/usr/share/gap/lib/primality.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 | #############################################################################
##
#W primality.gi GAP library Jack Schmidt
##
##
#Y Copyright (C) 2005 Jack Schmidt
##
## This file contains declarations for the primality test in the integers.
##
## This file is meant to improve the primality testing in GAP in two
## significant ways. (1) IsProbablyPrimeInt has been sped up, and perhaps
## been better documented. (2) IsPrimeInt can now use N+-1 primality proving
## algorithms to prove primality (proofs can be produced for all primes
## less than 10^18, and for most primes up to 10^50 or more). A proof
## verifier is included to demonstrate the simplicity of the proofs.
##
## This file is split into five parts.
##
## (1) Prerequisites, including efficient IsSquareInt
## routine. Some short tables are also included.
##
## (2) The optimized Baillie-Pomerance-Selfridge-Wagstaff
## pseudoprimality test with subtests properly labelled and explained,
## and bounds given at a more precise level.
##
## (3) The primality proof production code, which finds a machine
## verifiable proof for the primality of a (probable) prime. It is
## based on the paper Brillhart, Lehmer, Selfridge's "New Primality
## Criteria and Factorizations of 2^m +-1", 1975, hereafter referred
## to as BLS1975. This paper is available on JSTOR and is very clearly
## written.
##
## (4) The primality proof verifier, which detects if the proposed
## proof in fact satisfies the conditions of one of the results in BLS1975.
##
## (5) A pretty interface to GAP, with result caching and warnings in
## the rare event IsPrimeInt is unable to prove primality.
##
#T Further work: The following would be good future tasks for the
#T interested developer:
#T
#T (1) Recursive verification: It is standard for primality proofs
#T to require "lemmas" where other numbers are proved prime as well.
#T Currently I make no use of this (and it is not needed for N < 10^18)
#T so it is not implemented.
#T
#T (2) Theoretical extensions of BLS1975: one should be able to more
#T carefully handle the case of multiple composite factors of N+-1
#T in the earlier portions of the paper, to bring results like Theorem 21
#T into wider use.
#T
#T (3) Other tests: One can easily verify ECPP machine proofs, and they
#T can coexist in the current format. Unfortunately finding ECPP proofs
#T is a difficult task. Another test, the APRCL, might also be suitable.
#T However, verification of its certificates is extremely complex and
#T some experts warn "the probability of an implementation error in the
#T verification routine is much higher than the probability that a
#T composite BPSW is found". GAP does have rudimentary support for the
#T needed algebraic structures, but initial testing shows the overhead
#T of arithmetic in these rings is an insurmountable obstacle for N in
#T in the appropriate range.
#T
#T (4) Direct interface to PARI-lib. For a number of reasons, it might
#T be advantageous to allow use of PARI from within GAP.
##
## Testing: All primes < 10^7 tested. All 236021 "Brent factors" tested,
## but two such primes could not be proven prime (1.8*10^104 and 3.2*10^86).
##
##############################################################################
##############################################################################
##
## Section 1: Prerequisites
##
## (a) record our tables of small primes and pseudoprimes
## (b) Define IsSquareInt
##
##############################################################################
##############################################################################
##
## Tables - We define a table
## CompositeSPP2 which contains a list of
## the composite numbers < 10^7 that are strong pseudoprimes for
## base 2, and that have no prime factors < 1000.
##
##############################################################################
InstallValue(CompositeSPP2,
[ 1194649, 1678541, 2284453, 2304167, 3090091, 3125281,
3375041, 3400013, 3898129, 4181921, 4360621, 4469471,
4513841, 4863127, 5044033, 5173169, 5489641, 5919187,
6226193, 6233977, 6368689, 6787327, 6952037, 7306261,
7306561, 7820201, 8036033, 8095447, 8725753, 9006401,
9056501, 9371251, 9729301, 9863461 ]);
##############################################################################
##
## Caches - install flushable values into the cache if they are not already
## installed.
##
##############################################################################
InstallFlushableValue(PrimesProofs,[]);
##############################################################################
##
#F IsSquareInt - Check if an integer is a square
##
## Simple implemenation based on the ideas in Cohen's CCANT, Algorithm 1.7.3.
## Briefly, check if N is a quadratic residue modulo some small prime powers,
## then test if it is equal to the square of its integer square root.
##
## Please note: This is unimaginably faster than the simpler RootInt(n)^2=n
## because of the initial residue tests.
##
##############################################################################
InstallValue(CCANT_1_7_3_q11,List([1..11],i->0));
InstallValue(CCANT_1_7_3_q63,List([1..63],i->0));
InstallValue(CCANT_1_7_3_q64,List([1..64],i->0));
InstallValue(CCANT_1_7_3_q65,List([1..65],i->0));
BindGlobal("CCANT_1_7_3",
function(n)
local t,r,q;
if n < 0 then return false; fi;
if CCANT_1_7_3_q11[1]=0 then
#initialize
for t in [0..32] do
CCANT_1_7_3_q11[(t^2 mod 11)+1]:=1;
CCANT_1_7_3_q63[(t^2 mod 63)+1]:=1;
CCANT_1_7_3_q64[(t^2 mod 64)+1]:=1;
CCANT_1_7_3_q65[(t^2 mod 65)+1]:=1;
od;
fi;
t:= n mod 64;
if(CCANT_1_7_3_q64[t+1]=0) then return false; fi;
r:= n mod 45045;
if(CCANT_1_7_3_q63[(r mod 63)+1]=0) then return false;
elif(CCANT_1_7_3_q65[(r mod 65)+1]=0) then return false;
elif(CCANT_1_7_3_q11[(r mod 11)+1]=0) then return false;
else q:=RootInt(n);
return n=q^2;
fi;
end);
InstallGlobalFunction(IsSquareInt,CCANT_1_7_3);
