/usr/share/gap/lib/quogphom.gd is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 | #############################################################################
##
#W quogphom.gd GAP Library Gene Cooperman
#W and Scott Murray
##
##
#Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1999 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
#############################################################################
##
## 1. Quotient groups by homomorphisms
#1
## Given a group homomorphism, the cosets of its kernel correspond to
## elements in the image. Our hom coset representation
## stores the homomorphism and the element in the source group. The
## image is an attribute which is computed as necessary. Two cosets
## are equal if their images are the same. Where ever practical a coset
## is identified with its image. For example, if the homomorphism maps
## into a permutation group, the cosets are considered to be permutations.
## Since cosets can be multiplied, we can use them to form
## a quotient group. Any computation in this quotient group will be
## ``shadowed'' in the source group.
##
## Requires: chain (for CanonicalElt only)
## Exports:
## Category IsHomCoset with representations IsHomCosetToPerm,
## IsHomCosetToMatrix, IsHomCosetToFp, IsHomCosetToTuple,
## IsHomCosetToAdditiveElt, IsHomCosetToObject,
## Category IsHomQuotientGroup with special cases:
## IsQuotientToPermGroup, IsQuotientToMatrixGroup, IsQuotientToFpGroup
## IsHomeCosetToTupleGroup, IsQuotientToAdditiveGroup,
## IsQuotientToXXXGroup implies IsXXXGroup in all cases
## EXCEPT that IsQuotientToAdditiveGroup() does not imply IsAdditiveGroup
## Operations HomCoset( homomorphism, srcElt ),
## HomCosetWithImage( hom, srcElt, imgElt ),
## IsTrivialHomCoset( hcoset ); (imgElt and all srcElt's triv.)
## SourceElt(hcoset), ImageElt(hcoset), Homomorphism(hcoset),
## CanonicalElt(hcoset)
## Property IsHomCosetOfXXX, where XXX is representation of SourceElt()
##
## BUG: This probably doesn't affect much right now, but:
## a subgroup of a quotient group will have the same associated
## homomorphism as the original quotient group. Hence, the
## Source(hom) for the original quotient group and the subgroup
## will be the same. But clearly if the subgroup is considered as
## the image of the homomorphism, then it should have a
## smaller Source()
## Right now, my code in solvable-mat.gi creates SubgroupNC that
## forms a new homomorphism with new source when it creates a subgroup.
## Ideally the GAP code for SubgroupNC() and Group() should be patched
## to include this, and the whole issue should be handled in a general
## way.
##
## ISSUE: Given group of additive matrices, both
## IsHomCosetToMatrix and IsHomCosetToAdditiveElt will be true.
##
DeclareInfoClass( "InfoQuotientGroup" );
#############################################################################
#############################################################################
##
## 2. Homomorphism Coset Representation
#2
## We represent cosets of kernels of homomorphisms. Each coset stores
## the homomorphism and the element in the source. The
## element in the image is an attribute. These cosets are
## treated as if they are in the image, eg. if the image is a permutation
## group, then the cosets are representations of a permutation.
## Thus the set of cosets will form a quotient group.
##
#############################################################################
##
#C IsHomCoset(<obj>)
##
## `IsHomCoset' has one category for each kind of image (and corresponding
## representations).
##
DeclareCategory( "IsHomCoset", IsRightCoset and IsAssociativeElement and
IsMultiplicativeElementWithInverse);
DeclareCategoryCollections( "IsHomCoset" );
# this is now implicit in the above declaration
# InstallTrueMethod( IsMultiplicativeElementWithInverse, IsHomCoset );
# this is duplicate anyhow as M.E.W.Inv. implies M.E.W.One
# InstallTrueMethod( IsMultiplicativeElementWithOne, IsHomCoset );
#############################################################################
##
#M IsAssociativeElement( <hcoset> )
##
InstallTrueMethod( IsAssociativeElement, IsHomCoset );
#############################################################################
##
#A HomCosetFamily( <hom> )
##
## for a homomorphism <hom>, this attribute returns a family for the
## `HomCoset' elements belonging to this homomorphism.
##
DeclareAttribute("HomCosetFamily",IsGroupHomomorphism);
##
## We have one representation for each type of image
##
## AH, 27-jan-00: One should not call `CategoryCollections' on
## representations. In fact what you want here is a separation of
## representations and categories.
#############################################################################
##
#C IsHomCosetToPerm(<obj>)
##
DeclareCategory( "IsHomCosetToPerm",IsHomCoset and IsPerm);
DeclareCategoryCollections( "IsHomCosetToPerm" );
#############################################################################
##
#R IsHomCosetToPermRep(<obj>)
##
DeclareRepresentation( "IsHomCosetToPermRep",
IsHomCosetToPerm and IsComponentObjectRep and IsAttributeStoringRep,
[ "Homomorphism", "SourceElt" ] );
#############################################################################
##
#C IsHomCosetToMatrix(<obj>)
