/usr/share/gap/lib/randiso2.gi is in gap-libs 4r6p5-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 | #############################################################################
##
#W randiso2.gi GAP library Hans Ulrich Besche
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
#############################################################################
##
#F EvalFpCoc( coc, desc ). . . . . . . . . . . . . . . . . . . . . . . local
##
EvalFpCoc := function( coc, desc )
local powers, exp, targets, result, i, j, g1, g2, fcd4, pos, map;
if desc[ 1 ] = 1 then
# test, if g^i in cl(g)
return List( coc[ desc[ 2 ] ],
function( x )
if x[ 1 ] ^ desc[ 3 ] in x then return 1; fi; return 0;
end );
elif desc[ 1 ] = 2 then
# test, if cl(g) is root of cl(h)
exp := QuoInt( Order( coc[ desc[ 2 ] ][ 1 ][ 1 ] ),
Order( coc[ desc[ 3 ] ][ 1 ][ 1 ] ) );
powers := Flat( coc[ desc[ 3 ] ] );
return List( coc[ desc[ 2 ] ],
function(x)
if x[ 1 ] ^ exp in powers then return 1; fi; return 0;
end );
elif desc[ 1 ] = 3 then
# test, if cl(g) is power of cl(h)
exp := QuoInt( Order( coc[ desc[ 3 ] ][ 1 ][ 1 ] ),
Order( coc[ desc[ 2 ] ][ 1 ][ 1 ] ) );
# just one representative for each class of power-candidates
powers := List( coc[ desc[ 2 ] ], x -> x[ 1 ] );
result := List( powers, x -> 0 );
for i in List( Flat( coc[ desc[ 3 ] ] ), x -> x ^ exp ) do
for j in [ 1 .. Length( powers ) ] do
if i = powers[ j ] then
result[ j ] := result[ j ] + 1;
fi;
od;
od;
return result;
else
# test how often the word [ a, b ] * a^2 is hit
targets := List( coc[ desc[ 2 ] ], x -> x[ 1 ] );
map := [ 1 .. Length( targets ) ];
SortParallel( targets, map );
result := List( targets, x -> 0 );
fcd4 := Flat( coc[ desc[ 4 ] ] );
for g1 in Flat( coc[ desc[ 3 ] ] ) do
for g2 in fcd4 do
if desc[ 1 ] = 4 then
pos := Position( targets, Comm( g1, g2 ) * g1 ^ 2 );
else
# desc[ 1 ] = 5
pos := Position( targets, Comm( g1, g2 ) * g1 ^ 3 );
fi;
if not IsBool( pos ) then
result[ map[ pos ] ] := result[ map[ pos ] ] + 1;
fi;
od;
od;
return result;
fi;
end;
#############################################################################
##
#F CocGroup( G ). . . . . . . . . . . . . . . . . . . . . . . . . . . . local
##
CocGroup := function( g )
local orbs, typs, styps, coc, i, j;
# compute the conjugacy classes of G as lists of elements and
# classify them according to representative order and length
orbs := OrbitsDomain( g, AsList( g ) );
typs := List( orbs, x -> [ Order( x[ 1 ] ), Length( x ) ] );
styps := Set( typs );
coc := List( styps, x-> [ ] );
for i in [ 1 .. Length( styps ) ] do
for j in [ 1 .. Length( orbs ) ] do
if styps[ i ] = typs[ j ] then
Add( coc[ i ], orbs[ j ] );
fi;
od;
od;
return coc;
end;
#############################################################################
##
#F DiffCoc( coc, pos, finps ) . . . . . . . . . . . . . . . . . . . . . local
##
DiffCoc := function( coc, pos, finps )
local tmp, sfinps, i, j;
# split up the pos-th cluster of coc using the fingerprint-values finps
sfinps := Set( finps );
tmp := List( sfinps, x -> [ ] );
for i in [ 1 .. Length( sfinps ) ] do
for j in [ 1 .. Length( finps ) ] do
