This file is indexed.

/usr/share/gap/lib/ratfun.gd is in gap-libs 4r6p5-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
#############################################################################
##
#W  ratfun.gd                   GAP Library                      Frank Celler
#W                                                           Alexander Hulpke
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci.,  University of St  Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the categories,  attributes, properties and operations
##  for  rational functions, Laurent polynomials   and polynomials and  their
##  families.

##  Warning:
##  If the mechanism for storing attributes is changed,
##  `LaurentPolynomialByExtRep' must be changed as well.
##  Also setter methods for coefficients and/or indeterminate number will be
##  ignored when creating Laurent polynomials.
##  (This is ugly and inconsistent, but crucial to get speed. ahulpke, May99)

#############################################################################
##
#I  InfoPoly
##
##  <#GAPDoc Label="InfoPoly">
##  <ManSection>
##  <InfoClass Name="InfoPoly"/>
##
##  <Description>
##  is the info class for univariate polynomials.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareInfoClass( "InfoPoly" );

#############################################################################
##
#C  IsPolynomialFunction(<obj>)
#C  IsRationalFunction(<obj>)
##
##  <#GAPDoc Label="IsPolynomialFunction">
##  <ManSection>
##  <Filt Name="IsPolynomialFunction" Arg='obj' Type='Category'/>
##  <Filt Name="IsRationalFunction" Arg='obj' Type='Category'/>
##
##  <Description>
##  A rational function is an element of the quotient field of a polynomial
##  ring over an UFD. It is represented as a quotient of two polynomials,
##  its numerator (see&nbsp;<Ref Func="NumeratorOfRationalFunction"/>) and
##  its denominator (see&nbsp;<Ref Func="DenominatorOfRationalFunction"/>)
##  <P/>
##  A polynomial function is an element of a polynomial ring (not
##  necessarily an UFD), or a rational function.
##  <P/>
##  &GAP; considers <Ref Func="IsRationalFunction"/> as a subcategory of
##  <Ref Func="IsPolynomialFunction"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsPolynomialFunction", IsRingElementWithInverse and IsZDFRE);
DeclareCategory( "IsRationalFunction", IsPolynomialFunction);

DeclareCategoryCollections( "IsPolynomialFunction" );
DeclareCategoryCollections( "IsRationalFunction" );

#############################################################################
##
#C  IsPolynomialFunctionsFamilyElement(<obj>)
#C  IsRationalFunctionsFamilyElement(<obj>)
##
##  <ManSection>
##  <Filt Name="IsPolynomialFunctionsFamilyElement" Arg='obj' Type='Category'/>
##  <Filt Name="IsRationalFunctionsFamilyElement" Arg='obj' Type='Category'/>
##
##  <Description>
##  A polynomial is an element of a polynomial functions family. If the
##  underlying domain is an UFD, it is even a
##  <Ref Func="IsRationalFunctionsFamilyElement"/>.
##  </Description>
##  </ManSection>
##
DeclareCategory("IsPolynomialFunctionsFamilyElement",IsPolynomialFunction);
DeclareCategory("IsRationalFunctionsFamilyElement", 
  IsRationalFunction and IsPolynomialFunctionsFamilyElement );

#############################################################################
##
#C  IsPolynomialFunctionsFamily(<obj>)
#C  IsRationalFunctionsFamily(<obj>)
##
##  <#GAPDoc Label="IsPolynomialFunctionsFamily">
##  <ManSection>
##  <Filt Name="IsPolynomialFunctionsFamily" Arg='obj' Type='Category'/>
##  <Filt Name="IsRationalFunctionsFamily" Arg='obj' Type='Category'/>
##
##  <Description>
##  <Ref Func="IsPolynomialFunctionsFamily"/> is the category of a family of
##  polynomials.
##  For families over an UFD, the category becomes
##  <Ref Func="IsRationalFunctionsFamily"/> (as rational functions and
##  quotients are only provided for families over an UFD.)
##  <!--  1996/10/14 fceller can this be done with <C>CategoryFamily</C>?-->
##  <P/>
##  <Log><![CDATA[
##  gap> fam:=RationalFunctionsFamily(FamilyObj(1));
##  NewFamily( "RationalFunctionsFamily(...)", [ 618, 620 ],
##  [ 82, 85, 89, 93, 97, 100, 103, 107, 111, 618, 620 ] )
##  ]]></Log>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsPolynomialFunctionsFamily", IsFamily );
DeclareCategory( "IsRationalFunctionsFamily", IsPolynomialFunctionsFamily and IsUFDFamily );

#############################################################################
##
#C  IsRationalFunctionOverField(<obj>)
##
##  <ManSection>
##  <Filt Name="IsRationalFunctionOverField" Arg='obj' Type='Category'/>
##
##  <Description>
##  Indicates that the coefficients family for the rational function <A>obj</A>
##  is a field. In this situation it is permissible to move coefficients
##  from the denominator in the numerator, in particular the quotient of a
##  polynomial by a coefficient is again a polynomial. This last property
##  does not necessarily hold for polynomials over arbitrary rings.
##  </Description>
##  </ManSection>
##
DeclareCategory("IsRationalFunctionOverField", IsRationalFunction );

#############################################################################
##
#A  RationalFunctionsFamily( <fam> )
##
##  <#GAPDoc Label="RationalFunctionsFamily">
##  <ManSection>
##  <Attr Name="RationalFunctionsFamily" Arg='fam'/>
##
##  <Description>
##  creates a   family  containing rational functions  with   coefficients
##  in <A>fam</A>. 
##  All elements of the <Ref Func="RationalFunctionsFamily"/> are
##  rational functions (see&nbsp;<Ref Func="IsRationalFunction"/>).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "RationalFunctionsFamily", IsFamily );

#############################################################################
##
#A  CoefficientsFamily( <rffam> )
##
##  <#GAPDoc Label="CoefficientsFamily">
##  <ManSection>
##  <Attr Name="CoefficientsFamily" Arg='rffam'/>
##
##  <Description>
##  If <A>rffam</A> has been created as
##  <C>RationalFunctionsFamily(<A>cfam</A>)</C> this attribute holds the
##  coefficients family <A>cfam</A>.
##  <P/>
##  &GAP; does <E>not</E> embed the base ring in the polynomial ring. While
##  multiplication and addition of base ring elements to rational functions
##  return the expected results, polynomials and rational functions are not
##  equal.
##  <Example><![CDATA[
##  gap> 1=Indeterminate(Rationals)^0;
##  false
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "CoefficientsFamily", IsFamily );

#############################################################################
##
#A  NumeratorOfRationalFunction( <ratfun> )
##
##  <#GAPDoc Label="NumeratorOfRationalFunction">
##  <ManSection>
##  <Attr Name="NumeratorOfRationalFunction" Arg='ratfun'/>
##
##  <Description>
##  returns the numerator of the rational function <A>ratfun</A>.
##  <P/>
##  As no proper multivariate gcd has been implemented yet, numerators and
##  denominators are not guaranteed to be reduced!
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "NumeratorOfRationalFunction", IsPolynomialFunction);

#############################################################################
##
#A  DenominatorOfRationalFunction( <ratfun> )
##
##  <#GAPDoc Label="DenominatorOfRationalFunction">
##  <ManSection>
##  <Attr Name="DenominatorOfRationalFunction" Arg='ratfun'/>
##
##  <Description>
##  returns the denominator of the rational function <A>ratfun</A>.
##  <P/>
##  As no proper multivariate gcd has been implemented yet, numerators and
##  denominators are not guaranteed to be reduced!
##  <Example><![CDATA[
##  gap> x:=Indeterminate(Rationals,1);;y:=Indeterminate(Rationals,2);;
##  gap> DenominatorOfRationalFunction((x*y+x^2)/y);
##  y
##  gap> NumeratorOfRationalFunction((x*y+x^2)/y);
##  x^2+x*y
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "DenominatorOfRationalFunction", IsRationalFunction );

