This file is indexed.

/usr/share/gap/lib/reesmat.gd is in gap-libs 4r6p5-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
#############################################################################
##
#W  reesmat.gd                  GAP library                    Andrew Solomon
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the declarations for Rees Matrix semigroups



##  <#GAPDoc Label="[1]{reesmat}">
##  In this section we describe &GAP; functions for Rees matrix semigroups
##  and Rees 0-matrix semigroups.
##  The importance of this construction is that 
##  Rees Matrix semigroups over groups 
##  are exactly the completely simple semigroups, and Rees 0-matrix
##  semigroups over groups are the completely 0-simple semigroups 
##  <P/>
##  Recall that a Rees Matrix semigroup is constructed from a semigroup (the
##  underlying semigroup), and a matrix.
##  A Rees Matrix semigroup element is a triple
##  <M>(s, i, \lambda)</M>
##  where <M>s</M> is an element of the underlying semigroup <M>S</M> and
##  <M>i</M>, <M>\lambda</M> are indices.
##  This can be thought of as a matrix with zero everywhere
##  except for an occurrence of <M>s</M> at row <M>i</M> and column
##  <M>\lambda</M>.
##  The multiplication is defined by 
##  <M>(i, s, \lambda)*(j, t, \mu) = (i, s P_{{\lambda j}} t, \mu)</M> where
##  <M>P</M> is the defining matrix of the semigroup.
##  In the case that the underlying semigroup has a zero we can create the
##  <Ref Func="ReesZeroMatrixSemigroup"/> value,
##  wherein all elements whose <M>s</M> entry is the
##  zero of the underlying semigroup are identified to the unique zero of
##  the Rees 0-matrix semigroup.
##  <#/GAPDoc>
##

#############################################################################
##
#F  ReesMatrixSemigroup( <S>, <matrix> )
##
##  <#GAPDoc Label="ReesMatrixSemigroup">
##  <ManSection>
##  <Func Name="ReesMatrixSemigroup" Arg='S, matrix'/>
##
##  <Description>
##  for a semigroup <A>S</A> and <A>matrix</A> whose entries are in <A>S</A>.
##  Returns the Rees Matrix semigroup with multiplication defined by
##  <A>matrix</A>. 
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "ReesMatrixSemigroup" );

#############################################################################
##
#F  ReesZeroMatrixSemigroup( <S>, <matrix>  )
##
##  <#GAPDoc Label="ReesZeroMatrixSemigroup">
##  <ManSection>
##  <Func Name="ReesZeroMatrixSemigroup" Arg='S, matrix'/>
##
##  <Description>
##  for a semigroup <A>S</A> with zero, and  <A>matrix</A> over  <A>S</A> 
##  returns the Rees 0-Matrix semigroup such that all elements
##  <M>(i, 0, \lambda)</M> are identified to zero.
##  <P/>
##  The zero in <A>S</A> is found automatically.   If
##  one cannot be found, an error is signalled.   
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "ReesZeroMatrixSemigroup" );

#############################################################################
##
#A  IsomorphismReesMatrixSemigroup( <obj> )
##
##  <#GAPDoc Label="IsomorphismReesMatrixSemigroup">
##  <ManSection>
##  <Attr Name="IsomorphismReesMatrixSemigroup" Arg='obj'/>
##
##  <Description>
##  If <A>S</A> is a completely simple (resp. zero simple) semigroup, returns 
##  an isomorphism  to a Rees matrix semigroup over a group (resp. zero
##  group).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("IsomorphismReesMatrixSemigroup",IsSemigroup);

#############################################################################
##
#C  IsReesMatrixSemigroupElement(<e>)
#C  IsReesZeroMatrixSemigroupElement(<e>)
##
##  <#GAPDoc Label="IsReesMatrixSemigroupElement">
##  <ManSection>
##  <Filt Name="IsReesMatrixSemigroupElement" Arg='e' Type='Category'/>
##  <Filt Name="IsReesZeroMatrixSemigroupElement" Arg='e' Type='Category'/>
##
##  <Description>
##  is the category of elements of a Rees (0-) matrix  semigroup.
##  Returns true if <A>e</A> is an element of a Rees Matrix semigroup.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsReesMatrixSemigroupElement", IsAssociativeElement );
DeclareCategory( "IsReesZeroMatrixSemigroupElement", IsMultiplicativeElement );