##############################################################################
##
#F LucasMod(P,Q,N,k) - return the reduction modulo N of the k'th terms of
## the Lucas Sequences U,V associated to x^2+Px+Q.
##
## Iterative version allows larger k (better=constant in N) memory use and
## is about twice as fast as the recursive version for k around 1000. This
## should be callable for k around 2^100000 or so (runtime is log(k)), but
## the size of N is the biggest concern.
##
InstallMethod(LucasMod,
"iterative method",
[IsInt,IsInt,IsInt,IsInt],
1,
function(P,Q,N,K)
local Um,Vm,Qm,U2m,V2m,Q2m,U2mp1,V2mp1,Q2mp1,k,s,d,i,P2m4Q,T;
P2m4Q := P*P-4*Q;
s := SignInt(K);
k := AbsInt(K);
d := LogInt(k+1,2);
T := 2^d;
Um := 0;
Vm := 2 mod N;
Qm := 1 mod N;
for i in [d,d-1..0] do
# T = 2^i
# k is the 0 through i'th least significant bits of |K|
# "T <= k" means the i'th bit of |K| is set.
# If we have found [Um,Vm,Qm]=Lucas(P,Q,m) for m = QuoInt(|K|,2*T),
# then we can find [Un,Vn,Qn]=Lucas(P,Q,n) for n = QuoInt(|K|,T)
# using n = 2*m + (i'th bit of |K| is set)
U2m := Um*Vm mod N;
V2m := (Vm*Vm - 2*Qm) mod N;
Q2m := Qm*Qm mod N;
if T <= k then # replace m with n = 2m+1
U2mp1 := (P*U2m + V2m)/2 mod N;
V2mp1 := (P2m4Q*U2m + P*V2m)/2 mod N;
Q2mp1 := Q2m*Q mod N;
Um := U2mp1;
Vm := V2mp1;
Qm := Q2mp1;
k := k - T;
else # replace m with n = 2m
Um := U2m;
Vm := V2m;
Qm := Q2m;
fi;
T := T/2;
od;
if s < 0 then
Um := -Um/Qm mod N;
Vm := Vm/Qm mod N;
Qm := 1/Qm mod N;
fi;
return [Um,Vm,Qm];
end);
##############################################################################
##
## Section 2: Baillie-Pomerance-Selfridge-Wagstaff pseudoprimality test
##
## (1) IsStrongPseudoPrimeBaseA
## (2) IsLucasPseudoPrime (the BPSW version with hardcoded discriminant)
## (3) IsBPSWPsuedoPrime - main interface to optimized test
##
##############################################################################
##############################################################################
##
#F IsStrongPseudoPrimeBaseA(N,A) - If A does not have odd multiplicative
## order mod N, then check -1 in <A>.
##
##############################################################################
InstallGlobalFunction(IsStrongPseudoPrimeBaseA,
function(n,A)
local e,o,i,x;
# find $e$ and $o$ odd such that $n-1 = 2^e * o$
e := 0; o := n-1; while o mod 2 = 0 do e := e+1; o := o/2; od;
# look at the seq $A^o, A^{2 o}, A^{4 o}, .., A^{2^e o}=A^{n-1}$
x := PowerModInt( A, o, n );
i := 0;
while i < e and x <> 1 and x <> n-1 do
x := x * x mod n;
i := i + 1;
od;
# if it is not of the form $.., -1, 1, 1, ..$ then $n$ is composite
return (x = n-1 or (i = 0 and x = 1));
end);
##############################################################################
##
#F IsBPSWLucasPseudoPrime(N) - Check if N is a Lucas pseudoprime for
## x^2+P*x+1 where P is the smallest positive integer such that P^2 - 4 is
## not a square mod N. N should be odd. N should be prime or greater
## than 100.
##
##############################################################################
InstallGlobalFunction(IsBPSWLucasPseudoPrime,
function(N)
local P;
if N = 2 then return true; fi;
if IsSquareInt(N) or IsEvenInt(N) then return false; fi;
P:=2;
while Jacobi( P^2-4, N ) <> -1 do P:=(P+1) mod N; if P = 2 then return fail; fi; od;
return TraceModQF(P,N+1,N) = [2,P];
end);
