This file is indexed.

/usr/share/gap/lib/quogphom.gd is in gap-libs 4r6p5-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
#############################################################################
##
#W  quogphom.gd			GAP Library		       Gene Cooperman
#W							     and Scott Murray
##
##
#Y  Copyright (C)  1996,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1999 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##

#############################################################################
##
##  1. Quotient groups by homomorphisms
#1
##  Given a group homomorphism, the cosets of its kernel correspond to
##  elements in the image.  Our hom coset representation
##  stores the homomorphism and the element in the source group.  The
##  image is an attribute which is computed as necessary.  Two cosets
##  are equal if their images are the same.  Where ever practical a coset
##  is identified with its image.  For example, if the homomorphism maps
##  into a permutation group, the cosets are considered to be permutations.
##  Since cosets can be multiplied, we can use them to form
##  a quotient group.  Any computation in this quotient group will be
##  ``shadowed'' in the source group.
##

##  Requires: chain (for CanonicalElt only)
##  Exports: 
##    	Category IsHomCoset with representations IsHomCosetToPerm,
##    	  IsHomCosetToMatrix, IsHomCosetToFp, IsHomCosetToTuple, 
##     	  IsHomCosetToAdditiveElt, IsHomCosetToObject, 
##  	Category IsHomQuotientGroup with special cases:
##     	  IsQuotientToPermGroup, IsQuotientToMatrixGroup, IsQuotientToFpGroup
##   	  IsHomeCosetToTupleGroup, IsQuotientToAdditiveGroup,
##  	  IsQuotientToXXXGroup implies IsXXXGroup in all cases
##     	  EXCEPT that IsQuotientToAdditiveGroup() does not imply IsAdditiveGroup
##  	Operations HomCoset( homomorphism, srcElt ),
##        HomCosetWithImage( hom, srcElt, imgElt ),
##        IsTrivialHomCoset( hcoset ); (imgElt and all srcElt's triv.)
##        SourceElt(hcoset), ImageElt(hcoset), Homomorphism(hcoset),
##        CanonicalElt(hcoset) 
##      Property IsHomCosetOfXXX, where XXX is representation of SourceElt()
##
##  BUG:  This probably doesn't affect much right now, but:
##        a subgroup of a quotient group will have the same associated
##        homomorphism as the original quotient group.  Hence, the
##        Source(hom) for the original quotient group and the subgroup
##        will be the same.  But clearly if the subgroup is considered as
##        the image of the homomorphism, then it should have a
##        smaller Source()
##        Right now, my code in solvable-mat.gi creates SubgroupNC that
##        forms a new homomorphism with new source when it creates a subgroup.
##        Ideally the GAP code for SubgroupNC() and Group() should be patched
##        to include this, and the whole issue should be handled in a general
##        way.
##
##  ISSUE:  Given group of additive matrices, both
##            IsHomCosetToMatrix and IsHomCosetToAdditiveElt will be true.
##

DeclareInfoClass( "InfoQuotientGroup" );


#############################################################################
#############################################################################
##
##  2. Homomorphism Coset Representation
#2
##  We represent cosets of kernels of homomorphisms.  Each coset stores
##  the homomorphism and the element in the source.  The
##  element in the image is an attribute.  These cosets are
##  treated as if they are in the image, eg. if the image is a permutation
##  group, then the cosets are representations of a permutation.
##  Thus the set of cosets will form a quotient group.
##

#############################################################################
##
#C  IsHomCoset(<obj>)
##
##  `IsHomCoset' has one category for each kind of image (and corresponding
##  representations).
##
DeclareCategory( "IsHomCoset", IsRightCoset and IsAssociativeElement and
   IsMultiplicativeElementWithInverse);
DeclareCategoryCollections( "IsHomCoset" );