#############################################################################
##
#P  IsPolynomial( <ratfun> )
##
##  <#GAPDoc Label="IsPolynomial">
##  <ManSection>
##  <Prop Name="IsPolynomial" Arg='ratfun'/>
##
##  <Description>
##  A polynomial is a rational function whose denominator is one. (If the
##  coefficients family forms a field this is equivalent to the denominator
##  being constant.)
##  <P/>
##  If the base family is not a field, it may be impossible to represent the
##  quotient of a polynomial by a ring element as a polynomial again, but it
##  will have to be represented as a rational function.
##  <Example><![CDATA[
##  gap> IsPolynomial((x*y+x^2*y^3)/y);
##  true
##  gap> IsPolynomial((x*y+x^2)/y);
##  false
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsPolynomial", IsPolynomialFunction );


#############################################################################
##
#A  AsPolynomial( <poly> )
##
##  <#GAPDoc Label="AsPolynomial">
##  <ManSection>
##  <Attr Name="AsPolynomial" Arg='poly'/>
##
##  <Description>
##  If <A>poly</A> is a rational function that is a polynomial this attribute
##  returns an equal rational function <M>p</M> such that <M>p</M> is equal
##  to its numerator and the denominator of <M>p</M> is one.
##  <Example><![CDATA[
##  gap> AsPolynomial((x*y+x^2*y^3)/y);
##  x^2*y^2+x
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "AsPolynomial",
  IsPolynomialFunction and IsPolynomial);

#############################################################################
##
#P  IsUnivariateRationalFunction( <ratfun> )
##
##  <#GAPDoc Label="IsUnivariateRationalFunction">
##  <ManSection>
##  <Prop Name="IsUnivariateRationalFunction" Arg='ratfun'/>
##
##  <Description>
##  A rational function is univariate if its numerator and its denominator
##  are both polynomials in the same one indeterminate. The attribute
##  <Ref Func="IndeterminateNumberOfUnivariateRationalFunction"/> can be used to obtain
##  the number of this common indeterminate.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsUnivariateRationalFunction", IsRationalFunction );

#############################################################################
##
#P  IsUnivariatePolynomial( <ratfun> )
##
##  <#GAPDoc Label="IsUnivariatePolynomial">
##  <ManSection>
##  <Prop Name="IsUnivariatePolynomial" Arg='ratfun'/>
##
##  <Description>
##  A univariate polynomial is a polynomial in only one indeterminate.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonymAttr("IsUnivariatePolynomial",
  IsPolynomial and IsUnivariateRationalFunction);

#############################################################################
##
#P  IsLaurentPolynomial( <ratfun> )
##
##  <#GAPDoc Label="IsLaurentPolynomial">
##  <ManSection>
##  <Prop Name="IsLaurentPolynomial" Arg='ratfun'/>
##
##  <Description>
##  A Laurent polynomial is a univariate rational function whose denominator
##  is a monomial. Therefore every univariate polynomial is a
##  Laurent polynomial.
##  <P/>
##  The attribute <Ref Func="CoefficientsOfLaurentPolynomial"/> gives a
##  compact representation as Laurent polynomial.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsLaurentPolynomial", IsPolynomialFunction );

InstallTrueMethod( IsUnivariateRationalFunction,IsLaurentPolynomial );
InstallTrueMethod( IsLaurentPolynomial, IsUnivariatePolynomial );

#############################################################################
##
#P  IsConstantRationalFunction( <ratfun> )
##
##  <#GAPDoc Label="IsConstantRationalFunction">
##  <ManSection>
##  <Prop Name="IsConstantRationalFunction" Arg='ratfun'/>
##
##  <Description>
##  A  constant  rational   function is  a    function  whose  numerator  and
##  denominator are polynomials of degree 0.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsConstantRationalFunction", IsPolynomialFunction );
InstallTrueMethod( IsUnivariateRationalFunction, IsConstantRationalFunction );

#############################################################################
##
#P  IsZeroRationalFunction( <ratfun> )
##
##  <ManSection>
##  <Prop Name="IsZeroRationalFunction" Arg='ratfun'/>
##
##  <Description>
##  This property indicates whether <A>ratfun</A> is the zero element of the
##  field of rational functions.
##  </Description>
##  </ManSection>
##
DeclareSynonymAttr("IsZeroRationalFunction",IsZero and IsPolynomialFunction);

InstallTrueMethod( IsConstantRationalFunction,IsZeroRationalFunction );


#############################################################################
##
#R  IsRationalFunctionDefaultRep(<obj>)
##
##  <#GAPDoc Label="IsRationalFunctionDefaultRep">
##  <ManSection>
##  <Filt Name="IsRationalFunctionDefaultRep" Arg='obj' Type='Representation'/>
##
##  <Description>
##  is the default representation of rational functions. A rational function
##  in this representation is defined by the attributes
##  <Ref Func="ExtRepNumeratorRatFun"/> and
##  <Ref Func="ExtRepDenominatorRatFun"/>,
##  the values of which are external representations of polynomials.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareRepresentation("IsRationalFunctionDefaultRep",
    IsComponentObjectRep and IsAttributeStoringRep and IsRationalFunction,
    ["zeroCoefficient","numerator","denominator"] );


#############################################################################
##
#R  IsPolynomialDefaultRep(<obj>)
##
##  <#GAPDoc Label="IsPolynomialDefaultRep">
##  <ManSection>
##  <Filt Name="IsPolynomialDefaultRep" Arg='obj' Type='Representation'/>
##
##  <Description>
##  is the default representation of polynomials. A polynomial
##  in this representation is defined by the components
##  and <Ref Func="ExtRepNumeratorRatFun"/> where
##  <Ref Func="ExtRepNumeratorRatFun"/> is the
##  external representation of the polynomial.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareRepresentation("IsPolynomialDefaultRep",
    IsComponentObjectRep and IsAttributeStoringRep 
    and IsPolynomialFunction and IsPolynomial,["zeroCoefficient","numerator"]);


#############################################################################
##
#R  IsLaurentPolynomialDefaultRep(<obj>)
##
##  <#GAPDoc Label="IsLaurentPolynomialDefaultRep">
##  <ManSection>
##  <Filt Name="IsLaurentPolynomialDefaultRep" Arg='obj' Type='Representation'/>
##
##  <Description>
##  This representation is used for Laurent polynomials and univariate
##  polynomials. It represents a Laurent polynomial via the attributes
##  <Ref Func="CoefficientsOfLaurentPolynomial"/> and
##  <Ref Func="IndeterminateNumberOfLaurentPolynomial"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareRepresentation("IsLaurentPolynomialDefaultRep",
    IsComponentObjectRep and IsAttributeStoringRep
    and IsPolynomialFunction and IsLaurentPolynomial, [] );

#############################################################################
##
#R  IsUnivariateRationalFunctionDefaultRep(<obj>)
##
##  <ManSection>
##  <Filt Name="IsUnivariateRationalFunctionDefaultRep" Arg='obj' Type='Representation'/>
##
##  <Description>
##  This representation is used for univariate rational functions
##  polynomials. It represents a univariate rational function via the attributes
##  <Ref Func="CoefficientsOfUnivariateRationalFunction"/> and
##  <Ref Func="IndeterminateNumberOfUnivariateRationalFunction"/>.
##  </Description>
##  </ManSection>
##
DeclareRepresentation("IsUnivariateRationalFunctionDefaultRep",
    IsComponentObjectRep and IsAttributeStoringRep
    and IsPolynomialFunction and IsUnivariateRationalFunction, [] );