## There are several variations on how to choose the parameters for the Lucas
## test. The first two are based on PSW1980, p1024, and are also found in
## BW1980, p1401. The next two parameter choices are from BW1980 p1409.
## The next is reported to be a suggestion of Wei Dei. The final is the version
## used by GAP, which was the fastest in the tests I ran. GAP was 5% faster
## than the fastest of the other variants, and with TraceModQF function, was
## twice as fast. Therefore the following code is simply commented out, and
## the hard-wired version left. JS
#BPSWLucasParameters_PSW1980_A := function(N)
# local D,o;
# D:=5; o:=1;
# while Jacobi(D,N) <> -1 do D:=(-D-2*o) mod N; o:=-o; od;
# return [D,1,(1-D)/4 mod N];
#end;
#BPSWLucasParameters_PSW1980_B := function(N)
# local D,P;
# D:=5;
# while Jacobi(D,N) <> -1 do D:=D+4; od;
# P:=RootInt(D);
# P:=P + ((P+1) mod 2);
# while P^2 < D do P:=P+2; od;
# return [D mod N,P mod N,(P^2-D)/4 mod N];
#end;
#BPSWLucasParameters_BW1980_Astar := function(N)
# local D,o;
# D:=5; o:=1;
# while Jacobi(D,N) <> -1 do D:=(-D-2*o) mod N; o:=-o; od;
# if (1-D)/4 mod N in [1,N-1] then return [5,5,5]; fi;
# return [D,1,(1-D)/4 mod N];
#end;
#BPSWLucasParameters_BW1980_Bstar := function(N)
# local D,P;
# D:=5;
# while Jacobi(D,N) <> -1 do D:=D+4; od;
# P:=RootInt(D);
# P:=P + ((P+1) mod 2);
# while P^2 < D do P:=P+2; od;
# if (P^2-D)/4 mod N in [1,N-1] then return [D,(P+2) mod N,(P+(P^2-D)/4 + 1) mod N]; fi;
# return [D mod N,P mod N,(P^2-D)/4 mod N];
#end;
#BPSWLucasParameters_WeiDei := function(N)
# local D,k;
# k:=1;
# while Jacobi((2*k+1)^2 - 4,N) = 1 do k:=k+1; od;
# D:=(2*k+1)^2 - 4;
# return [D,1,(1-D)/4];
#end;
#BPSWLucasParameters_GAP := function(N)
# local P;
# P:=2;
# while Jacobi( P^2-4, N ) <> -1 do P:=(P+1) mod N; if P = 2 then return fail; fi; od;
# return [ (P^2-4) mod N, P, 1 ];
#end;
#InstallGlobalFunction(IsBPSWLucasPseudoPrime,
#function(N)
# local params, func, lucas;
# if N = 2 then return true; fi;
# if IsSquareInt(N) or IsEvenInt(N) then return false; fi;
# if ValueOption("BPSWLucasParameters") = fail
# then func:=BPSWLucasParameters_GAP;
# else func:=ValueOption("BPSWLucasParameters");
# fi;
# if ValueOption("BPSWLucasTest") = fail then
# if func = BPSWLucasParameters_GAP
# then lucas:=function(N,D,P) return TraceModQF(P,N+1,N) = [2,P]; end;
# else lucas:=IsLucasPseudoPrimeDP;
# fi;
# else lucas:=ValueOption("BPSWLucasTest");
# fi;
# params := CALL_FUNC_LIST(func,[N]);
# if Jacobi(params[1],N) = 0 and params[1] < N and 0 < params[1] then return false; fi;
# return CALL_FUNC_LIST(lucas,[N, params[1], params[2]]);
#end);
##############################################################################
##
#F IsLucasPseudoPrimeDP(N,D,P) - Check if N is a Lucas pseudoprime for
## x^2+P*x+(P^2-D)/4. D must be a nonsquare mod N, and N must be odd or prime.
##
##############################################################################
InstallGlobalFunction(IsLucasPseudoPrimeDP,
function(N,D,P)
local Q;
if N = 2 then return true; fi;
Q := (P^2-D)/4 mod N;
if not ( IsOddInt(N) and 0 <> Q mod N and Jacobi(D,N) = -1 ) then Error(); fi;
return IsOddInt(N) and 0 <> Q mod N and Jacobi(D,N) = -1 and 0 = LucasMod(P,Q,N,N+1)[1];
end);
##############################################################################
##
#F IsStrongLucasPseudoPrimeDP(N,D,P) - Check if N is a strong Lucas
## pseudoprime for x^2+P*x+(P^2-D)/4. N must be odd or prime.
##
##############################################################################
InstallGlobalFunction(IsStrongLucasPseudoPrimeDP,
function(N,D,P)
local Q,d,s,J,L,r,Qi;
if N = 2 then return true; fi;
if N in [-1,0,1] then return false; fi;
if not ( IsOddInt(N) and GcdInt(N,D)=1 ) then return false; fi;
Q := (P^2-D)/4 mod N;
J := Jacobi(D,N);
d := N - J; s:=0; while IsEvenInt(d) do s:=s+1; d:=d/2; od; # Now N-(D/N) = 2^s * d, d odd
L := LucasMod(P,Q,N,d);
# Does n divide U_d ?
if L[1] = 0 then return true; fi;
# Does n divide V_{2^r d} for some r=0,1,...,s-1 ?
Qi := PowerModInt(Q,d,N);
for r in [0..s-1] do
if L[2] = 0 then return true; fi;
# L is [Ui,Vi], make it [U2i,V2i] = [ Ui*Vi, Vi^2 - 2Q^i], where i=2^s d
L[1] := L[1]*L[2] mod N;
L[2] := (L[2]^2 - 2*Qi) mod N;
Qi := Qi*Qi mod N;
od;
return false;
end);