#############################################################################
##
#C  IsReesMatrixSemigroupElementCollection
#C  IsReesZeroMatrixSemigroupElementCollection
##
##  <ManSection>
##  <Filt Name="IsReesMatrixSemigroupElementCollection" Arg='obj' Type='Category'/>
##  <Filt Name="IsReesZeroMatrixSemigroupElementCollection" Arg='obj' Type='Category'/>
##
##  <Description>
##  Created now so that lists of things in the category 
##  IsSubsemigroupReesMatrixSemigroup	are given the category 
##  CategoryCollections(IsSubsemigroupReesMatrixSemigroup).
##  Otherwise these lists (and other collections) won't create the
##  collections category. See CollectionsCategory in the manual.
##  </Description>
##  </ManSection>
##
DeclareCategoryCollections( "IsReesMatrixSemigroupElement");
DeclareCategoryCollections( "IsReesZeroMatrixSemigroupElement");

#############################################################################
##
#F  ReesMatrixSemigroupElement( <R>, <i>, <a>, <lambda> )
#F  ReesZeroMatrixSemigroupElement( <R>, <i>, <a>, <lambda> )
##
##  <#GAPDoc Label="ReesMatrixSemigroupElement">
##  <ManSection>
##  <Func Name="ReesMatrixSemigroupElement" Arg='R, i, a, lambda'/>
##  <Func Name="ReesZeroMatrixSemigroupElement" Arg='R, i, a, lambda'/>
##
##  <Description>
##  for a Rees matrix semigroup <A>R</A>, <A>a</A> in <C>UnderlyingSemigroup(<A>R</A>)</C>, 
##  <A>i</A> and <A>lambda</A> in the row (resp. column) ranges of <A>R</A>,
##  returns the element of <A>R</A> corresponding to the
##  matrix with zero everywhere and <A>a</A> in row <A>i</A> and column <A>x</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "ReesMatrixSemigroupElement" );
DeclareGlobalFunction( "ReesZeroMatrixSemigroupElement" );

#############################################################################
##
#C  IsSubsemigroupReesMatrixSemigroup( <T> )
#C  IsSubsemigroupReesZeroMatrixSemigroup( <T> )
##
##  <ManSection>
##  <Filt Name="IsSubsemigroupReesMatrixSemigroup" Arg='T' Type='Category'/>
##  <Filt Name="IsSubsemigroupReesZeroMatrixSemigroup" Arg='T' Type='Category'/>
##
##  <Description>
##  is the category of Rees matrix semigroups.
##  The functions return <K>true</K> if <A>T</A> is a (subsemigroup of a) 
##  Rees (0-)matrix semigroup.
##  </Description>
##  </ManSection>
##
DeclareSynonymAttr( "IsSubsemigroupReesMatrixSemigroup", 
	IsSemigroup and IsReesMatrixSemigroupElementCollection);

DeclareSynonymAttr( "IsSubsemigroupReesZeroMatrixSemigroup", 
	IsSemigroup and IsReesZeroMatrixSemigroupElementCollection);

#############################################################################
##
#P  IsReesMatrixSemigroup( <T> )
##
##  <#GAPDoc Label="IsReesMatrixSemigroup">
##  <ManSection>
##  <Prop Name="IsReesMatrixSemigroup" Arg='T'/>
##
##  <Description>
##  returns <K>true</K> if the object <A>T</A> is a (whole) Rees matrix semigroup.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonymAttr( "IsReesMatrixSemigroup", 
	IsSubsemigroupReesMatrixSemigroup and IsWholeFamily);