##  <#GAPDoc Label="[1]{ratfun}">
##  <Index>External representation of polynomials</Index>
##  The representation of a polynomials is a list of the form
##  <C>[<A>mon</A>,<A>coeff</A>,<A>mon</A>,<A>coeff</A>,...]</C> where <A>mon</A> is a monomial in
##  expanded form (that is given as list) and <A>coeff</A> its coefficient. The
##  monomials must be sorted according to the total degree/lexicographic
##  order (This is the same as given by the <Q>grlex</Q> monomial ordering,
##  see&nbsp;<Ref Func="MonomialGrlexOrdering"/>). We call
##  this the <E>external representation</E> of a polynomial. (The
##  reason for ordering is that addition of polynomials becomes linear in
##  the number of monomials instead of quadratic; the reason for the
##  particular ordering chose is that it is compatible with multiplication
##  and thus gives acceptable performance for quotient calculations.)
##  <#/GAPDoc>
##
##  <#GAPDoc Label="[3]{ratfun}">
##  The operations <Ref Oper="LaurentPolynomialByCoefficients"/>,
##  <Ref Func="PolynomialByExtRep"/> and
##  <Ref Func="RationalFunctionByExtRep"/> are used to
##  construct objects in the three basic representations for rational
##  functions.
##  <#/GAPDoc>


#############################################################################
##
#A  ExtRepNumeratorRatFun( <ratfun> )
##
##  <#GAPDoc Label="ExtRepNumeratorRatFun">
##  <ManSection>
##  <Attr Name="ExtRepNumeratorRatFun" Arg='ratfun'/>
##
##  <Description>
##  returns the external representation of the numerator polynomial of the
##  rational function <A>ratfun</A>. Numerator and denominator are not guaranteed
##  to be cancelled against each other.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("ExtRepNumeratorRatFun",IsPolynomialFunction);

#############################################################################
##
#A  ExtRepDenominatorRatFun( <ratfun> )
##
##  <#GAPDoc Label="ExtRepDenominatorRatFun">
##  <ManSection>
##  <Attr Name="ExtRepDenominatorRatFun" Arg='ratfun'/>
##
##  <Description>
##  returns the external representation of the denominator polynomial of the
##  rational function <A>ratfun</A>. Numerator and denominator are not guaranteed
##  to be cancelled against each other.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("ExtRepDenominatorRatFun",IsRationalFunction);

#############################################################################
##
#O  ZeroCoefficientRatFun( <ratfun> )
##
##  <#GAPDoc Label="ZeroCoefficientRatFun">
##  <ManSection>
##  <Oper Name="ZeroCoefficientRatFun" Arg='ratfun'/>
##
##  <Description>
##  returns the zero of the coefficient ring. This might be needed to
##  represent the zero polynomial for which the external representation of
##  the numerator is the empty list.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("ZeroCoefficientRatFun",[IsPolynomialFunction]);

#############################################################################
##
#A  ExtRepPolynomialRatFun( <polynomial> )
##
##  <#GAPDoc Label="ExtRepPolynomialRatFun">
##  <ManSection>
##  <Attr Name="ExtRepPolynomialRatFun" Arg='polynomial'/>
##
##  <Description>
##  returns the external representation of a polynomial. The difference to
##  <Ref Func="ExtRepNumeratorRatFun"/> is that rational functions might know
##  to be a polynomial but can still have a non-vanishing denominator.
##  In this case
##  <Ref Func="ExtRepPolynomialRatFun"/> has to call a quotient routine.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("ExtRepPolynomialRatFun",IsPolynomialFunction and IsPolynomial);

#############################################################################
##
#A  CoefficientsOfLaurentPolynomial( <laurent> )
##
##  <#GAPDoc Label="CoefficientsOfLaurentPolynomial">
##  <ManSection>
##  <Attr Name="CoefficientsOfLaurentPolynomial" Arg='laurent'/>
##
##  <Description>
##  For a Laurent polynomial <A>laurent</A>, this function returns a pair
##  <C>[<A>cof</A>, <A>val</A>]</C>,
##  consisting of the coefficient list (in ascending order) <A>cof</A> and the
##  valuation <A>val</A> of <A>laurent</A>.
##  <Example><![CDATA[
##  gap> p:=LaurentPolynomialByCoefficients(FamilyObj(1),
##  > [1,2,3,4,5],-2);
##  5*x^2+4*x+3+2*x^-1+x^-2
##  gap> NumeratorOfRationalFunction(p);DenominatorOfRationalFunction(p);
##  5*x^4+4*x^3+3*x^2+2*x+1
##  x^2
##  gap> CoefficientsOfLaurentPolynomial(p*p);
##  [ [ 1, 4, 10, 20, 35, 44, 46, 40, 25 ], -4 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "CoefficientsOfLaurentPolynomial",
    IsLaurentPolynomial );
DeclareSynonym( "CoefficientsOfUnivariateLaurentPolynomial",
  CoefficientsOfLaurentPolynomial);

#############################################################################
##
#A  IndeterminateNumberOfUnivariateRationalFunction( <rfun> )
##
##  <#GAPDoc Label="IndeterminateNumberOfUnivariateRationalFunction">
##  <ManSection>
##  <Attr Name="IndeterminateNumberOfUnivariateRationalFunction" Arg='rfun'/>
##
##  <Description>
##  returns the number of the indeterminate in which the univariate rational
##  function <A>rfun</A> is expressed. (This also provides a way to obtain the
##  number of a given indeterminate.)
##  <P/>
##  A constant rational function might not possess an indeterminate number. In
##  this case <Ref Func="IndeterminateNumberOfUnivariateRationalFunction"/>
##  will default to a value of 1.
##  Therefore two univariate polynomials may be considered to be in the same
##  univariate polynomial ring if their indeterminates have the same number
##  or one if of them is constant.  (see also&nbsp;<Ref Func="CIUnivPols"/>
##  and&nbsp;<Ref Func="IsLaurentPolynomialDefaultRep"/>).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "IndeterminateNumberOfUnivariateRationalFunction",
    IsUnivariateRationalFunction );


##  <#GAPDoc Label="[2]{ratfun}">
##  Algorithms should use only the attributes
##  <Ref Func="ExtRepNumeratorRatFun"/>,
##  <Ref Func="ExtRepDenominatorRatFun"/>,
##  <Ref Func="ExtRepPolynomialRatFun"/>,
##  <Ref Func="CoefficientsOfLaurentPolynomial"/> and
##  &ndash;if the univariate function is not constant&ndash;
##  <Ref Func="IndeterminateNumberOfUnivariateRationalFunction"/> as the
##  low-level interface to work with a polynomial.
##  They should not refer to the actual representation used.
##  <#/GAPDoc>


#############################################################################
##
#O  LaurentPolynomialByCoefficients( <fam>, <cofs>, <val> [,<ind>] )
##
##  <#GAPDoc Label="LaurentPolynomialByCoefficients">
##  <ManSection>
##  <Oper Name="LaurentPolynomialByCoefficients" Arg='fam, cofs, val [,ind]'/>
##
##  <Description>
##  constructs a Laurent polynomial over the coefficients
##  family <A>fam</A> and in the indeterminate <A>ind</A> (defaulting to 1)
##  with the coefficients given by <A>coefs</A> and valuation <A>val</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "LaurentPolynomialByCoefficients",
    [ IsFamily, IsList, IsInt, IsInt ] );
DeclareSynonym( "UnivariateLaurentPolynomialByCoefficients",
  LaurentPolynomialByCoefficients);

#############################################################################
##
#F  LaurentPolynomialByExtRep( <fam>, <cofs>,<val> ,<ind> )
#F  LaurentPolynomialByExtRepNC( <fam>, <cofs>,<val> ,<ind> )
##
##  <#GAPDoc Label="LaurentPolynomialByExtRep">
##  <ManSection>
##  <Func Name="LaurentPolynomialByExtRep" Arg='fam, cofs,val ,ind'/>
##  <Func Name="LaurentPolynomialByExtRepNC" Arg='fam, cofs,val ,ind'/>
##
##  <Description>
##  creates a Laurent polynomial in the family <A>fam</A> with [<A>cofs</A>,<A>val</A>] as
##  value of <Ref Func="CoefficientsOfLaurentPolynomial"/>. No coefficient shifting is
##  performed.  This is the lowest level function to create a Laurent
##  polynomial but will rely on the coefficients being shifted properly and
##  will not perform any tests. Unless this is guaranteed for the
##  parameters,
##  <Ref Func="LaurentPolynomialByCoefficients"/> should be used.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "LaurentPolynomialByExtRepNC");
DeclareSynonym("LaurentPolynomialByExtRep",LaurentPolynomialByExtRepNC);