##############################################################################
##
#F IsBSPWPseudoPrime(N) - Check if N is a Baillie-Pomerance-Selfridge-Wagstaff
## pseudoprime (that is, N is a possibly composite number with no proper
## divisors less than 1000, N is a strong pseudoprime base 2, and N is a
## Lucas pseudoprime as above.
##
## Note by http://www.chalcedon.demon.co.uk/rgep/spsp-13.gz we have that if
## N < 10^13 is a BPSW-pp, then N is in fact prime.
##
##############################################################################
InstallGlobalFunction(IsBPSWPseudoPrime,
function(n)
# Step 1 handle n with prime factors < 103
# 1a: if n < 103, then n is prime exactly when it is listed
# 1b: if n is even and >=103, then it is not prime
# 1c-g: if n has a prime factor < 103, then it is not coprime
# to 3*5*..*101 split up into factors < 2^28.
# 1h: A composite number with no factors < 103 must itself be >= 103^2
n := AbsInt(n);
if n < 1000 then return n in Primes;
elif 0 = n mod 2 then return false;
elif 1<>GcdInt(n,257041785) then return false; # 3*5*7*11*13*17*19*53
elif 1<>GcdInt(n, 11559991) then return false; # 83*79*43*41
elif 1<>GcdInt(n,259860509) then return false; # 89*73*47*37*23
elif 1<>GcdInt(n, 12596323) then return false; # 97*71*59*31
elif 1<>GcdInt(n, 11970823) then return false; # 101*67*61*29
elif n < 10609 then return true;
fi;
# Step 2 handle n with prime factors < 1000
# Note that if n < 1000 we have already finished.
# 2a: Check Gcd(n,Product(Primes{[27..168]}) = 1 if n < 2^100 [worst case 145 divisions]
# 2b: otherwise trial divide by the primes between 103 and 997 inclusive [142 divisions]
# 2c: If n < 1009^2 is composite, then it has a prime factor < 1009
if n < 2^100 and 1<>GcdInt(n,
841284107844892882230924743483896036230303226400884429367479745\
182396425076313801080105888842525657179186823477095844441732607\
309415612117497325122570590402649274666448191740488756513678929\
402959775310209214502833707784648441319210161128261125112776114\
119620471154579797706399078932717575475133487349361392344929340\
84356041841547537781640044258066541550710400764797315999285813)
then return false;
elif n >= 2^100 and ForAny(Primes, p -> 0 = n mod p)
then return false;
elif n < 1018081 then return true;
fi;
# Step 3 check if strong pseudo-prime base 2
# 3a: check for strong pseudo-prime base
# 3b: the composite pseudo-primes base 2 less than 10^7 with no
# factors < 1000 are listed in CompositeSPP2
if not IsStrongPseudoPrimeBaseA(n,2) then return false;
elif n < 10^7 then return not n in CompositeSPP2;
fi;
# Step 4 Check for Lucas pseudo prime
# 4a: Check if it is a Lucas pseudo prime
# 4c: There are no composite < 10^13 which are Lucas pseudo primes,
# are strong pseudo primes base 2
# See http://www.chalcedon.demon.co.uk/rgep/psp-12.gz
# and http://www.chalcedon.demon.co.uk/rgep/psp13.gz
# or http://www.chalcedon.demon.co.uk/rgep/spsp-13.gz
# This concludes the BPSW probablistic primality test.
if not IsBPSWLucasPseudoPrime(n) then return false;
elif n < 10^13 then return true;
fi;
# Step 5 Give up and call it a pseudoprime.
return true;
end);
#############################################################################
##
#F IsBPSWPseudoPrime_VerifyCorrectness() - Verify the BPSW correctly
## marks strong Fermat pseudoprimes base 2 as composite for N < 10^13.
## This function is not used in the code, but only there for testing
##
#############################################################################
InstallGlobalFunction(IsBPSWPseudoPrime_VerifyCorrectness,
function()
local io,line;
io:=InputOutputLocalProcess(DirectoryCurrent(),
Filename(DirectoriesSystemPrograms(), "lynx"),
["-dump","http://www.chalcedon.demon.co.uk/rgep/spsp-13.gz"]);
repeat
line := ReadLine(io);
if line=fail or line[Size(line)] <> '\n' then Error("Bad line!"); fi;
line := Int(Chomp(line));
if IsBPSWPseudoPrime(line) <> false then Error("Wrong output!"); fi;
until line = 9998974546471;
CloseStream(io);
end);
