This file is indexed.

/usr/share/gap/lib/relation.gd is in gap-libs 4r6p5-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
#############################################################################
##
#W  relation.gd                  GAP library                   Andrew Solomon
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the declarations for binary relations on sets.
##
##  Maintenance and further development by:
##  Robert Arthur
##  Robert F. Morse
##  Andrew Solomon
##


#############################################################################
##
##  <#GAPDoc Label="[1]{relation}">
##  <Index>binary relation</Index>
##  <Index Key="IsBinaryRelation" Subkey="same as IsEndoGeneralMapping">
##  <C>IsBinaryRelation</C></Index>
##  <Index Key="IsEndoGeneralMapping" Subkey="same as IsBinaryRelation">
##  <C>IsEndoGeneralMapping</C></Index>
##  A <E>binary relation</E> <M>R</M> on a set <M>X</M> is a subset of
##  <M>X \times X</M>.
##  A binary relation can also be thought of as a (general) mapping
##  from <M>X</M> to itself or as a directed graph where each edge
##  represents an element of <M>R</M>.
##  <P/>
##  In &GAP;, a relation is conceptually represented as a general mapping
##  from <M>X</M> to itself.
##  The category <Ref Func="IsBinaryRelation"/> is a synonym for
##  <Ref Func="IsEndoGeneralMapping"/>.
##  Attributes and properties of relations in &GAP; are supported for
##  relations, via considering relations as a subset of <M>X \times X</M>,
##  or as a directed graph;
##  examples include finding the strongly connected components of a relation,
##  via <Ref Func="StronglyConnectedComponents"/>,
##  or enumerating the tuples of the relation.
##  <#/GAPDoc>
##


##  The hierarchy of concepts around binary relations on a set are:
##
##  IsGeneralMapping >
##
##  IsEndoGeneralMapping [ = IsBinaryRelation] >
##
##  [IsEquivalenceRelation]
##
##
#############################################################################

#############################################################################
##
## General Binary Relations
##
#############################################################################

#############################################################################
##
#C  IsBinaryRelation( <R> )
##
##  <#GAPDoc Label="IsBinaryRelation">
##  <ManSection>
##  <Filt Name="IsBinaryRelation" Arg='R' Type='Category'/>
##
##  <Description>
##  is   exactly   the   same   category   as   (i.e.    a    synonym    for)
##  <Ref Func="IsEndoGeneralMapping"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonym("IsBinaryRelation",IsEndoGeneralMapping);


#############################################################################
##
#F  BinaryRelationOnPoints( <list> )
#F  BinaryRelationOnPointsNC( <list> )
##
##  <#GAPDoc Label="BinaryRelationOnPoints">
##  <ManSection>
##  <Func Name="BinaryRelationOnPoints" Arg='list'/>
##  <Func Name="BinaryRelationOnPointsNC" Arg='list'/>
##
##  <Description>
##  Given a list of <M>n</M> lists,
##  each containing elements from the set <M>\{ 1, \ldots, n \}</M>,
##  this function constructs a binary relation such that <M>1</M> is related
##  to <A>list</A><C>[1]</C>, <M>2</M> to <A>list</A><C>[2]</C> and so on.
##  The first version checks whether the list supplied is valid.
##  The the <C>NC</C> version skips this check.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("BinaryRelationOnPoints");
DeclareGlobalFunction("BinaryRelationOnPointsNC");

#############################################################################
##
#F  RandomBinaryRelationOnPoints( <degree> )
##
##  <#GAPDoc Label="RandomBinaryRelationOnPoints">
##  <ManSection>
##  <Func Name="RandomBinaryRelationOnPoints" Arg='degree'/>
##
##  <Description>
##  creates a relation on points with degree <A>degree</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("RandomBinaryRelationOnPoints");

#############################################################################
##
#F  IdentityBinaryRelation( <degree> )
#F  IdentityBinaryRelation( <domain> )
##
##  <#GAPDoc Label="IdentityBinaryRelation">
##  <ManSection>
##  <Heading>IdentityBinaryRelation</Heading>
##  <Func Name="IdentityBinaryRelation" Arg='degree' Label="for a degree"/>
##  <Func Name="IdentityBinaryRelation" Arg='domain' Label="for a domain"/>
##
##  <Description>
##  is the binary relation which consists of diagonal pairs, i.e., pairs of
##  the form <M>(x,x)</M>.
##  In the first form if a positive integer <A>degree</A> is given then
##  the domain is the set of the integers
##  <M>\{ 1, \ldots, <A>degree</A> \}</M>.
##  In the second form, the objects <M>x</M> are from the domain
##  <A>domain</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("IdentityBinaryRelation");