#############################################################################
##
#F  PolynomialByExtRep( <rfam>, <extrep> )
#F  PolynomialByExtRepNC( <rfam>, <extrep> )
##
##  <#GAPDoc Label="PolynomialByExtRep">
##  <ManSection>
##  <Func Name="PolynomialByExtRep" Arg='rfam, extrep'/>
##  <Func Name="PolynomialByExtRepNC" Arg='rfam, extrep'/>
##
##  <Description>
##  constructs a polynomial
##  (in the representation <Ref Func="IsPolynomialDefaultRep"/>)
##  in the rational function family <A>rfam</A>, the polynomial itself is given
##  by the external representation <A>extrep</A>.
##  <P/>
##  The variant <Ref Func="PolynomialByExtRepNC"/> does not perform any test
##  of the arguments and thus potentially can create invalid objects. It only
##  should be used if speed is required and the arguments are known to be
##  in correct form.
##  <Example><![CDATA[
##  gap> fam:=RationalFunctionsFamily(FamilyObj(1));;
##  gap> p:=PolynomialByExtRep(fam,[[1,2],1,[2,1,15,7],3]);
##  3*y*x_15^7+x^2
##  gap> q:=p/(p+1);
##  (3*y*x_15^7+x^2)/(3*y*x_15^7+x^2+1)
##  gap> ExtRepNumeratorRatFun(q);
##  [ [ 1, 2 ], 1, [ 2, 1, 15, 7 ], 3 ]
##  gap> ExtRepDenominatorRatFun(q);
##  [ [  ], 1, [ 1, 2 ], 1, [ 2, 1, 15, 7 ], 3 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "PolynomialByExtRep" );
DeclareGlobalFunction( "PolynomialByExtRepNC" );

#############################################################################
##
#F  RationalFunctionByExtRep( <rfam>, <num>, <den> )
#F  RationalFunctionByExtRepNC( <rfam>, <num>, <den> )
##
##  <#GAPDoc Label="RationalFunctionByExtRep">
##  <ManSection>
##  <Func Name="RationalFunctionByExtRep" Arg='rfam, num, den'/>
##  <Func Name="RationalFunctionByExtRepNC" Arg='rfam, num, den'/>
##
##  <Description>
##  constructs a rational function (in the representation
##  <Ref Func="IsRationalFunctionDefaultRep"/>) in the rational function
##  family <A>rfam</A>,
##  the rational function itself is given by the external representations
##  <A>num</A> and <A>den</A> for numerator and denominator.
##  No cancellation takes place.
##  <P/>
##  The variant <Ref Func="RationalFunctionByExtRepNC"/> does not perform any
##  test of the arguments and thus potentially can create illegal objects.
##  It only should be used if speed is required and the arguments are known
##  to be in correct form.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "RationalFunctionByExtRep" );
DeclareGlobalFunction( "RationalFunctionByExtRepNC" );

#############################################################################
##
#F  UnivariateRationalFunctionByExtRep(<fam>,<ncof>,<dcof>,<val> ,<ind> )
#F  UnivariateRationalFunctionByExtRepNC(<fam>,<ncof>,<dcof>,<val> ,<ind> )
##
##  <ManSection>
##  <Func Name="UnivariateRationalFunctionByExtRep"
##   Arg='fam, ncof, dcof, val, ind'/>
##  <Func Name="UnivariateRationalFunctionByExtRepNC"
##   Arg='fam, ncof, dcof, val, ind'/>
##
##  <Description>
##  creates a univariate rational function in the family <A>fam</A> with
##  [<A>ncof</A>,<A>dcof</A>,<A>val</A>] as
##  value of <Ref Func="CoefficientsOfUnivariateRationalFunction"/>.
##  No coefficient shifting is performed.
##  This is the lowest level function to create a
##  univariate rational function but will rely on the coefficients being
##  shifted properly. Unless this is
##  guaranteed for the parameters,
##  <Ref Func="UnivariateLaurentPolynomialByCoefficients"/> should be used.
##  No cancellation is performed.
##  <P/>
##  The variant <Ref Func="UnivariateRationalFunctionByExtRepNC"/> does not
##  perform any test of
##  the arguments and thus potentially can create invalid objects. It only
##  should be used if speed is required and the arguments are known to be
##  in correct form.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "UnivariateRationalFunctionByExtRepNC");
DeclareSynonym("UnivariateRationalFunctionByExtRep",
  UnivariateRationalFunctionByExtRepNC);

#############################################################################
##
#F  RationalFunctionByExtRepWithCancellation( <rfam>, <num>, <den> )
##
##  <#GAPDoc Label="RationalFunctionByExtRepWithCancellation">
##  <ManSection>
##  <Func Name="RationalFunctionByExtRepWithCancellation" Arg='rfam, num, den'/>
##
##  <Description>
##  constructs a rational function as <Ref Func="RationalFunctionByExtRep"/>
##  does but tries to cancel out common factors of numerator and denominator,
##  calling <Ref Func="TryGcdCancelExtRepPolynomials"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "RationalFunctionByExtRepWithCancellation" );

#############################################################################
##
#A  IndeterminateOfUnivariateRationalFunction( <rfun> )
##
##  <#GAPDoc Label="IndeterminateOfUnivariateRationalFunction">
##  <ManSection>
##  <Attr Name="IndeterminateOfUnivariateRationalFunction" Arg='rfun'/>
##
##  <Description>
##  returns the indeterminate in which the univariate rational
##  function <A>rfun</A> is expressed. (cf.
##  <Ref Func="IndeterminateNumberOfUnivariateRationalFunction"/>.)
##  <Example><![CDATA[
##  gap> IndeterminateNumberOfUnivariateRationalFunction(z);
##  3
##  gap> IndeterminateOfUnivariateRationalFunction(z^5+z);
##  X
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "IndeterminateOfUnivariateRationalFunction",
    IsUnivariateRationalFunction );
DeclareSynonym("IndeterminateOfLaurentPolynomial",
  IndeterminateOfUnivariateRationalFunction);

#############################################################################
##
#F  IndeterminateNumberOfLaurentPolynomial(<pol>)
##
##  <#GAPDoc Label="IndeterminateNumberOfLaurentPolynomial">
##  <ManSection>
##  <Func Name="IndeterminateNumberOfLaurentPolynomial" Arg='pol'/>
##
##  <Description>
##  Is a synonym for
##  <Ref Func="IndeterminateNumberOfUnivariateRationalFunction"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonymAttr("IndeterminateNumberOfLaurentPolynomial",
  IndeterminateNumberOfUnivariateRationalFunction);
DeclareSynonymAttr("IndeterminateNumberOfUnivariateLaurentPolynomial",
  IndeterminateNumberOfUnivariateRationalFunction);

#############################################################################
##
#O  IndeterminateName(<fam>,<nr>)
#O  HasIndeterminateName(<fam>,<nr>)
#O  SetIndeterminateName(<fam>,<nr>,<name>)
##
##  <#GAPDoc Label="IndeterminateName">
##  <ManSection>
##  <Oper Name="IndeterminateName" Arg='fam,nr'/>
##  <Oper Name="HasIndeterminateName" Arg='fam,nr'/>
##  <Oper Name="SetIndeterminateName" Arg='fam,nr,name'/>
##
##  <Description>
##  <Ref Func="SetIndeterminateName"/> assigns the name <A>name</A> to
##  indeterminate <A>nr</A> in the rational functions family <A>fam</A>.
##  It issues an error if the indeterminate was already named.
##  <P/>
##  <Ref Func="IndeterminateName"/> returns the name of the <A>nr</A>-th
##  indeterminate (and returns <K>fail</K> if no name has been assigned).
##  <P/>
##  <Ref Func="HasIndeterminateName"/> tests whether indeterminate <A>nr</A>
##  has already been assigned a name.
##  <P/>
##  <Example><![CDATA[
##  gap> IndeterminateName(FamilyObj(x),2);
##  "y"
##  gap> HasIndeterminateName(FamilyObj(x),4);
##  false
##  gap> SetIndeterminateName(FamilyObj(x),10,"bla");
##  gap> Indeterminate(GF(3),10);
##  bla
##  ]]></Example>
##  <P/>
##  As a convenience there is a special method installed for <C>SetName</C>
##  that will assign a name to an indeterminate.
##  <P/>
##  <Example><![CDATA[
##  gap> a:=Indeterminate(GF(3),5);
##  x_5
##  gap> SetName(a,"ah");
##  gap> a^5+a;
##  ah^5+ah
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "IndeterminateName",
  [IsPolynomialFunctionsFamily,IsPosInt]);
DeclareOperation( "HasIndeterminateName",
  [IsPolynomialFunctionsFamily,IsPosInt]);
DeclareOperation( "SetIndeterminateName",
  [IsPolynomialFunctionsFamily,IsPosInt,IsString]);