##
## gdc - We need `HomCosetToMatrix' to be in same family as `Matrix',
## so that {\GAP} allows vector $\*$ for `HomCosetToMatrix'
## and other algorithms that take elements of the `HomCosetToMatrix'.
## Unfortunately, I don't know how to set the family correctly
## for compatibility.
##
DeclareCategory( "IsHomCosetToMatrix", IsHomCoset
and IsMatrix and IsRingElementTable and IsOrdinaryMatrix);
DeclareCategoryCollections( "IsHomCosetToMatrix" );
#############################################################################
##
#R IsHomCosetToMatrixRep(<obj>)
##
DeclareRepresentation( "IsHomCosetToMatrixRep",
IsHomCosetToMatrix and IsComponentObjectRep and IsAttributeStoringRep,
[ "Homomorphism", "SourceElt" ] );
#############################################################################
##
#C IsHomCosetToFp(<obj>)
##
DeclareCategory( "IsHomCosetToFp",IsHomCoset and IsWordWithInverse);
DeclareCategoryCollections( "IsHomCosetToFp" );
#############################################################################
##
#R IsHomCosetToFpRep(<obj>)
##
DeclareRepresentation( "IsHomCosetToFpRep",
IsHomCosetToFp and IsComponentObjectRep and IsAttributeStoringRep,
[ "Homomorphism", "SourceElt" ] );
#############################################################################
##
#C IsHomCosetToTuple(<obj>)
##
DeclareCategory( "IsHomCosetToTuple",IsHomCoset and IsDirectProductElement);
DeclareCategoryCollections( "IsHomCosetToTuple" );
#############################################################################
##
#R IsHomCosetToTupleRep(<obj>)
##
DeclareRepresentation( "IsHomCosetToTupleRep",
IsHomCosetToTuple and IsComponentObjectRep and IsAttributeStoringRep,
[ "Homomorphism", "SourceElt" ] );
#############################################################################
##
#C IsHomCosetToAdditiveElt(<obj>)
##
## Here the image is an ADDITIVE group of matrices.
##
DeclareCategory( "IsHomCosetToAdditiveElt",IsHomCosetToMatrix);
DeclareCategoryCollections( "IsHomCosetToAdditiveElt" );
#############################################################################
##
#R IsHomCosetToAdditiveEltRep(<obj>)
##
DeclareRepresentation( "IsHomCosetToAdditiveEltRep",
IsHomCosetToAdditiveElt and IsComponentObjectRep and IsAttributeStoringRep,
[ "Homomorphism", "SourceElt" ] );
## gdc - We need HomCosetToMatrix to be in same family as Matrix,
## so that GAP allows vector * HomCosetToMatrix
## and other algorithms that take elements of the HomCosetToMatrix
## Unfortunately, I don't know how to set the family correctly
## for compatibility.
#############################################################################
##
#R IsHomCosetToObjectRep(<obj>)
##
## The generic representation.
##
DeclareRepresentation( "IsHomCosetToObjectRep", # catch-all repn
IsComponentObjectRep and IsAttributeStoringRep and IsHomCoset and IsObject,
[ "Homomorphism", "SourceElt" ] );
##
## We have one property for each kind of source
##
#############################################################################
##
#P IsHomCosetOfPerm(<obj>)
##
DeclareProperty( "IsHomCosetOfPerm", IsHomCoset );
#############################################################################
##
#P IsHomCosetOfMatrix(<obj>)
##
DeclareProperty( "IsHomCosetOfMatrix", IsHomCoset );
#############################################################################
##
#P IsHomCosetOfAdditiveElt(<obj>)
##
DeclareProperty( "IsHomCosetOfAdditiveElt", IsHomCoset );
#############################################################################
##
#P IsHomCosetOfFp(<obj>)
##
DeclareProperty( "IsHomCosetOfFp", IsHomCoset );
#############################################################################
##
#P IsHomCosetOfTuple(<obj>)
##
DeclareProperty( "IsHomCosetOfTuple", IsHomCoset );
#############################################################################
#############################################################################
##
## Quotient groups
##
#############################################################################
#############################################################################
DeclareSynonym( "IsHomQuotientGroup", IsGroup and
IsHomCosetCollection );
DeclareSynonym( "IsQuotientToPermGroup", IsGroup and
IsHomCosetToPermCollection );
DeclareSynonym( "IsQuotientToMatrixGroup", IsGroup and
IsHomCosetToMatrixCollection );
InstallTrueMethod( IsFFEMatrixGroup, IsQuotientToMatrixGroup );
DeclareSynonym( "IsQuotientToTupleGroup", IsGroup and
IsHomCosetToTupleCollection );
DeclareSynonym( "IsQuotientToFpGroup", IsGroup and
IsHomCosetToFpCollection );
DeclareSynonym( "IsQuotientToAdditiveGroup", IsGroup and
IsHomCosetToAdditiveEltCollection );
#############################################################################
#############################################################################
##
## Creating hom cosets and quotient groups
##
#############################################################################
#############################################################################
#############################################################################
##
#F HomCoset( <hom>, <elt> )