#############################################################################
##
#F  BinaryRelationByElements( <domain>, <elms> )
##
##  <#GAPDoc Label="BinaryRelationByElements">
##  <ManSection>
##  <Func Name="BinaryRelationByElements" Arg='domain, elms'/>
##
##  <Description>
##  is the binary relation on <A>domain</A> and with underlying relation
##  consisting of the tuples collection <A>elms</A>.
##  This construction is similar to <Ref Func="GeneralMappingByElements"/>
##  where the source and range are the same set.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("BinaryRelationByElements");

#############################################################################
##
#F  EmptyBinaryRelation( <degree> )
#F  EmptyBinaryRelation( <domain> )
##
##  <#GAPDoc Label="EmptyBinaryRelation">
##  <ManSection>
##  <Func Name="EmptyBinaryRelation" Arg='degree' Label="for a degree"/>
##  <Func Name="EmptyBinaryRelation" Arg='domain' Label="for a domain"/>
##
##  <Description>
##  is the relation with <A>R</A> empty.
##  In the first form of the command with <A>degree</A> an integer,
##  the domain is the set of points <M>\{ 1, \ldots, <A>degree</A> \}</M>.
##  In the second form, the domain is that given by the argument
##  <A>domain</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("EmptyBinaryRelation");

#############################################################################
##
#F  AsBinaryRelationOnPoints( <trans> )
#F  AsBinaryRelationOnPoints( <perm> )
#F  AsBinaryRelationOnPoints( <rel> )
##
##  <#GAPDoc Label="AsBinaryRelationOnPoints">
##  <ManSection>
##  <Heading>AsBinaryRelationOnPoints</Heading>
##  <Heading>AsBinaryRelationOnPoints</Heading>
##  <Func Name="AsBinaryRelationOnPoints" Arg='trans'
##   Label="for a transformation"/>
##  <Func Name="AsBinaryRelationOnPoints" Arg='perm'
##   Label="for a permutation"/>
##  <Func Name="AsBinaryRelationOnPoints" Arg='rel'
##   Label="for a binary relation"/>
##
##  <Description>
##  return the relation on points represented by general relation <A>rel</A>,
##  transformation <A>trans</A> or permutation <A>perm</A>.
##  If <A>rel</A> is already a binary relation on points then <A>rel</A> is
##  returned.
##  <P/>
##  Transformations and permutations are special general endomorphic
##  mappings and have a natural representation as a binary relation on
##  points.
##  <P/>
##  In the last form, an isomorphic relation on points is constructed
##  where the points are indices of the elements of the underlying domain
##  in sorted order.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("AsBinaryRelationOnPoints");

###############################################################################
##
#A  Successors( <R> )
##
##  <#GAPDoc Label="Successors">
##  <ManSection>
##  <Attr Name="Successors" Arg='R'/>
##
##  <Description>
##  returns the list of images of a binary relation <A>R</A>.
##  If the underlying domain of the relation is not <M>\{ 1, \ldots, n \}</M>,
##  for some positive integer <M>n</M>, then an error is signalled.
##  <P/>
##  The returned value of <Ref Func="Successors"/> is a list of lists where
##  the lists are ordered as the elements according to the sorted order of
##  the underlying set of <A>R</A>.
##  Each list consists of the images of the element whose index is the same
##  as the list with the underlying set in sorted order.
##  <P/>
##  The <Ref Func="Successors"/> of a relation is the adjacency list
##  representation of the relation.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("Successors", IsBinaryRelation);

###############################################################################
##
#A  DegreeOfBinaryRelation(<R>)
##
##  <#GAPDoc Label="DegreeOfBinaryRelation">
##  <ManSection>
##  <Attr Name="DegreeOfBinaryRelation" Arg='R'/>
##
##  <Description>
##  returns the size of the underlying domain of the binary relation
##  <A>R</A>.
##  This is most natural when working with a binary relation on points.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("DegreeOfBinaryRelation", IsBinaryRelation);

############################################################################
##
#A  UnderlyingDomainOfBinaryRelation(<R>)
##
##  <ManSection>
##  <Attr Name="UnderlyingDomainOfBinaryRelation" Arg='R'/>
##
##  <Description>
##  is a synonym for <Ref Func="Source"/>.
##  </Description>
##  </ManSection>
##
DeclareSynonym("UnderlyingDomainOfBinaryRelation",Source);