#############################################################################
##
#A  CoefficientsOfUnivariatePolynomial( <pol> )
##
##  <#GAPDoc Label="CoefficientsOfUnivariatePolynomial">
##  <ManSection>
##  <Attr Name="CoefficientsOfUnivariatePolynomial" Arg='pol'/>
##
##  <Description>
##  <Ref Func="CoefficientsOfUnivariatePolynomial"/> returns the coefficient
##  list of the polynomial <A>pol</A>, sorted in ascending order.
##  (It returns the empty list if <A>pol</A> is 0.)
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("CoefficientsOfUnivariatePolynomial",IsUnivariatePolynomial);

#############################################################################
##
#A  DegreeOfLaurentPolynomial( <pol> )
##
##  <#GAPDoc Label="DegreeOfLaurentPolynomial">
##  <ManSection>
##  <Attr Name="DegreeOfLaurentPolynomial" Arg='pol'/>
##
##  <Description>
##  The degree of a univariate (Laurent) polynomial <A>pol</A> is the largest
##  exponent <M>n</M> of a monomial <M>x^n</M> of <A>pol</A>. The degree of
##  a zero polynomial is defined to be <C>-infinity</C>.
##  <Example><![CDATA[
##  gap> p:=UnivariatePolynomial(Rationals,[1,2,3,4],1);
##  4*x^3+3*x^2+2*x+1
##  gap> UnivariatePolynomialByCoefficients(FamilyObj(1),[9,2,3,4],73);
##  4*x_73^3+3*x_73^2+2*x_73+9
##  gap> CoefficientsOfUnivariatePolynomial(p);
##  [ 1, 2, 3, 4 ]
##  gap> DegreeOfLaurentPolynomial(p);
##  3
##  gap> DegreeOfLaurentPolynomial(Zero(p));
##  -infinity
##  gap> IndeterminateNumberOfLaurentPolynomial(p);
##  1
##  gap> IndeterminateOfLaurentPolynomial(p);
##  x
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "DegreeOfLaurentPolynomial",
    IsLaurentPolynomial );
DeclareSynonym( "DegreeOfUnivariateLaurentPolynomial",
  DegreeOfLaurentPolynomial);
BindGlobal("DEGREE_ZERO_LAURPOL",Ninfinity);

#############################################################################
##
#O  UnivariatePolynomialByCoefficients( <fam>, <cofs>, <ind> )
##
##  <#GAPDoc Label="UnivariatePolynomialByCoefficients">
##  <ManSection>
##  <Oper Name="UnivariatePolynomialByCoefficients" Arg='fam, cofs, ind'/>
##
##  <Description>
##  constructs an univariate polynomial over the coefficients family
##  <A>fam</A> and in the indeterminate <A>ind</A> with the coefficients given by
##  <A>coefs</A>. This function should be used in algorithms to create
##  polynomials as it avoids overhead associated with
##  <Ref Func="UnivariatePolynomial"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "UnivariatePolynomialByCoefficients",
    [ IsFamily, IsList, IsInt ] );


#############################################################################
##
#O  UnivariatePolynomial( <ring>, <cofs>[, <ind>] )
##
##  <#GAPDoc Label="UnivariatePolynomial">
##  <ManSection>
##  <Oper Name="UnivariatePolynomial" Arg='ring, cofs[, ind]'/>
##
##  <Description>
##  constructs an univariate polynomial over the ring <A>ring</A> in the
##  indeterminate <A>ind</A> with the coefficients given by <A>coefs</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "UnivariatePolynomial",
  [ IsRing, IsRingElementCollection, IsPosInt ] );

#############################################################################
##
#A  CoefficientsOfUnivariateRationalFunction( <rfun> )
##
##  <#GAPDoc Label="CoefficientsOfUnivariateRationalFunction">
##  <ManSection>
##  <Attr Name="CoefficientsOfUnivariateRationalFunction" Arg='rfun'/>
##
##  <Description>
##  if <A>rfun</A> is a univariate rational function, this attribute
##  returns a list <C>[ <A>ncof</A>, <A>dcof</A>, <A>val</A> ]</C>
##  where <A>ncof</A> and <A>dcof</A> are coefficient lists of univariate
##  polynomials <A>n</A> and <A>d</A> and a valuation <A>val</A> such that
##  <M><A>rfun</A> = x^{<A>val</A>} \cdot <A>n</A> / <A>d</A></M>
##  where <M>x</M> is the variable with the number given by
##  <Ref Func="IndeterminateNumberOfUnivariateRationalFunction"/>.
##  Numerator and denominator are guaranteed to be cancelled.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "CoefficientsOfUnivariateRationalFunction",
    IsUnivariateRationalFunction );

#############################################################################
##
#O  UnivariateRationalFunctionByCoefficients(<fam>,<ncof>,<dcof>,<val>[,<ind>])
##
##  <#GAPDoc Label="UnivariateRationalFunctionByCoefficients">
##  <ManSection>
##  <Oper Name="UnivariateRationalFunctionByCoefficients"
##   Arg='fam, ncof, dcof, val[, ind]'/>
##
##  <Description>
##  constructs a univariate rational function over the coefficients
##  family <A>fam</A> and in the indeterminate <A>ind</A> (defaulting to 1) with
##  numerator and denominator coefficients given by <A>ncof</A> and <A>dcof</A> and
##  valuation <A>val</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "UnivariateRationalFunctionByCoefficients",
    [ IsFamily, IsList, IsList, IsInt, IsInt ] );

#############################################################################
##
#O  Value(<ratfun>,<indets>,<vals>[,<one>])
#O  Value(<upol>,<value>[,<one>])
##
##  <#GAPDoc Label="Value">
##  <ManSection>
##  <Heading>Value</Heading>
##  <Oper Name="Value" Arg='ratfun, indets, vals[, one]'
##   Label="for rat. function, a list of indeterminates, a value (and a one)"/>
##  <Oper Name="Value" Arg='upol, value[, one]'
##   Label="for a univariate rat. function, a value (and a one)"/>
##
##  <Description>
##  The first variant takes a rational function <A>ratfun</A> and specializes
##  the indeterminates given in <A>indets</A> to the values given in
##  <A>vals</A>,
##  replacing the <M>i</M>-th entry in <A>indets</A> by the <M>i</M>-th entry
##  in <A>vals</A>.
##  If this specialization results in a constant polynomial,
##  an element of the coefficient ring is returned.
##  If the specialization would specialize the denominator of <A>ratfun</A>
##  to zero, an error is raised.
##  <P/>
##  A variation is the evaluation at elements of another ring <M>R</M>,
##  for which a multiplication with elements of the coefficient ring of
##  <A>ratfun</A> are defined.
##  In this situation the identity element of <M>R</M> may be given by a
##  further argument <A>one</A> which will be used for <M>x^0</M> for any
##  specialized indeterminate <M>x</M>.
##  <P/>
##  The second version takes an univariate rational function and specializes
##  the value of its indeterminate to <A>val</A>.
##  Again, an optional argument <A>one</A> may be given.
##  <P/>
##  <Example><![CDATA[
##  gap> Value(x*y+y+x^7,[x,y],[5,7]);
##  78167
##  ]]></Example>
##  <P/>
##  Note that the default values for <A>one</A> can lead to different results
##  than one would expect:
##  For example for a matrix <M>M</M>, the values <M>M+M^0</M> and <M>M+1</M>
##  are <E>different</E>.
##  As <Ref Func="Value" Label="for rat. function, a list of indeterminates, a value (and a one)"/>
##  defaults to the one of the coefficient ring,
##  when evaluating matrices in polynomials always the correct <A>one</A>
##  should be given!
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("Value",[IsPolynomialFunction,IsList,IsList]);

