and ForAll(theorem[5], p->
        p in Primes or GcdInt(p,x)=1)
      then Print("(which is true)\n");
      else Print("\n");
      fi;
    fi;
  od;
  return true;
end);


##############################################################################
##
##  Section 5: Pretty interface
##
##  (1) Bind ProbablePrimes2
##  (2) IsPrimeIntReplacement - handle caching and warning
##  (3) IsProbablyPrimeIntReplacement - handle caching
##  (4) Optional code to replace the main gap functions
##
##############################################################################

##############################################################################
##
#F  IsPrimeInt(N) - Perform as IsPrimeInt, but use PrimalityProof
##  to avoid using any unproven primes. Store proofs in PrimesProofs.
##
##############################################################################
InstallGlobalFunction(IsPrimeInt,
function(N)
  local ret;
  N := AbsInt(N);
  if(N in Primes2) then return true; fi;
  ret:= IsBPSWPseudoPrime(N);
  if ret = false  then return false;
  elif ret = true and N < 10^13 then 
    AddSet(Primes2,N);
    return true;
  elif ret = true then
    ret := PrimalityProof(N);
    if PrimalityProof_VerifyStructure(N,ret) <> [] then
      AddSet(Primes2,N);
      AddSet(PrimesProofs,[N,ret]);
    else
          Info(InfoPrimeInt, 1,
         "IsPrimeInt: probably prime, but not proven: ", N);
          AddSet( ProbablePrimes2, N );
    fi;
    return true;
  fi;
  Error("Bad return from IsBPSWPseudoPrime");
end);

##############################################################################
##
#F  IsProbablyPrimeInt(N) - Perform as isProbablyPrimeInt
##  calling the optimized BPSW test instead of the current GAP default.
##
##  The option "RabinMillerTrials" may be passed to force additional
##  probablistic tests to be run for larger N. The cost can be quite 
##  significant for large N.
##
##############################################################################
InstallGlobalFunction(IsProbablyPrimeInt,
function(N)
  local ret, RabinMillerTrials;
  if(N in Primes2 or N in ProbablePrimes2) then return true; fi;
  ret := IsBPSWPseudoPrime(N);

  if ret = false then return false;
  # Otherwise is BPSW number, and all such < 10^13 are prime
  elif ret = true and N < 10 ^ 13 then 
    AddSet(Primes2,N);
    return true;
  # Otherwise give a dose of Rabin-Miller
  else
    RabinMillerTrials := ValueOption("RabinMillerTrials");
    if RabinMillerTrials = fail then 
      RabinMillerTrials:=0;
      # RabinMillerTrials:= RootInt(Maximum(0,LogInt(N,10)-13));
    elif IsFunction(RabinMillerTrials) then 
      RabinMillerTrials:=RabinMillerTrials(N);
    fi;
    if ForAll([1..RabinMillerTrials],i->
      IsStrongPseudoPrimeBaseA(N,Random(3,N-1))) 
    then
      AddSet(ProbablePrimes2,N);
      return true;
    # Otherwise an error or composite BPSW number has been found.
    else
      Print("\n\n");
      Print("# !!! Please email support@gap-system.org the following:\n");
      Print("# !!! BPSW failed on ",HexStringInt(N),"\n\n\n");
      Error("# !!! You have probably found a bug. Theoretically <n> is composite.");
      return false;
    fi;
  fi;
end);

##############################################################################
#E