#############################################################################
##
##  Properties of binary relations.
##
#############################################################################

#############################################################################
##
#P  IsReflexiveBinaryRelation(<R>)
##
##  <#GAPDoc Label="IsReflexiveBinaryRelation">
##  <ManSection>
##  <Prop Name="IsReflexiveBinaryRelation" Arg='R'/>
##
##  <Description>
##  returns <K>true</K> if the binary relation <A>R</A> is reflexive,
##  and <K>false</K> otherwise.
##  <P/>
##  <Index>reflexive relation</Index>
##  A binary relation <M>R</M> (as a set of pairs) on a set <M>X</M> is
##  <E>reflexive</E> if for all <M>x \in X</M>, <M>(x,x) \in R</M>.
##  Alternatively, <M>R</M> as a mapping
##  is reflexive if for all <M>x \in X</M>,
##  <M>x</M> is an element of the image set <M>R(x)</M>.
##  <P/>
##  A reflexive binary relation is necessarily a total endomorphic
##  mapping (tested via <Ref Func="IsTotal"/>).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty("IsReflexiveBinaryRelation", IsBinaryRelation);

#############################################################################
##
#P  IsSymmetricBinaryRelation(<R>)
##
##  <#GAPDoc Label="IsSymmetricBinaryRelation">
##  <ManSection>
##  <Prop Name="IsSymmetricBinaryRelation" Arg='R'/>
##
##  <Description>
##  returns <K>true</K> if the binary relation <A>R</A> is symmetric,
##  and <K>false</K> otherwise.
##  <P/>
##  <Index>symmetric relation</Index>
##  A binary relation <M>R</M> (as a set of pairs) on a set <M>X</M> is
##  <E>symmetric</E> if <M>(x,y) \in R</M> then <M>(y,x) \in R</M>.
##  Alternatively, <M>R</M> as a mapping is symmetric
##  if for all <M>x \in X</M>, the preimage set of <M>x</M> under <M>R</M>
##  equals the image set <M>R(x)</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty("IsSymmetricBinaryRelation", IsBinaryRelation);

#############################################################################
##
#P  IsTransitiveBinaryRelation(<R>)
##
##  <#GAPDoc Label="IsTransitiveBinaryRelation">
##  <ManSection>
##  <Prop Name="IsTransitiveBinaryRelation" Arg='R'/>
##
##  <Description>
##  returns <K>true</K> if the binary relation <A>R</A> is transitive,
##  and <K>false</K> otherwise.
##  <P/>
##  <Index>transitive relation</Index>
##  A binary relation <A>R</A> (as a set of pairs) on a set <M>X</M> is
##  <E>transitive</E> if <M>(x,y), (y,z) \in R</M> implies
##  <M>(x,z) \in R</M>.
##  Alternatively, <M>R</M> as a mapping is transitive if for all
##  <M>x \in X</M>, the image set <M>R(R(x))</M> of the image
##  set <M>R(x)</M> of <M>x</M> is a subset of <M>R(x)</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty("IsTransitiveBinaryRelation", IsBinaryRelation);

#############################################################################
##
#P  IsAntisymmetricBinaryRelation(<rel>)
##
##  <#GAPDoc Label="IsAntisymmetricBinaryRelation">
##  <ManSection>
##  <Prop Name="IsAntisymmetricBinaryRelation" Arg='rel'/>
##
##  <Description>
##  returns <K>true</K> if the binary relation <A>rel</A> is antisymmetric,
##  and <K>false</K> otherwise.
##  <P/>
##  <Index>antisymmetric relation</Index>
##  A binary relation <A>R</A> (as a set of pairs) on a set <M>X</M> is
##  <E>antisymmetric</E> if <M>(x,y), (y,x) \in R</M> implies <M>x = y</M>.
##  Alternatively, <M>R</M> as a mapping is antisymmetric if for all
##  <M>x \in X</M>, the intersection of the preimage set of <M>x</M>
##  under <M>R</M> and the image set <M>R(x)</M> is <M>\{ x \}</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty("IsAntisymmetricBinaryRelation",IsBinaryRelation);