#############################################################################
##
#F  OnIndeterminates(<poly>,<perm>) 
##
##  <#GAPDoc Label="OnIndeterminates">
##  <ManSection>
##  <Func Name="OnIndeterminates" Arg='poly, perm'
##   Label="as a permutation action"/>
##
##  <Description>
##  A permutation <A>perm</A> acts on the multivariate polynomial <A>poly</A>
##  by permuting the indeterminates as it permutes points.
##  <Example><![CDATA[
##  gap> x:=Indeterminate(Rationals,1);; y:=Indeterminate(Rationals,2);;
##  gap> OnIndeterminates(x^7*y+x*y^4,(1,17)(2,28));
##  x_17^7*x_28+x_17*x_28^4
##  gap> Stabilizer(Group((1,2,3,4),(1,2)),x*y,OnIndeterminates);
##  Group([ (1,2), (3,4) ])
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("OnIndeterminates");

#############################################################################
##
#F  ConstituentsPolynomial(<pol>)
##
##  <ManSection>
##  <Func Name="ConstituentsPolynomial" Arg='pol'/>
##
##  <Description>
##  Given a polynomial <A>pol</A> this function returns a record with
##  components
##  <List>
##  <Mark><C>variables</C>:</Mark>
##  <Item>
##     A list of the variables occuring in <A>pol</A>,
##  </Item>
##  <Mark><C>monomials</C>:</Mark>
##  <Item>
##     A list of the monomials in <A>pol</A>, and
##  </Item>
##  <Mark><C>coefficients</C>:</Mark>
##  <Item>
##     A (corresponding) list of coefficients. 
##  </Item>
##  </List>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("ConstituentsPolynomial");

##  <#GAPDoc Label="[4]{ratfun}">
##  <Index>Expanded form of monomials</Index>
##  A monomial is a product of powers of indeterminates. A monomial is
##  stored as a list (we call this the <E>expanded form</E> of the monomial)
##  of the form <C>[<A>inum</A>,<A>exp</A>,<A>inum</A>,<A>exp</A>,...]</C> where each <A>inum</A>
##  is the number of an indeterminate and <A>exp</A> the corresponding exponent.
##  The list must be sorted according to the numbers of the indeterminates.
##  Thus for example, if <M>x</M>, <M>y</M> and <M>z</M> are the first three indeterminates,
##  the expanded form of the monomial <M>x^5 z^8 = z^8 x^5</M> is
##  <C>[ 1, 5, 3, 8 ]</C>.
##  <#/GAPDoc>


#############################################################################
##
#F  MonomialExtGrlexLess(<a>,<b>)
##
##  <#GAPDoc Label="MonomialExtGrlexLess">
##  <ManSection>
##  <Func Name="MonomialExtGrlexLess" Arg='a,b'/>
##
##  <Description>
##  implements comparison of monomial in their external representation by a 
##  <Q>grlex</Q> order with <M>x_1>x_2</M>
##  (This is exactly the same as the ordering by
##  <Ref Func="MonomialGrlexOrdering"/>,
##  see&nbsp; <Ref Sect="Monomial Orderings"/>).
##  The function takes two
##  monomials <A>a</A> and <A>b</A> in expanded form and returns whether the first is
##  smaller than the second. (This ordering is also used by &GAP;
##  internally for representing polynomials as a linear combination of
##  monomials.)
##  <P/>
##  See section&nbsp;<Ref Sect="The Defining Attributes of Rational Functions"/> for details
##  on the expanded form of monomials.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("MonomialExtGrlexLess");

#############################################################################
##
#F  LeadingMonomial(<pol>)  . . . . . . . .  leading monomial of a polynomial
##
##  <#GAPDoc Label="LeadingMonomial">
##  <ManSection>
##  <Func Name="LeadingMonomial" Arg='pol'/>
##
##  <Description>
##  returns the leading monomial (with respect to the ordering given by
##  <Ref Func="MonomialExtGrlexLess"/>) of the polynomial <A>pol</A> as a list
##  containing indeterminate numbers and exponents.
##  <Example><![CDATA[
##  gap> LeadingCoefficient(f,1);
##  1
##  gap> LeadingCoefficient(f,2);
##  9
##  gap> LeadingMonomial(f);
##  [ 2, 7 ]
##  gap> LeadingCoefficient(f);
##  9
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "LeadingMonomial", [ IsPolynomialFunction ] );

#############################################################################
##
#O  LeadingCoefficient( <pol> )
##
##  <#GAPDoc Label="LeadingCoefficient">
##  <ManSection>
##  <Oper Name="LeadingCoefficient" Arg='pol'/>
##
##  <Description>
##  returns the leading coefficient (that is the coefficient of the leading
##  monomial, see&nbsp;<Ref Func="LeadingMonomial"/>) of the polynomial <A>pol</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("LeadingCoefficient", [IsPolynomialFunction]);

#############################################################################
##
#F  LeadingMonomialPosExtRep(<fam>,<ext>,<order>)
##
##  <ManSection>
##  <Func Name="LeadingMonomialPosExtRep" Arg='fam,ext,order'/>
##
##  <Description>
##  This function takes an external representation <A>ext</A> of a polynomial in
##  family <A>fam</A> and returns the position of the leading monomial in <A>ext</A>
##  with respect to the monomial order implemented by the function <A>order</A>.
##  <P/>
##  See section&nbsp;<Ref Sect="The Defining Attributes of Rational Functions"/> for details
##  on the external representation.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("LeadingMonomialPosExtRep");


##  The following set of functions consider one indeterminate of a multivariate
##  polynomial specially


#############################################################################
##
#O  PolynomialCoefficientsOfPolynomial( <pol>, <ind> )
##
##  <#GAPDoc Label="PolynomialCoefficientsOfPolynomial">
##  <ManSection>
##  <Oper Name="PolynomialCoefficientsOfPolynomial" Arg='pol, ind'/>
##
##  <Description>
##  <Ref Func="PolynomialCoefficientsOfPolynomial"/> returns the
##  coefficient list (whose entries are polynomials not involving the
##  indeterminate <A>ind</A>) describing the polynomial <A>pol</A> viewed as
##  a polynomial in <A>ind</A>. 
##  Instead of the indeterminate,
##  <A>ind</A> can also be an indeterminate number.
##  <Example><![CDATA[
##  gap> PolynomialCoefficientsOfPolynomial(f,2);
##  [ x^5+2, 3*x+3, 0, 0, 0, 4*x, 0, 9 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "PolynomialCoefficientsOfPolynomial",
  [ IsPolynomial,IsPosInt]);

#############################################################################
##
#O  DegreeIndeterminate( <pol>,<ind> )
##
##  <#GAPDoc Label="DegreeIndeterminate">
##  <ManSection>
##  <Oper Name="DegreeIndeterminate" Arg='pol, ind'/>
##
##  <Description>
##  returns the degree of the polynomial <A>pol</A> in the indeterminate
##  (or indeterminate number) <A>ind</A>.
##  <Example><![CDATA[
##  gap> f:=x^5+3*x*y+9*y^7+4*y^5*x+3*y+2;
##  9*y^7+4*x*y^5+x^5+3*x*y+3*y+2
##  gap> DegreeIndeterminate(f,1);
##  5
##  gap> DegreeIndeterminate(f,y);
##  7
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("DegreeIndeterminate",[IsPolynomial,IsPosInt]);