#############################################################################
##
## Section 3: Primality proof production, based on BLS 1975
##
## (1) Find witnesses for each divisor (either Fermat or Lucas)
## (2) Suitable Factor N+-1 to decide which witness are needed
## (3) Main routine
## (4) Simpler main routine which appears to be very adequate
##
#############################################################################
## Applicability: A number of results are used from BLS1975, but perhaps
## Theorem 21 has the widest theoretical use. In short, if one factors
## the odd parts of N+-1 into E,F (possibly composite) factors each of
## which has no prime divisors less than B and into various smaller prime
## factors, and if N < B^(E+F+Max(E,F)), then Fermat and Lucas witnesses
## for those factors suffice to prove primality. In particular, if N < B^3,
## then we will succeed in our proof production. Currently GAP's FactorsInt
## gives us a value of B=10^6, and applicability for N < 10^18.
##############################################################################
##
#F PrimalityProof_FindFermat(N,P) - find a base A such that
## N is a strong Fermat pseudoprime base A and such that
## GcdInt(A^((N-1)/P)-1,N)=1.
##
## Return [true,A] if such a base is found, or [false,B] if N
## has been proven composite (where B may help to verify this).
##
##############################################################################
InstallGlobalFunction(PrimalityProof_FindFermat,
function(N,p)
local Np,a,b,c,g;
Np:=(N-1)/p;
a:=2;
while true do
b:=PowerModInt(a,Np,N);
if(1<>b) then break; fi;
a:=a+1;
if(a=N) then return [fail]; fi;
od;
c:=PowerModInt(b,p,N);
if(1 <> c) then return [false,a]; fi;
g:=GcdInt(b-1,N);
if 1 < g and g < N then return [false,g]; fi;
return [true,a];
end);
##############################################################################
##
#F PrimalityProof_FindLucas(N,D,K) - Find a polynomial
## x^2+P*x+Q with discriminant D=P^2-4Q such that the
## associated LucasSequence U satisfies U(N+1) = 0 mod N
## and Gcd(U((N+1)/K),N)=1.
##
## Return [true,P] if such a polynomial is found, and
## [false,B] if N is shown to be composite (where B
## may help to verify this).
##
##############################################################################
InstallGlobalFunction(PrimalityProof_FindLucas,
function(N,D,K)
local P,Q,g;
P:=2;
Q:=((P^2-D)/4) mod N;
while true do
if 0 <> LucasMod(P,Q,N,N+1)[1] then return [false,P,Q]; fi;
g:=GcdInt(N, LucasMod(P,Q,N,(N+1)/K)[1]);
if 1<g and g<N then return [false,g];
elif 1=g then return [true,P];
fi;
Q:=(Q+P+1) mod N;
P:=(P+2) mod N;
if(P=0) then return [fail]; fi;
od;
end);
##############################################################################
##
#F PrimalityProof_FindStructure(N) - Find divisors of N+-1 which can be
## used to prove primality of N based on the ideas in BLS1975.
##
## The return value is a list of pairs [T,div] where T is the name of a test
## (either "F" or "L") and div is a divisor of N+-1.
##
## This routine requires a partial factorization routine.
##
##############################################################################
InstallGlobalFunction(PrimalityProof_FindStructure,
function(N)
local cheap, FactIntPartial, factorsp, factorsm, sqrtN,
F1s, F1, R1, F2s, F2, R2, B, to_check, p, s, r;
cheap:=ValueOption("cheap");
FactIntPartial:=ValueOption("FactIntPartial");
if(cheap=fail) then cheap:=true; fi;
if(FactIntPartial=fail) then FactIntPartial:=true; fi;
# try straightforward method first
if cheap=true and FactIntPartial=true then
to_check:=Concatenation(
List(Set(PartialFactorization(N-1,7)),p->["F",p]),
List(Set(PartialFactorization(N+1,7)),p->["L",p]));
if [] <> PrimalityProof_VerifyStructure(N,to_check)
then return to_check;
else Info(InfoPrimeInt,1,"Straightforward Fermat-Lucas primality proof failed on ",N);
fi;
fi;
sqrtN:=RootInt(N);
B:=10^6;
factorsm:=Factors(N-1 : cheap:=cheap, FactIntPartial:=FactIntPartial);
if not IsList(factorsm[1]) then
factorsm:=[factorsm,[1]];
fi;
F1s:=Set(factorsm[1]);
F1:=Product(factorsm[1]);
R1:=Product(factorsm[2]);
# BLS1975 Cor1
if F1 > sqrtN then
F1:=1;
to_check:=[];
for p in Reversed(F1s) do
AddSet(to_check,p);
F1:=F1*p^Number(factorsm[1],q->p=q);
if(F1 > sqrtN) then break; fi;
od;
return List(to_check,p->["F",p]);
# BLS1975 Cor3
elif B*F1 > sqrtN then
to_check:=F1s;
AddSet(to_check,R1);
return List(to_check,p->["F",p]);
fi;
s:=QuoInt(R1,2*F1);
r:=2*F1*s-R1;
# BLS1975 Th7
if N < (B*F1+1)*(2*F1^2+(r-B)*F1+1) and (s=0 or not IsSquareInt(r^2-8*s)) then
to_check:=F1s;
AddSet(to_check,R1);
return List(to_check,p->["F",p]);
fi;
factorsp:=Factors(N+1 : cheap:=cheap, FactIntPartial:=FactIntPartial);
if not IsList(factorsp[1]) then
factorsp:=[factorsp,[1]];
fi;
F2s:=Set(factorsp[1]);
F2:=Product(factorsp[1]);
R2:=Product(factorsp[2]);
# BLS1975 Cor8
if F2 > sqrtN + 1 then
F2:=1;
to_check:=[];
for p in Reversed(F2s) do
AddSet(to_check,p);
F2:=F2*p^Number(factorsp[1],q->p=q);
if F2 > sqrtN + 1 then break; fi;
od;
return List(to_check,p->["L",p]);
# BLS1975 Cor3
elif B*F2 > sqrtN then
to_check:=F2s;
AddSet(to_check,R2);
return List(to_check,p->["L",p]);
fi;
s:=BestQuoInt(R2,2*F2);
r:=R2-2*F2*s;
# BLS1975 Th19
if N < (B*F2-1)*(2*F2^2 + (B-AbsInt(r))*F2 + 1) and (s=0 or not IsSquareInt(r^2+8*s)) then
to_check:=F2s;
AddSet(to_check,R2);
return List(to_check,p->["L",p]);
fi;
# BLS1975 Cor11
if B^3*F1^2*F2 > 2*N or B^3*F1*F2^2 > 2*N then
return Union(List(F1s,p->["F",p]),List(F2s,p->["L",p]),[ ["F",R1], ["L",R2]]);
fi;
if cheap = true then return PrimalityProof_FindStructure(N:cheap:=false); fi;
return fail;
end);