#############################################################################
##
#A  SandwichMatrixOfReesMatrixSemigroup( <R> )
#A  SandwichMatrixOfReesZeroMatrixSemigroup( <R> )
##
##  <#GAPDoc Label="SandwichMatrixOfReesMatrixSemigroup">
##  <ManSection>
##  <Attr Name="SandwichMatrixOfReesMatrixSemigroup" Arg='R'/>
##  <Attr Name="SandwichMatrixOfReesZeroMatrixSemigroup" Arg='R'/>
##
##  <Description>
##  each return the defining matrix of the Rees (0-) matrix semigroup.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("SandwichMatrixOfReesMatrixSemigroup", IsSubsemigroupReesMatrixSemigroup);
DeclareAttribute("SandwichMatrixOfReesZeroMatrixSemigroup", IsSubsemigroupReesZeroMatrixSemigroup);


#############################################################################
##
#A  RowsOfReesMatrixSemigroup( <R> )
#A  RowsOfReesZeroMatrixSemigroup( <R> )
##
##  <ManSection>
##  <Attr Name="RowsOfReesMatrixSemigroup" Arg='R'/>
##  <Attr Name="RowsOfReesZeroMatrixSemigroup" Arg='R'/>
##
##  <Description>
##  return the number of rows in the defining matrix of <A>R</A>.
##  </Description>
##  </ManSection>
##
DeclareAttribute("RowsOfReesMatrixSemigroup",IsSubsemigroupReesMatrixSemigroup );
DeclareAttribute("RowsOfReesZeroMatrixSemigroup",IsSubsemigroupReesZeroMatrixSemigroup );

#############################################################################
##
#A  ColumnsOfReesMatrixSemigroup( <R> )
#A  ColumnsOfReesZeroMatrixSemigroup( <R> )
##
##  <ManSection>
##  <Attr Name="ColumnsOfReesMatrixSemigroup" Arg='R'/>
##  <Attr Name="ColumnsOfReesZeroMatrixSemigroup" Arg='R'/>
##
##  <Description>
##  return the number of columns in the defining matrix of <A>R</A>.
##  </Description>
##  </ManSection>
##
DeclareAttribute("ColumnsOfReesMatrixSemigroup",IsSubsemigroupReesMatrixSemigroup);
DeclareAttribute("ColumnsOfReesZeroMatrixSemigroup",IsSubsemigroupReesZeroMatrixSemigroup);

#############################################################################
##
#A  UnderlyingSemigroupOfReesMatrixSemigroup( <R> )
#A  UnderlyingSemigroupOfReesZeroMatrixSemigroup( <R> )
##
##  <ManSection>
##  <Attr Name="UnderlyingSemigroupOfReesMatrixSemigroup" Arg='R'/>
##  <Attr Name="UnderlyingSemigroupOfReesZeroMatrixSemigroup" Arg='R'/>
##
##  <Description>
##  return the underlying semigroup containing the entries in the defining
##  matrix of <A>R</A>.
##  </Description>
##  </ManSection>
##
DeclareAttribute("UnderlyingSemigroupOfReesMatrixSemigroup",
	IsSubsemigroupReesMatrixSemigroup);
DeclareAttribute("UnderlyingSemigroupOfReesZeroMatrixSemigroup",
	IsSubsemigroupReesZeroMatrixSemigroup);