#############################################################################
##
#A  Derivative( <ratfun>[, <ind>] )
##
##  <#GAPDoc Label="Derivative">
##  <ManSection>
##  <Attr Name="Derivative" Arg='ratfun[, ind]'/>
##
##  <Description>
##  If <A>ratfun</A> is a univariate rational function then
##  <Ref Func="Derivative"/> returns the <E>derivative</E> of <A>ufun</A> by
##  its indeterminate.
##  For a rational function <A>ratfun</A>,
##  the derivative by the indeterminate <A>ind</A> is returned,
##  regarding <A>ratfun</A> as univariate in <A>ind</A>.
##  Instead of the desired indeterminate, also the number of this
##  indeterminate can be given as <A>ind</A>.
##  <Example><![CDATA[
##  gap> Derivative(f,2);
##  63*y^6+20*x*y^4+3*x+3
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("Derivative",IsUnivariateRationalFunction);
DeclareOperation("Derivative",[IsPolynomialFunction,IsPosInt]);


#############################################################################
##
#O  Resultant( <pol1>, <pol2>, <ind> )
##
##  <#GAPDoc Label="Resultant">
##  <ManSection>
##  <Oper Name="Resultant" Arg='pol1, pol2, ind'/>
##
##  <Description>
##  computes the resultant of the polynomials <A>pol1</A> and <A>pol2</A>
##  with respect to the indeterminate <A>ind</A>,
##  or indeterminate number <A>ind</A>.
##  The resultant considers <A>pol1</A> and <A>pol2</A> as univariate in
##  <A>ind</A> and returns an element of the corresponding base ring
##  (which might be a polynomial ring).
##  <Example><![CDATA[
##  gap> Resultant(x^4+y,y^4+x,1);
##  y^16+y
##  gap> Resultant(x^4+y,y^4+x,2);
##  x^16+x
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "Resultant",[ IsPolynomial, IsPolynomial, IsPosInt]);


#############################################################################
##
#O  Discriminant( <pol>[, <ind>] )
##
##  <#GAPDoc Label="Discriminant">
##  <ManSection>
##  <Oper Name="Discriminant" Arg='pol[, ind]'/>
##
##  <Description>
##  If <A>pol</A> is a univariate polynomial then
##  <Ref Func="Discriminant"/> returns the <E>discriminant</E> of <A>pol</A>
##  by its indeterminate.
##  The two-argument form returns the discriminant of a polynomial <A>pol</A>
##  by the indeterminate number <A>ind</A>, regarding <A>pol</A> as univariate
##  in this indeterminate. Instead of the indeterminate number, the
##  indeterminate itself can also be given as <A>ind</A>.
##  <Example><![CDATA[
##  gap> Discriminant(f,1);
##  20503125*y^28+262144*y^25+27337500*y^22+19208040*y^21+1474560*y^17+136\
##  68750*y^16+18225000*y^15+6075000*y^14+1105920*y^13+3037500*y^10+648972\
##  0*y^9+4050000*y^8+900000*y^7+62208*y^5+253125*y^4+675000*y^3+675000*y^\
##  2+300000*y+50000
##  gap> Discriminant(f,1) = Discriminant(f,x);
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "Discriminant", IsPolynomial );
DeclareOperation( "Discriminant", [ IsPolynomial, IsPosInt ] );


##  Technical functions for rational functions


#############################################################################
##
#F  CIUnivPols( <upol1>, <upol2> )
##
##  <#GAPDoc Label="CIUnivPols">
##  <ManSection>
##  <Func Name="CIUnivPols" Arg='upol1, upol2'/>
##
##  <Description>
##  This function (whose name stands for
##  <Q>common indeterminate of univariate polynomials</Q>) takes two
##  univariate polynomials as arguments.
##  If both polynomials are given in the same indeterminate number
##  <A>indnum</A> (in this case they are <Q>compatible</Q> as
##  univariate polynomials) it returns <A>indnum</A>.
##  In all other cases it returns <K>fail</K>.
##  <Ref Func="CIUnivPols"/> also accepts if either polynomial is constant
##  but formally expressed in another indeterminate, in this situation the
##  indeterminate of the other polynomial is selected.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("CIUnivPols");

#############################################################################
##
#F  TryGcdCancelExtRepPolynomials(<fam>,<a>,<b>);
##
##  <#GAPDoc Label="TryGcdCancelExtRepPolynomials">
##  <ManSection>
##  <Func Name="TryGcdCancelExtRepPolynomials" Arg='fam,a,b'/>
##
##  <Description>
##  Let <A>a</A> and <A>b</A> be the external representations of two
##  polynomials.
##  This function tries to cancel common factors between the corresponding
##  polynomials and returns a list <M>[ a', b' ]</M> of
##  external representations of cancelled polynomials.
##  As there is no proper multivariate GCD
##  cancellation is not guaranteed to be optimal.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("TryGcdCancelExtRepPolynomials");

#############################################################################
##
#O  HeuristicCancelPolynomials(<fam>,<ext1>,<ext2>)
##
##  <#GAPDoc Label="HeuristicCancelPolynomials">
##  <ManSection>
##  <Oper Name="HeuristicCancelPolynomials" Arg='fam,ext1,ext2'/>
##
##  <Description>
##  is called by <Ref Func="TryGcdCancelExtRepPolynomials"/> to perform the
##  actual work.
##  It will return either <K>fail</K> or a new list of of external
##  representations of cancelled polynomials.
##  The cancellation performed is not necessarily optimal.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("HeuristicCancelPolynomialsExtRep",
  [IsRationalFunctionsFamily,IsList,IsList]);

#############################################################################
##
#F  QuotientPolynomialsExtRep(<fam>,<a>,<b>)
##
##  <#GAPDoc Label="QuotientPolynomialsExtRep">
##  <ManSection>
##  <Func Name="QuotientPolynomialsExtRep" Arg='fam,a,b'/>
##
##  <Description>
##  Let <A>a</A> and <A>b</A> the external representations of two polynomials
##  in the rational functions family <A>fam</A>.
##  This function computes the external representation of the quotient of
##  both polynomials,
##  it returns <K>fail</K> if the polynomial described by <A>b</A> does not
##  divide the polynomial described by <A>a</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("QuotientPolynomialsExtRep");

#############################################################################
##
#F  QuotRemLaurpols(<left>,<right>,<mode>)
##
##  <#GAPDoc Label="QuotRemLaurpols">
##  <ManSection>
##  <Func Name="QuotRemLaurpols" Arg='left,right,mode'/>
##
##  <Description>
##  This internal function for euclidean division of polynomials
##  takes two polynomials <A>left</A> and <A>right</A>
##  and computes their quotient. No test is performed whether the arguments
##  indeed  are polynomials.
##  Depending on the integer variable <A>mode</A>, which may take values in 
##  a range from 1 to 4, it returns respectively:
##  <Enum>
##  <Item>
##    the quotient (there might be some remainder),
##  </Item>
##  <Item>
##    the remainder,
##  </Item>
##  <Item>
##    a list <C>[<A>q</A>,<A>r</A>]</C> of quotient and remainder,
##  </Item>
##  <Item>
##    the quotient if there is no remainder and <K>fail</K> otherwise.
##  </Item>
##  </Enum>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("QuotRemLaurpols");

#############################################################################
##
#F  GcdCoeffs(<a>,<b>)
##
##  <ManSection>
##  <Func Name="GcdCoeffs" Arg='a,b'/>
##
##  <Description>
##  computes the univariate gcd coefficient list from coefficient lists.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("GcdCoeffs");