##############################################################################
##
#F PrimalityProof(N) - Construct a machine verifiable proof of the primality
## of (the probable prime) N, following the ideas of the paper Brillhart,
## Lehmer, Selfridge's "New Primality Criteria and Factorizations of 2^m +-1",
## 1975.
##
##############################################################################
InstallGlobalFunction(PrimalityProof,
function(N)
local factors,certs,D,J,p,ret;
if(N<=2) then return fail;
elif 0 = N mod 2 then return false;
fi;
factors:=PrimalityProof_FindStructure(N);
if(factors=fail) then return fail; fi;
if(ForAny(factors,p->p[1]="L")) then
D:=1;
repeat
D:=(D+1) mod N;
if(D=0) then Error(); return fail; fi;
J:=Jacobi(D,N);
if(J=0) then Error(); return false; fi;
until J=-1;
fi;
certs:=[];
for p in factors do
if p[1]="F" then
ret:=PrimalityProof_FindFermat(N,p[2]);
if(ret[1]=fail) then
Print("\n\n");
Print("# !!! Please email support@gap-system.org the following:\n");
Print("# !!! PrimalityProof(",HexStringInt(N),") failed at F",p[2],"\n\n\n");
Error("# !!! You have probably found a bug. Theoretically <n> is composite.");
return fail;
elif(ret[1]=false) then
if 0 = N mod ret[2] and 1<ret[2] and ret[2]<N
then Error("# PrimalityProof: ",N," is composite (divisible by ",ret[2],").");
elif 0 <> ret[2] mod N and 1 <> PowerModInt(ret[2],N-1,N)
then Error("# PrimalityProof: ",N," is composite (",ret[2],"^",N-1," mod N is not 1).");
else Error("# PrimalityProof: unknown error. N is supposedly composite.");
fi;
return false;
elif(ret[1]=true) then
Add(certs,["F",p[2],ret[2]]);
fi;
elif p[1]="L" then
ret:=PrimalityProof_FindLucas(N,D,p[2]);
if(ret[1]=fail) then
Print("\n\n");
Print("# !!! Please email support@gap-system.org the following:\n");
Print("# !!! PrimalityProof(",HexStringInt(N),") failed at L",p[2],"\n\n\n");
Error("# !!! You have probably found a bug. Theoretically <n> is composite.");
return fail;
elif(ret[1]=false) then
if 0 = N mod ret[2] and 1<ret[2] and ret[2]<N
then Error("# PrimalityProof: ",N," is composite (divisible by ",ret[2],").");
elif 0 <> LucasMod(ret[2],ret[3],N,N-1)[1] mod N
then Error("# PrimalityProof: ",N," is composite (Lucas(",ret[2],",",ret[3],",N-1) mod N is not 0).");
else Error("# PrimalityProof: unknown error. N is supposedly composite.");
fi;
return false;
elif(ret[1]=true) then
Add(certs,["L",p[2],D,ret[2]]);
fi;
else
Error("Unknown certification requested.");
return fail;
fi;
od;
return certs;
end);
##############################################################################
##
## Section 4: Primality proof verification
##
## (1) Verify witnesses
## (2) Verify the collection of witnesses would provide a primality proof
## (3) Main interface
##
##############################################################################
##############################################################################
##
#F PrimalityProof_VerifyWitness(N,witness) - ensure that the proposed
## witness is valid. In other words check condition II or IV from BLS1975.
##
##############################################################################
InstallGlobalFunction(PrimalityProof_VerifyWitness,
function(N,witness)
local type, divisor, base, D, P, Q;
type:=witness[1];
if( type = "F" ) then
divisor := witness[2];
base := witness[3];
return IsStrongPseudoPrimeBaseA(N,base) and
GcdInt( PowerModInt(base,(N-1)/divisor,N)-1, N) = 1;
elif( type = "L" ) then
divisor := witness[2];
D := witness[3];
P := witness[4];
Q := (P^2-D)/4 mod N;
return Jacobi(D,N)=-1 and 0 = LucasMod(P,Q,N,N+1)[1]
and 1 = GcdInt(N, LucasMod(P,Q,N,(N+1)/divisor)[1]);
fi;
return fail;
end);