#############################################################################
##
#A  RowIndexOfReesMatrixSemigroupElement( <x> )
#A  RowIndexOfReesZeroMatrixSemigroupElement( <x> )
#A  ColumnIndexOfReesMatrixSemigroupElement( <x> )
#A  ColumnIndexOfReesZeroMatrixSemigroupElement( <x> )
#A  UnderlyingElementOfReesMatrixSemigroupElement( <x> )
#A  UnderlyingElementOfReesZeroMatrixSemigroupElement( <x> )
##
##  <#GAPDoc Label="RowIndexOfReesMatrixSemigroupElement">
##  <ManSection>
##  <Attr Name="RowIndexOfReesMatrixSemigroupElement" Arg='x'/>
##  <Attr Name="RowIndexOfReesZeroMatrixSemigroupElement" Arg='x'/>
##  <Attr Name="ColumnIndexOfReesMatrixSemigroupElement" Arg='x'/>
##  <Attr Name="ColumnIndexOfReesZeroMatrixSemigroupElement" Arg='x'/>
##  <Attr Name="UnderlyingElementOfReesMatrixSemigroupElement" Arg='x'/>
##  <Attr Name="UnderlyingElementOfReesZeroMatrixSemigroupElement" Arg='x'/>
##
##  <Description>
##  For an element <A>x</A> of a Rees Matrix semigroup, of the form
##  <M>(i, s, \lambda)</M>,
##  the row index is <M>i</M>, the column index is <M>\lambda</M> and the 
##  underlying element is <M>s</M>.
##  If we think of an element as a matrix then this corresponds to
##  the row where the non-zero entry is, the column where the
##  non-zero entry is and the entry at that position, respectively. 
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("RowIndexOfReesMatrixSemigroupElement",
  IsReesMatrixSemigroupElement);
DeclareAttribute("RowIndexOfReesZeroMatrixSemigroupElement",
  IsReesZeroMatrixSemigroupElement);
DeclareAttribute("ColumnIndexOfReesMatrixSemigroupElement",
  IsReesMatrixSemigroupElement);
DeclareAttribute("ColumnIndexOfReesZeroMatrixSemigroupElement",
  IsReesZeroMatrixSemigroupElement);
DeclareAttribute("UnderlyingElementOfReesMatrixSemigroupElement",
  IsReesMatrixSemigroupElement);
DeclareAttribute("UnderlyingElementOfReesZeroMatrixSemigroupElement",
  IsReesZeroMatrixSemigroupElement);

#############################################################################
##
#P  IsReesZeroMatrixSemigroup( <T> )
##
##  <#GAPDoc Label="IsReesZeroMatrixSemigroup">
##  <ManSection>
##  <Prop Name="IsReesZeroMatrixSemigroup" Arg='T'/>
##
##  <Description>
##  returns <K>true</K> if the object <A>T</A> is a (whole) Rees 0-matrix
##  semigroup.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonymAttr( "IsReesZeroMatrixSemigroup", 
	IsSubsemigroupReesZeroMatrixSemigroup and IsWholeFamily);

############################################################################
##
#P  ReesZeroMatrixSemigroupElementIsZero( <x> )
##
##  <#GAPDoc Label="ReesZeroMatrixSemigroupElementIsZero">
##  <ManSection>
##  <Prop Name="ReesZeroMatrixSemigroupElementIsZero" Arg='x'/>
##
##  <Description>
##  returns <K>true</K> if <A>x</A> is the zero of the Rees 0-matrix semigroup.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty("ReesZeroMatrixSemigroupElementIsZero", 
	IsReesZeroMatrixSemigroupElement);

############################################################################
##
#A  AssociatedReesMatrixSemigroupOfDClass( <D> )
##
##  <#GAPDoc Label="AssociatedReesMatrixSemigroupOfDClass">
##  <ManSection>
##  <Attr Name="AssociatedReesMatrixSemigroupOfDClass" Arg='D'/>
##
##  <Description>
##  Given a regular <A>D</A> class of a finite semigroup, it can be viewed as a
##  Rees matrix semigroup by identifying products which do not lie in the
##  <A>D</A> class with zero, and this is what it is returned.
##  <P/>
##  Formally, let <M>I_1</M> be the ideal of all J classes less than or equal to
##  <A>D</A>, <M>I_2</M> the ideal of all J classes <E>strictly</E> less than <A>D</A>,
##  and <M>\rho</M> the Rees congruence associated with <M>I_2</M>.  Then <M>I/\rho</M>
##  is zero-simple.  Then <C>AssociatedReesMatrixSemigroupOfDClass( <A>D</A> )</C>
##  returns this zero-simple semigroup as a Rees matrix semigroup.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("AssociatedReesMatrixSemigroupOfDClass", IsGreensDClass);


#############################################################################
##
#E