if sfinps[ i ] = finps[ j ] then
Add( tmp[ i ], coc[ pos ][ j ] );
fi;
od;
od;
return Concatenation( coc{[1..pos-1]}, tmp, coc{[pos+1..Length(coc)]} );
end;
#############################################################################
##
#F SplitUpSublistsByFpFunc( list ). . . . . . . . . . . . . . . . . . . local
##
SplitUpSublistsByFpFunc := function( list )
local result, finp, finps, i, g, j;
result := [ ];
finps := [ ];
for i in [ 1 .. Length( list ) ] do
if list[ i ].isUnique then
Add( result, [ list [ i ] ] );
Add( finps, false );
else
g := PcGroupCodeRec( list[i] );
finp := FingerprintFF( g );
j := Position( finps, finp );
if IsBool( j ) then
Add( result, [ list[ i ] ] );
Add( finps, finp );
Info( InfoRandIso, 3, "split into ", Length( finps ),
" classes within ", i, " of ", Length( list ), " tests" );
else
Add( result[ j ], list[ i ] );
if i mod 50 = 0 then
Info( InfoRandIso, 3, "still ", Length( finps ),
" classes after ", i, " of ", Length( list ), " tests" );
fi;
fi;
fi;
od;
for i in [ 1 .. Length( result ) ] do
if Length( result[ i ] ) = 1 then
result[ i ] := result[ i ][ 1 ];
result[ i ].isUnique := true;
fi;
od;
Info( InfoRandIso, 2, " Iso: found ", Length(result)," classes incl. ",
Length( Filtered( result, IsRecord ) )," unique groups");
return result;
end;
#############################################################################
##
#F CodeGenerators( gens, spcgs ). . . . . . . . . . . . . . . . . . . . local
##
CodeGenerators := function( gens, spcgs )
local layers, first, one, pcgs, sgrps, dep, lay,
numf, pos, e, tpos, found, et, p;
gens := ShallowCopy( gens );
layers := LGLayers( spcgs );
first := LGFirst( spcgs );
one := OneOfPcgs( spcgs );
pcgs := [ ];
sgrps := [ ];
numf := 0;
pos := 0;
while numf < Length( spcgs ) do
pos := pos + 1;
e := gens[ pos ];
while e <> one do
dep := DepthOfPcElement( spcgs, e );
lay := layers[ dep ];
tpos := first[ lay + 1 ];
found := false;
while tpos > first[ lay ] and not found and e <> one do
tpos := tpos - 1;
if not IsBound( pcgs[ tpos ] ) then
pcgs[ tpos ] := e;
sgrps[ tpos ] := GroupByGenerators( Concatenation( [ e ],
pcgs{[ tpos + 1 .. first[ lay + 1 ] - 1 ]},
spcgs{[ first[lay+1] .. Length(spcgs) ]} ) );
for p in Set( FactorsInt( Order( e ) ) ) do
et := e ^ p;
if et <> one and not et in gens then
Add( gens, et );
fi;
od;
for p in Compacted( pcgs ) do
et := Comm( e, p );
if et <> one and not et in gens then
Add( gens, et );
fi;
od;
e := one;
numf := numf + 1;
else
if e in sgrps[ tpos ] then
found := true;
fi;
fi;
od;
if found then
while tpos < first[ lay + 1 ] do
if tpos + 1 = first[ lay + 1 ] then
while e <> one and
lay = layers[ DepthOfPcElement( spcgs, e ) ] do
e := pcgs[ tpos ] ^ -1 * e;
od;
else
while not e in sgrps[ tpos + 1 ] do
e := pcgs[ tpos ] ^ -1 * e;
od;
fi;
tpos := tpos + 1;
od;
fi;
od;
od;
pcgs := PcgsByPcSequenceNC( ElementsFamily( FamilyObj( spcgs ) ), pcgs );
SetRelativeOrders( pcgs, RelativeOrders( spcgs ) );
return rec( pcgs := pcgs, code := CodePcgs( pcgs ) );
end;
#############################################################################