##############################################################################
##
#F PrimalityProof_VerifyStructure(N,witnesses) - Verify that the collection
## of witness actually satisfies the hypotheses of one of the results in
## BLS1975. Failure is indicated by an empty list. Success is a list:
## [true, NameOfTheorem, AssumedPrimes, DivisorBound, SortOfPrimes ]
##
## In this case, the routine recognized the proof but may require
## some lemmas. Every number in AssumedPrimes must be proven prime.
## Every number in SortOfPrimes must either be (prime and less than
## DivisorBound) or relatively prime to Factorial(DivisorBound).
## DivisorBound is always small enough to make this check feasible
## (currently capped at 10^6).
##
##############################################################################
InstallGlobalFunction(PrimalityProof_VerifyStructure,
function(N,witnesses)
local Fs,Ls,F,L,B,BF,BL, MaxB, B1, B2, F1s, F2s, R1s, R2s, F1, F2, R1, R2, r, s,
QuadraticEstimate, GotOne, rets;
MaxB:=10^6;
QuadraticEstimate:=function(a,b,c)
if b^2 - 4*a*c < 0 then return 10^100; fi;
return Int((-b + RootInt(b^2-4*a*c))/(2*a));
end;
GotOne:=function(ret) Add(rets,ret); end;
rets:=[];
Fs:=List(Filtered(witnesses,wit->wit[1]="F"),wit->wit[2]);
Ls:=List(Filtered(witnesses,wit->wit[1]="L"),wit->wit[2]);
# Every number in F1s and F2s is known to be prime
F1s:=Filtered(Fs,p->p<10^13 and IsBPSWPseudoPrime(p));
R1s:=Filtered(Fs,p->p>10^13 or not IsBPSWPseudoPrime(p));
F2s:=Filtered(Ls,p->p<10^13 and IsBPSWPseudoPrime(p));
R2s:=Filtered(Ls,p->p>10^13 or not IsBPSWPseudoPrime(p));
F1:=Product(F1s, p->p^Valuation(N-1,p));
R1:=Product(R1s, p->p^Valuation(N-1,p));
F2:=Product(F2s, p->p^Valuation(N+1,p));
R2:=Product(R2s, p->p^Valuation(N+1,p));
# Check Co1
if F1^2 > N then GotOne([ true, "BLS1975-Co1", [] , 1 , [] ]); fi;
# Check Cor3 and Th7
if Size(R1s)=1 and R1s[1]=R1 and F1*R1=N-1 then
# Check Cor3, solving for B1
B1 := RootInt( Int(N/F1^2) );
while B1 < MaxB and N >= (B1*F1)^2 do B1:=B1+1; od;
if B1 < MaxB and N < (B1*F1)^2
then GotOne([ true, "BLS1975-Co3", [], B1, R1s]);
fi;
# Check Th7, solving for B1
s:=QuoInt(R1,2*F1);
r:=R1-2*F1*s;
# Want B1 large so that N>= (B1*F1+1)*(2*F1^2+(r-B1)*F1+1)
B1 := QuadraticEstimate( -F1^2, 2*F1^3 + r*F1^2, 2*F1^2+r*F1+1-N);
#B1 := Int(N/(F1+1)/(2*F1^2+r*F1+1));
while B1 < MaxB and 2*F1^2+(r-B1)*F1+1 > 0 and
N >= (B1*F1+1)*(2*F1^2+(r-B1)*F1+1)
do B1:=B1+1; od;
if B1 < MaxB and N < (B1*F1+1)*(2*F1^2+(r-B1)*F1+1)
then GotOne([ 0=s or not IsSquareInt(r^2-8*s), "BLS1975-Th7", [], B1, R1s ]);
fi;
fi;
# Check Cor8
if (F2-1)^2 > N then GotOne([ true, "BLS1975-Co8", [], 1 , [] ]); fi;
# Check Cor10 and Th19
if Size(R2s)=1 and R2s[1]=R2 and F2*R2=N+1 then
# Check Cor10
# Want large B2 such that (B2*F2-1)^2 <= N
B2 := RootInt(Int(N/F2^2));
while B2 < MaxB and (B2*F2-1)^2 <= N do B2:=B2+1; od;
if B2 < MaxB and N < (B2*F2-1)^2
then GotOne([ true, "BLS1975-Co10", [], B2, R2s ]);
fi;
# Check Th19
s:=BestQuoInt(R2,2*F2);
r:=R2-2*F2;
# Want large B2 such that (B2*F2-1)*(2*F2^2 + (B2-|r|)*F2 +1) <= N
B2:=QuadraticEstimate(F2^2,
2*F2^3-F2^2*AbsInt(r),
F2*AbsInt(r) - 2*F2^2 - 1 - N);
while B2 < MaxB and (B2*F2-1)*(2*F2^2 + (B2-AbsInt(r))*F2 +1) <= N
do B2:=B2+1; od;
if B2 < MaxB and N < (B2*F2-1)*(2*F2^2 + (B2-AbsInt(r))*F2 +1)
then GotOne([ s=0 or not IsSquareInt(r^2+8*s), "BLS1975-Th19", [], B2, R2s ]);
fi;
fi;
# Check Cor11
if ( R1=1 or (Size(R1s)=1 and R1s[1]=R1))
and ( R2=1 or (Size(R2s)=1 and R2s[1]=R2))
then
B2 := RootInt( Int(N/F1/F2/Maximum(F1,F2)), 3);
while B2 < MaxB and B2^3 <= N/F1/F2/Maximum(F1,F2) do B2:=B2+1; od;
if B2 < MaxB and B2^3 > 2*N/F1/F2/Maximum(F1,F2)
then GotOne([true, "BLS1975-Co11", [], B2, Set(Concatenation(R1s,R2s))]);
fi;
fi;