# this is now implicit in the above declaration
# InstallTrueMethod( IsMultiplicativeElementWithInverse, IsHomCoset );

# this is duplicate anyhow as M.E.W.Inv. implies M.E.W.One
# InstallTrueMethod( IsMultiplicativeElementWithOne, IsHomCoset );

#############################################################################
##
#M  IsAssociativeElement( <hcoset> )
##
InstallTrueMethod( IsAssociativeElement, IsHomCoset );

#############################################################################
##
#A  HomCosetFamily( <hom> )
##
##  for a homomorphism <hom>, this attribute returns a family for the
##  `HomCoset' elements belonging to this homomorphism.
##
DeclareAttribute("HomCosetFamily",IsGroupHomomorphism);

##
##  We have one representation for each type of image
##
##  AH, 27-jan-00: One should not call `CategoryCollections' on
##  representations. In fact what you want here is a separation of
##  representations and categories.

#############################################################################
##
#C  IsHomCosetToPerm(<obj>)
##
DeclareCategory( "IsHomCosetToPerm",IsHomCoset and IsPerm);
DeclareCategoryCollections( "IsHomCosetToPerm" );  

#############################################################################
##
#R  IsHomCosetToPermRep(<obj>)
##
DeclareRepresentation( "IsHomCosetToPermRep",
  IsHomCosetToPerm and IsComponentObjectRep and IsAttributeStoringRep,
    [ "Homomorphism", "SourceElt" ] );

#############################################################################
##
#C  IsHomCosetToMatrix(<obj>)
##
##  gdc - We need `HomCosetToMatrix' to be in same family as `Matrix',
##        so that {\GAP} allows vector $\*$ for `HomCosetToMatrix'
##        and other algorithms that take elements of the `HomCosetToMatrix'.
##        Unfortunately, I don't know how to set the family correctly
##        for compatibility.
##
DeclareCategory( "IsHomCosetToMatrix", IsHomCoset 
  and IsMatrix and IsRingElementTable and IsOrdinaryMatrix);
DeclareCategoryCollections( "IsHomCosetToMatrix" );  

#############################################################################
##
#R  IsHomCosetToMatrixRep(<obj>)
##
DeclareRepresentation( "IsHomCosetToMatrixRep",
  IsHomCosetToMatrix and IsComponentObjectRep and IsAttributeStoringRep,
    [ "Homomorphism", "SourceElt" ] );

#############################################################################
##
#C  IsHomCosetToFp(<obj>)
##
DeclareCategory( "IsHomCosetToFp",IsHomCoset and IsWordWithInverse);
DeclareCategoryCollections( "IsHomCosetToFp" );  

#############################################################################
##
#R  IsHomCosetToFpRep(<obj>)
##
DeclareRepresentation( "IsHomCosetToFpRep",
  IsHomCosetToFp and IsComponentObjectRep and IsAttributeStoringRep,
    [ "Homomorphism", "SourceElt" ] );

#############################################################################
##
#C  IsHomCosetToTuple(<obj>)
##
DeclareCategory( "IsHomCosetToTuple",IsHomCoset and IsDirectProductElement);
DeclareCategoryCollections( "IsHomCosetToTuple" );  

#############################################################################
##
#R  IsHomCosetToTupleRep(<obj>)
##
DeclareRepresentation( "IsHomCosetToTupleRep",
  IsHomCosetToTuple and IsComponentObjectRep and IsAttributeStoringRep,
    [ "Homomorphism", "SourceElt" ] );

#############################################################################
##
#C  IsHomCosetToAdditiveElt(<obj>)
##
##  Here the image is an ADDITIVE group of matrices.
##
DeclareCategory( "IsHomCosetToAdditiveElt",IsHomCosetToMatrix);
DeclareCategoryCollections( "IsHomCosetToAdditiveElt" );  

#############################################################################
##
#R  IsHomCosetToAdditiveEltRep(<obj>)
##
DeclareRepresentation( "IsHomCosetToAdditiveEltRep",
  IsHomCosetToAdditiveElt and IsComponentObjectRep and IsAttributeStoringRep,
    [ "Homomorphism", "SourceElt" ] );

##  gdc - We need HomCosetToMatrix to be in same family as Matrix,
##        so that GAP allows vector * HomCosetToMatrix
##        and other algorithms that take elements of the HomCosetToMatrix
##        Unfortunately, I don't know how to set the family correctly
##        for compatibility.