#############################################################################
##
#F  UnivariatenessTestRationalFunction(<f>)
##
##  <#GAPDoc Label="UnivariatenessTestRationalFunction">
##  <ManSection>
##  <Func Name="UnivariatenessTestRationalFunction" Arg='f'/>
##
##  <Description>
##  takes a rational function <A>f</A> and tests whether it is univariate 
##  rational function (or even a Laurent polynomial). It returns a list
##  <C>[isunivariate, indet, islaurent, cofs]</C>. 
##  <P/>
##  If <A>f</A> is a univariate rational function then <C>isunivariate</C> 
##  is <K>true</K> and <C>indet</C> is the number of the appropriate 
##  indeterminate.
##  <P/>
##  Furthermore, if <A>f</A> is a Laurent polynomial, then <C>islaurent</C>
##  is also <K>true</K>. In this case the fourth entry, <C>cofs</C>, is 
##  the value of the attribute <Ref Attr="CoefficientsOfLaurentPolynomial"/> 
##  for <A>f</A>.
##  <P/>
##  If <C>isunivariate</C> is <K>true</K> but <C>islaurent</C> is 
##  <K>false</K>, then <C>cofs</C> is the value of the attribute 
##  <Ref Attr="CoefficientsOfUnivariateRationalFunction"/> for <A>f</A>.
##  <P/>
##  Otherwise, each entry of the returned list is equal to <K>fail</K>.
##  As there is no proper multivariate gcd, this may also happen for the
##  rational function which may be reduced to univariate (see example).
##  <Example><![CDATA[
##  gap> UnivariatenessTestRationalFunction( 50-45*x-6*x^2+x^3 );
##  [ true, 1, true, [ [ 50, -45, -6, 1 ], 0 ] ]
##  gap> UnivariatenessTestRationalFunction( (-6*y^2+y^3) / (y+1) );
##  [ true, 2, false, [ [ -6, 1 ], [ 1, 1 ], 2 ] ]
##  gap> UnivariatenessTestRationalFunction( (-6*y^2+y^3) / (x+1));
##  [ fail, fail, fail, fail ]
##  gap> UnivariatenessTestRationalFunction( ((y+2)*(x+1)) / ((y-1)*(x+1)) );
##  [ fail, fail, fail, fail ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("UnivariatenessTestRationalFunction");

#############################################################################
##
#F  SpecializedExtRepPol(<fam>,<ext>,<ind>,<val>)
##
##  <ManSection>
##  <Func Name="SpecializedExtRepPol" Arg='fam,ext,ind,val'/>
##
##  <Description>
##  specializes the indeterminate <A>ind</A> in the polynomial ext rep to <A>val</A>
##  and returns the resulting polynomial ext rep.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("SpecializedExtRepPol");

#############################################################################
##
#F  RandomPol(<ring>,<deg>[,<indnum>])
##
##  <ManSection>
##  <Func Name="RandomPol" Arg='ring,deg[,indnum]'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("RandomPol");

#############################################################################
##
#O  ZippedSum( <z1>, <z2>, <czero>, <funcs> )
##
##  <#GAPDoc Label="ZippedSum">
##  <ManSection>
##  <Oper Name="ZippedSum" Arg='z1, z2, czero, funcs'/>
##
##  <Description>
##  computes the sum of two external representations of polynomials
##  <A>z1</A> and <A>z2</A>.
##  <A>czero</A> is the appropriate coefficient zero and <A>funcs</A> a list
##  [ <A>monomial_less</A>, <A>coefficient_sum</A> ] containing a monomial
##  comparison and a coefficient addition function.
##  This list can be found in the component <A>fam</A><C>!.zippedSum</C>
##  of the rational functions family.
##  <P/>
##  Note that <A>coefficient_sum</A> must be a proper <Q>summation</Q>
##  function, not a function computing differences.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ZippedSum", [ IsList, IsList, IsObject, IsList ] );

#############################################################################
##
#O  ZippedProduct( <z1>, <z2>, <czero>, <funcs> )
##
##  <#GAPDoc Label="ZippedProduct">
##  <ManSection>
##  <Oper Name="ZippedProduct" Arg='z1, z2, czero, funcs'/>
##
##  <Description>
##  computes the product of two external representations of polynomials
##  <A>z1</A> and <A>z2</A>.
##  <A>czero</A> is the appropriate coefficient zero and <A>funcs</A> a list
##  [ <A>monomial_prod</A>, <A>monomial_less</A>, <A>coefficient_sum</A>,
##  <A>coefficient_prod</A>] containing functions to multiply and compare
##  monomials, to add and to multiply coefficients.
##  This list can be found in the component <C><A>fam</A>!.zippedProduct</C>
##  of the rational functions family.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ZippedProduct", [ IsList, IsList, IsObject, IsList ] );

DeclareGlobalFunction( "ProdCoefRatfun" );
DeclareGlobalFunction( "SumCoefRatfun" );
DeclareGlobalFunction( "SumCoefPolynomial" );

##  The following functions are intended to permit the calculations with
##  (Laurent) Polynomials over Rings which are not an UFD. In this case it
##  is not possible to create the field of rational functions (and thus no
##  rational functions family exists.


#############################################################################
##
#C  IsLaurentPolynomialsFamilyElement
##
##  <ManSection>
##  <Filt Name="IsLaurentPolynomialsFamilyElement" Arg='obj' Type='Category'/>
##
##  <Description>
##  constructs a family containing  all Laurent polynomials with coefficients
##  in <A>family</A>  for  a family which   has  a one and   is  commutative.  The
##  external representation looks like the one for <C>RationalsFunctionsFamily</C>
##  so if  one really wants  rational  functions where  the denominator  is a
##  non-zero-divisor <C>LaurentPolynomialFunctionsFamily</C> can easily be changed
##  to <C>RestrictedRationalsFunctionsFamily</C>.
##  </Description>
##  </ManSection>
##
DeclareCategory( "IsLaurentPolynomialsFamilyElement", IsRationalFunction );


#############################################################################
##
#C  IsUnivariatePolynomialsFamilyElement
##
##  <ManSection>
##  <Filt Name="IsUnivariatePolynomialsFamilyElement" Arg='obj' Type='Category'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareCategory( "IsUnivariatePolynomialsFamilyElement",
    IsRationalFunction );

#############################################################################
##
#C  IsLaurentPolynomialsFamily(<obj>)
##
##  <ManSection>
##  <Filt Name="IsLaurentPolynomialsFamily" Arg='obj' Type='Category'/>
##
##  <Description>
##  At present Laurent polynomials  families only  exist if the  coefficients
##  family is commutative and has a one.
##  <P/>
##  <!--  1996/10/14 fceller can this be done with <C>CategoryFamily</C>?-->
##  </Description>
##  </ManSection>
##
DeclareCategory( "IsLaurentPolynomialsFamily",
    IsFamily and HasOne and IsCommutativeFamily );


#############################################################################
##
#C  IsUnivariatePolynomialsFamily
##
##  <ManSection>
##  <Filt Name="IsUnivariatePolynomialsFamily" Arg='obj' Type='Category'/>
##
##  <Description>
##  At present univariate polynomials families only exist if the coefficients
##  family is a skew field.
##  <P/>
##  <!--  1996/10/14 fceller can this be done with <C>CategoryFamily</C>?-->
##  </Description>
##  </ManSection>
##
DeclareCategory( "IsUnivariatePolynomialsFamily", IsFamily );



##  `IsRationalFunctionsFamilyElement',   an element of  a Laurent
##  polynomials family has category `IsLaurentPolynomialsFamilyElement',  and
##  an   element  of     a    univariate polynomials  family   has   category
##  `IsUnivariatePolynomialsFamilyElement'.   They  all   lie  in  the  super
##  category `IsRationalFunction'.

##
##  `IsPolynomial', `IsUnivariatePolynomials', `IsLaurentPolynomial',     and
##  `IsUnivariateLaurentPolynomial' are properties of rational functions.
##
##  The basic operations for rational functions are:
##
##    `ExtRepOfObj'
##    `ObjByExtRep'.
##
##  The basic operations for rational functions  which are univariate Laurent
##  polynomials are:
##
##    `UnivariateLaurentPolynomialByCoefficients'
##    `CoefficientsOfUnivariateLaurentPolynomial'
##    `IndeterminateNumberOfUnivariateLaurentPolynomial'
##


#needed as ``forward''-declaration.
DeclareGlobalFunction("MultivariateFactorsPolynomial");


#############################################################################
##
#E