##
#F IsomorphismSolvableSmallGroups( G, H ). . . . . isomorphism from G onto H
##
IsomorphismSolvableSmallGroups := function( g, h )
local size, coc1, coc2, lcoc, coclen, p, poses, nposes, i, qual, nqual,
lmin, spcgs1, spcgs2, gens, code, gens1, gens2, codes1, codes2,
G, H, iso, iso1, iso2;
size := Size( g );
if size <> Size( h ) then
return fail;
fi;
if size = 1 then
return GroupHomomorphismByImagesNC( g, h, [], [] );
fi;
if ID_AVAILABLE( size ) = fail or size > 2000 then
Error( "IsomorphismSmallSolvableGroups: groups are not small" );
fi;
if IdGroup( g ) <> IdGroup( h ) then
return fail;
fi;
if not IsSolvableGroup( g ) then
Error( "IsomorphismSmallSolvableGroups: groups are not solvable" );
fi;
if IsPcGroup( g ) then
G := g;
else
iso1 := IsomorphismPcGroup( g );
G := Image( iso1 );
fi;
if IsPcGroup( h ) then
H := h;
else
iso2 := IsomorphismPcGroup( h );
H := Image( iso2 );
fi;
coc1 := CocGroup( G );
coc1 := List( coc1{[ 2 .. Length( coc1 ) ]}, Concatenation );
coc2 := CocGroup( H );
coc2 := List( coc2{[ 2 .. Length( coc2 ) ]}, Concatenation );
lcoc := Length( coc1 );
coclen := List( coc1, Length );
lmin := Length( MinimalGeneratingSet( G ) );
qual := size ^ lmin;
poses := fail;
i := - Length( FactorsInt( size ) ) * 5 - lcoc * 8 - lmin * 12;
Info( InfoRandIso, 3, "testing ", -i, " generating strategies" );
while poses = fail or i < 0 do
i := i + 1;
nposes := List( [ 1 .. lmin ], x -> Random( [ 1 .. lcoc ] ) );
nqual := Product( coclen{ nposes } );
if nqual < qual and
Size( Group( List( coc1{ nposes }, Random ) ) ) = size then
qual := nqual;
poses := nposes;
fi;
od;
Info( InfoRandIso, 2, "strategy with ",qual," generating set candidates");
coc1 := coc1{ poses };
coc2 := coc2{ poses };
gens1 := [];
gens2 := [];
codes1 := [];
codes2 := [];
spcgs1 := SpecialPcgs( G );
spcgs2 := SpecialPcgs( H );
iso := fail;
i := 0;
while iso = fail do
i := i + 1;
if i mod 10 = 0 then
Info( InfoRandIso, 3, i, " test on generating set candidates" );
fi;
if gens1 = [] then
gens := ShallowCopy( GeneratorsOfGroup( G ) );
else
gens := List( coc1, Random );
fi;
if Size( Group( gens ) ) = size then
code := CodeGenerators( gens, spcgs1 );
p := Position( codes2, code.code );
if p <> fail then
iso := GroupHomomorphismByImagesNC( G, H, code.pcgs,
CodeGenerators( gens2[ p ], spcgs2 ).pcgs );
fi;
if not code.code in codes1 then
Add( codes1, code.code );
Add( gens1, gens );
fi;
fi;
if iso = fail then
if gens2 = [] then
gens := ShallowCopy( GeneratorsOfGroup( H ) );
else
gens := List( coc2, Random );
fi;
if Size( Group( gens ) ) = size then
code := CodeGenerators( gens, spcgs2 );
p := Position( codes1, code.code );
if p <> fail then
iso := GroupHomomorphismByImagesNC( G, H,
CodeGenerators( gens1[ p ], spcgs1 ).pcgs, code.pcgs);
fi;
if not code.code in codes2 then
Add( codes2, code.code );
Add( gens2, gens );
fi;
fi;
fi;
od;
gens := GeneratorsOfGroup( g );
if IsBound( iso1 ) then
gens := List( gens, x -> Image( iso1, x ) );
fi;
gens := List( gens, x -> Image( iso, x ) );
if IsBound( iso2 ) then
gens := List( gens, x -> PreImage( iso2, x ) );
fi;
return GroupHomomorphismByImagesNC( g, h, GeneratorsOfGroup( g ), gens );
end;
|