##
## Creates a hom coset. It is better to use one of the `QuotientGroupBy...'
## functions.
##
DeclareGlobalFunction( "HomCoset",
[ IsGroupHomomorphism, IsAssociativeElement ] );
#############################################################################
##
#F HomCosetWithImage( <hom>, <srcElt>, <imgElt> )
##
## Creates a hom coset with given homomorphism <hom>, source element <srcElt>
## and image element <imgElt>.
## It is better to use one of the `QuotientGroupBy...' functions.
##
DeclareGlobalFunction( "HomCosetWithImage",
[ IsGroupHomomorphism, IsAssociativeElement, IsAssociativeElement ] );
#############################################################################
##
#A QuotientGroupHom( <hom> )
##
## The quotient group associated with the homomorphism <hom>.
## It is better to use one of the `QuotientGroupBy...' functions.
##
DeclareAttribute( "QuotientGroupHom", IsGroupHomomorphism );
#############################################################################
##
#F QuotientGroupByHomomorphism( <hom> )
##
## The quotient group associated with the homomorphism <hom>.
##
DeclareGlobalFunction( "QuotientGroupByHomomorphism", [ IsGroupHomomorphism ] );
#############################################################################
##
#F QuotientGroupByImages( <srcGroup>, <rangeGroup>, <srcGens>, <imgGens> )
##
## creates a quotient group from the homomorphism which takes maps
## `<srcGens>[<i>]' in <srcGroup> to `<imgGens>[<i>]' in <rangeGroup>.
##
DeclareGlobalFunction( "QuotientGroupByImages",
[ IsGroup, IsGroup, IsList, IsList ] );
#############################################################################
##
#F QuotientGroupByImagesNC( <srcGroup>, <rangeGroup>, <srcGens>, <imgGens> )
##
## Same as `QuotientGroupByImages' (see~"QuotientGroupByImages") but without
## checking that the homomorphism makes sense.
##
DeclareGlobalFunction( "QuotientGroupByImagesNC",
[ IsGroup, IsGroup, IsList, IsList ] );
#############################################################################
##
## QuotientSubgroupNC( <M>, <gens> )
##
## Resets the source group in a subgroup of a quotient group.
## Not yet implemented.
##
##DeclareGlobalFunction( "QuotientSubgroupNC",
## [IsHomQuotientGroup, IsList] );
#############################################################################
#############################################################################
##
## Operations on hom cosets
##
#############################################################################
#############################################################################
#############################################################################
##
#F IsTrivialHomCoset( <hcoset> )
##
## Is the source element trivial?
## Sometimes, `IsOne(<hcoset>) => true', in a quotient group, but we can
## safely discard such a generator only if its <sourceElt> is also trivial.
##
DeclareGlobalFunction( "IsTrivialHomCoset", [ IsHomCoset ] );
#############################################################################
##
#O Homomorphism( <hcoset> )
#O Homomorphism( <Q> )
##
## The homomorphism of a hom coset <hcoset>, respectively a hom quotient
## group <Q>.
##
DeclareOperation( "Homomorphism", [ IsHomCoset ] );
DeclareOperation( "Homomorphism", [ IsHomQuotientGroup ] );
#############################################################################
##
#O SourceElt( <hcoset> )
##
## The source element of a hom coset <hcoset>.
##
DeclareOperation( "SourceElt", [ IsHomCoset ] );
#############################################################################
##
#A ImageElt( <hcoset> )
##
## The image element of a hom coset <hcoset>.
##
DeclareAttribute( "ImageElt" , IsHomCoset );
#############################################################################
##
#A CanonicalElt( <hcoset> )
##
## A canonical element of a hom coset <hcoset>. Note that SourceElt may be
## different for non-identical equal cosets. `CanonicalElt' gives the same
## element for different representation of a coset. This will compute a chain
## for the range group if one does not already exist.
##
DeclareAttribute( "CanonicalElt", IsHomCoset );
#############################################################################
##
#A Source( <Q> )
##
## Source group of a hom quotient group <Q>.
##
DeclareAttribute( "Source", IsHomQuotientGroup );
#############################################################################
##
#A Range( <Q> )
##
## Range group of a hom quotient group <Q>.
##
DeclareAttribute( "Range", IsHomQuotientGroup );
#############################################################################
##
#A ImagesSource( <Q> )
##
## Image group of a hom quotient group <Q>.
##
DeclareAttribute( "ImagesSource", IsHomQuotientGroup );
#############################################################################
##
#A Length( <hcoset> )
##
## Length of a word <hcoset>.
##
DeclareAttribute( "Length", IsWord and IsHomCosetToFp );
#############################################################################
##
#O POW( <obj>, <hcoset> )
##
## Image of vector.
##
DeclareOperation( "POW", [ IsVector, IsHomCosetToMatrix ]);
#############################################################################
##
#E quogphom.gd . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
##
|