# First check Theorem 21, which requires no primality assumptions
# on the divisors (only a bound the proper prime factors of those
# divisors).
if F1*R1 = N-1 and F2*R2 = N+1 then
BF := Sum(Fs,p->Valuation(N-1,p));
BL := Sum(Ls,p->Valuation(N+1,p));
B1 := RootInt(N,BF+BL+Maximum(BF,BL));
while B1 < MaxB and N >= Maximum(B1^BF+1, B1^BL-1)*(B1^BF*B1^BL/2+1)
do B1:=B1+1; od;
if B1 < MaxB and N < Maximum(B1^BF+1,B1^BL-1)*(B1^BF*B1^BL/2 + 1)
and ForAll(Combinations(Fs,2),x->GcdInt(x[1],x[2])=1)
and ForAll(Combinations(Ls,2),x->GcdInt(x[1],x[2])=1)
then GotOne( [true, "BLS1975-Th21", [], B1,
Set(Concatenation( R1s,R2s))]);
fi;
fi;
return rets;
end);
##############################################################################
##
#F PrimalityProof_Verify(N,proof) - Verbosely verify a proposed primality
## proof.
##
##############################################################################
InstallGlobalFunction(PrimalityProof_Verify,
function(N,proof)
local theorems,theorem,x;
theorems:=PrimalityProof_VerifyStructure(N,proof);
if theorems = [] then return fail; fi;
if not ForAll(proof, wit -> PrimalityProof_VerifyWitness(N,wit))
then return false; fi;
for theorem in theorems do
Print("\nNumber proven prime by ",theorem[2],"\n");
if( theorem[3] <> [] ) then Print("assuming each of ",theorem[3],
"is prime\n"); fi;
if theorem[5] <> [] then Print("assuming each of ", theorem[5],
" have no nontrivial divisors less than ", theorem[4]);
x := Product(Filtered(Primes,p->p<theorem[4]));
if theorem[4] < Maximum(Primes) and ForAll(theorem[5], p->
p in Primes or GcdInt(p,x)=1)
then Print("(which is true)\n");
else Print("\n");
fi;
fi;
od;
return true;
end);
##############################################################################
##
## Section 5: Pretty interface
##
## (1) Bind ProbablePrimes2
## (2) IsPrimeIntReplacement - handle caching and warning
## (3) IsProbablyPrimeIntReplacement - handle caching
## (4) Optional code to replace the main gap functions
##
##############################################################################
##############################################################################
##
#F IsPrimeInt(N) - Perform as IsPrimeInt, but use PrimalityProof
## to avoid using any unproven primes. Store proofs in PrimesProofs.
##
##############################################################################
InstallGlobalFunction(IsPrimeInt,
function(N)
local ret;
N := AbsInt(N);
if(N in Primes2) then return true; fi;
ret:= IsBPSWPseudoPrime(N);
if ret = false then return false;
elif ret = true and N < 10^13 then
AddSet(Primes2,N);
return true;
elif ret = true then
ret := PrimalityProof(N);
if PrimalityProof_VerifyStructure(N,ret) <> [] then
AddSet(Primes2,N);
AddSet(PrimesProofs,[N,ret]);
else
Info(InfoPrimeInt, 1,
"IsPrimeInt: probably prime, but not proven: ", N);
AddSet( ProbablePrimes2, N );
fi;
return true;
fi;
Error("Bad return from IsBPSWPseudoPrime");
end);
##############################################################################
##
#F IsProbablyPrimeInt(N) - Perform as isProbablyPrimeInt
## calling the optimized BPSW test instead of the current GAP default.
##
## The option "RabinMillerTrials" may be passed to force additional
## probablistic tests to be run for larger N. The cost can be quite
## significant for large N.
##
##############################################################################
InstallGlobalFunction(IsProbablyPrimeInt,
function(N)
local ret, RabinMillerTrials;
if(N in Primes2 or N in ProbablePrimes2) then return true; fi;
ret := IsBPSWPseudoPrime(N);
if ret = false then return false;
# Otherwise is BPSW number, and all such < 10^13 are prime
elif ret = true and N < 10 ^ 13 then
AddSet(Primes2,N);
return true;
# Otherwise give a dose of Rabin-Miller
else
RabinMillerTrials := ValueOption("RabinMillerTrials");
if RabinMillerTrials = fail then
RabinMillerTrials:=0;
# RabinMillerTrials:= RootInt(Maximum(0,LogInt(N,10)-13));
elif IsFunction(RabinMillerTrials) then
RabinMillerTrials:=RabinMillerTrials(N);
fi;
if ForAll([1..RabinMillerTrials],i->
IsStrongPseudoPrimeBaseA(N,Random(3,N-1)))
then
AddSet(ProbablePrimes2,N);
return true;
# Otherwise an error or composite BPSW number has been found.
else
Print("\n\n");
Print("# !!! Please email support@gap-system.org the following:\n");
Print("# !!! BPSW failed on ",HexStringInt(N),"\n\n\n");
Error("# !!! You have probably found a bug. Theoretically <n> is composite.");
return false;
fi;
fi;
end);
##############################################################################
#E
|