#############################################################################
##
#R  IsHomCosetToObjectRep(<obj>)
##
##  The generic representation.
##
DeclareRepresentation( "IsHomCosetToObjectRep", # catch-all repn
    IsComponentObjectRep and IsAttributeStoringRep and IsHomCoset and IsObject, 
    [ "Homomorphism", "SourceElt" ] );


##
##  We have one property for each kind of source
##

#############################################################################
##
#P  IsHomCosetOfPerm(<obj>)
##
DeclareProperty( "IsHomCosetOfPerm", IsHomCoset );

#############################################################################
##
#P  IsHomCosetOfMatrix(<obj>)
##
DeclareProperty( "IsHomCosetOfMatrix", IsHomCoset );

#############################################################################
##
#P  IsHomCosetOfAdditiveElt(<obj>)
##
DeclareProperty( "IsHomCosetOfAdditiveElt", IsHomCoset );

#############################################################################
##
#P  IsHomCosetOfFp(<obj>)
##
DeclareProperty( "IsHomCosetOfFp", IsHomCoset );

#############################################################################
##
#P  IsHomCosetOfTuple(<obj>)
##
DeclareProperty( "IsHomCosetOfTuple", IsHomCoset );


#############################################################################
#############################################################################
##
##  Quotient groups
##
#############################################################################
#############################################################################

DeclareSynonym( "IsHomQuotientGroup", IsGroup and
    IsHomCosetCollection );
DeclareSynonym( "IsQuotientToPermGroup", IsGroup and
    IsHomCosetToPermCollection );
DeclareSynonym( "IsQuotientToMatrixGroup", IsGroup and
    IsHomCosetToMatrixCollection );
InstallTrueMethod( IsFFEMatrixGroup, IsQuotientToMatrixGroup );

DeclareSynonym( "IsQuotientToTupleGroup", IsGroup and
    IsHomCosetToTupleCollection );
DeclareSynonym( "IsQuotientToFpGroup", IsGroup and
    IsHomCosetToFpCollection );
DeclareSynonym( "IsQuotientToAdditiveGroup", IsGroup and
    IsHomCosetToAdditiveEltCollection );


#############################################################################
#############################################################################
##
##  Creating hom cosets and quotient groups
##
#############################################################################
#############################################################################

#############################################################################
##
#F  HomCoset( <hom>, <elt> )
##
##  Creates a hom coset.  It is better to use one of the `QuotientGroupBy...'
##  functions.
##
DeclareGlobalFunction( "HomCoset", 
    [ IsGroupHomomorphism, IsAssociativeElement ] );

#############################################################################
##
#F  HomCosetWithImage( <hom>, <srcElt>, <imgElt> )
##
##  Creates a hom coset with given homomorphism <hom>, source element <srcElt>
##  and image element <imgElt>. 
##  It is better to use one of the `QuotientGroupBy...'  functions.
##
DeclareGlobalFunction( "HomCosetWithImage",
    [ IsGroupHomomorphism, IsAssociativeElement, IsAssociativeElement ] );

#############################################################################
##
#A  QuotientGroupHom( <hom> )
##
##  The quotient group associated with the homomorphism <hom>.
##  It is better to use one of the `QuotientGroupBy...'  functions.
##
DeclareAttribute( "QuotientGroupHom", IsGroupHomomorphism );

#############################################################################
##
#F  QuotientGroupByHomomorphism( <hom> )
##
##  The quotient group associated with the homomorphism <hom>.
##
DeclareGlobalFunction( "QuotientGroupByHomomorphism", [ IsGroupHomomorphism ] );

#############################################################################
##
#F  QuotientGroupByImages( <srcGroup>, <rangeGroup>, <srcGens>, <imgGens> )
##
##  creates a quotient group from the homomorphism which takes maps 
##  `<srcGens>[<i>]' in <srcGroup> to `<imgGens>[<i>]' in <rangeGroup>.
##
DeclareGlobalFunction( "QuotientGroupByImages", 
		       [ IsGroup, IsGroup, IsList, IsList ] );

#############################################################################
##
#F  QuotientGroupByImagesNC( <srcGroup>, <rangeGroup>, <srcGens>, <imgGens> )
##
##  Same as `QuotientGroupByImages' (see~"QuotientGroupByImages") but without
##  checking that the homomorphism makes sense.
##
DeclareGlobalFunction( "QuotientGroupByImagesNC", 
		       [ IsGroup, IsGroup, IsList, IsList ] );

#############################################################################
##
##  QuotientSubgroupNC( <M>, <gens> )
##
##  Resets the source group in a subgroup of a quotient group.
##  Not yet implemented.
##
##DeclareGlobalFunction( "QuotientSubgroupNC",
##			[IsHomQuotientGroup, IsList] );


#############################################################################
#############################################################################
##
##  Operations on hom cosets
##
#############################################################################
#############################################################################

#############################################################################
##
#F  IsTrivialHomCoset( <hcoset> )
##
##  Is the source element trivial?
##  Sometimes, `IsOne(<hcoset>) => true', in a quotient group, but we can
##  safely discard such a generator only if its <sourceElt> is also trivial.
##
DeclareGlobalFunction( "IsTrivialHomCoset", [ IsHomCoset ] );

#############################################################################
##
#O  Homomorphism( <hcoset> )
#O  Homomorphism( <Q> )
##
##  The homomorphism of a hom coset <hcoset>, respectively a hom quotient 
##  group <Q>.
##
DeclareOperation( "Homomorphism", [ IsHomCoset ] );
DeclareOperation( "Homomorphism", [ IsHomQuotientGroup ] );

#############################################################################
##
#O  SourceElt( <hcoset> )
##
##  The source element of a hom coset <hcoset>.
##
DeclareOperation( "SourceElt", [ IsHomCoset ] );

#############################################################################
##
#A  ImageElt( <hcoset> )
##
##  The image element of a hom coset <hcoset>.
##
DeclareAttribute( "ImageElt" , IsHomCoset );

#############################################################################
##
#A  CanonicalElt( <hcoset> )
##
##  A canonical element of a hom coset <hcoset>.  Note that SourceElt may be
##  different for non-identical equal cosets.  `CanonicalElt' gives the same 
##  element for different representation of a coset.  This will compute a chain
##  for the range group if one does not already exist.
##
DeclareAttribute( "CanonicalElt", IsHomCoset );

#############################################################################
##
#A  Source( <Q> )
##
##  Source group of a hom quotient group <Q>.
##
DeclareAttribute( "Source", IsHomQuotientGroup );

#############################################################################
##
#A  Range( <Q> )
##
##  Range group of a hom quotient group <Q>.
##
DeclareAttribute( "Range", IsHomQuotientGroup );

#############################################################################
##
#A  ImagesSource( <Q> )
##
##  Image group of a hom quotient group <Q>.
##
DeclareAttribute( "ImagesSource", IsHomQuotientGroup );

#############################################################################
##
#A  Length( <hcoset> )
##
##  Length of a word <hcoset>.
##
DeclareAttribute( "Length", IsWord and IsHomCosetToFp );

#############################################################################
##
#O  POW( <obj>, <hcoset> )
##
##  Image of vector.
##
DeclareOperation( "POW", [ IsVector, IsHomCosetToMatrix ]);

#############################################################################
##
#E  quogphom.gd . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
##