#############################################################################
##
#P  IsPreOrderBinaryRelation(<rel>)
##
##  <#GAPDoc Label="IsPreOrderBinaryRelation">
##  <ManSection>
##  <Prop Name="IsPreOrderBinaryRelation" Arg='rel'/>
##
##  <Description>
##  returns <K>true</K> if the binary relation <A>rel</A> is a preorder,
##  and <K>false</K> otherwise.
##  <P/>
##  <Index>preorder</Index>
##  A <E>preorder</E> is a binary relation that is both reflexive and
##  transitive.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty("IsPreOrderBinaryRelation",IsBinaryRelation);

#############################################################################
##
#P  IsPartialOrderBinaryRelation(<rel>)
##
##  <#GAPDoc Label="IsPartialOrderBinaryRelation">
##  <ManSection>
##  <Prop Name="IsPartialOrderBinaryRelation" Arg='rel'/>
##
##  <Description>
##  returns <K>true</K> if the binary relation <A>rel</A> is a partial order,
##  and <K>false</K> otherwise.
##  <P/>
##  <Index>partial order</Index>
##  A <E>partial order</E> is a preorder which is also antisymmetric.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty("IsPartialOrderBinaryRelation",IsBinaryRelation);

InstallTrueMethod(IsPreOrderBinaryRelation, IsReflexiveBinaryRelation and
    IsTransitiveBinaryRelation);
InstallTrueMethod(IsPartialOrderBinaryRelation, IsPreOrderBinaryRelation and
    IsAntisymmetricBinaryRelation);
InstallTrueMethod(IsTotal, IsReflexiveBinaryRelation);

#############################################################################
##
#P  IsLatticeOrderBinaryRelation(<rel>)
##
##  <ManSection>
##  <Prop Name="IsLatticeOrderBinaryRelation" Arg='rel'/>
##
##  <Description>
##  return <K>true</K> if the binary relation is a lattice order,
##  and <K>false</K> otherwise.
##  <P/>
##  <Index>lattice order</Index>
##  A <E>lattice order</E> is a partial order in which each pair of elements
##  has a greatest lower bound and a least upper bound.
##  </Description>
##  </ManSection>
##
DeclareProperty("IsLatticeOrderBinaryRelation",IsBinaryRelation);

InstallTrueMethod(IsPartialOrderBinaryRelation, IsLatticeOrderBinaryRelation);

############################################################################
##
## Equivalence Relations
##
#############################################################################

#############################################################################
##
#P  IsEquivalenceRelation( <R> )
##
##  <#GAPDoc Label="IsEquivalenceRelation">
##  <ManSection>
##  <Prop Name="IsEquivalenceRelation" Arg='R'/>
##
##  <Description>
##  returns <K>true</K> if the binary relation <A>R</A> is an equivalence
##  relation, and <K>false</K> otherwise.
##  <P/>
##  <Index>equivalence relation</Index>
##  Recall, that a relation <A>R</A> is an <E>equivalence relation</E>
##  if it is symmetric, transitive, and reflexive.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty("IsEquivalenceRelation", IsBinaryRelation);

InstallTrueMethod(IsBinaryRelation, IsEquivalenceRelation);
InstallTrueMethod(IsReflexiveBinaryRelation, IsEquivalenceRelation);
InstallTrueMethod(IsTransitiveBinaryRelation, IsEquivalenceRelation);
InstallTrueMethod(IsSymmetricBinaryRelation, IsEquivalenceRelation);
InstallTrueMethod(IsEquivalenceRelation,
    IsReflexiveBinaryRelation and
    IsTransitiveBinaryRelation and IsSymmetricBinaryRelation);

#############################################################################
##
##  Closure operations for binary relations.
##
#############################################################################

#############################################################################
##
#O  ReflexiveClosureBinaryRelation( <R> )
##
##  <#GAPDoc Label="ReflexiveClosureBinaryRelation">
##  <ManSection>
##  <Oper Name="ReflexiveClosureBinaryRelation" Arg='R'/>
##
##  <Description>
##  is the smallest binary relation containing the binary relation <A>R</A>
##  which is reflexive.
##  This closure inherits the properties symmetric and transitive from
##  <A>R</A>.
##  E.g., if <A>R</A> is symmetric then its reflexive closure
##  is also.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("ReflexiveClosureBinaryRelation", [IsBinaryRelation]);

#############################################################################
##
#O  SymmetricClosureBinaryRelation( <R> )
##
##  <#GAPDoc Label="SymmetricClosureBinaryRelation">
##  <ManSection>
##  <Oper Name="SymmetricClosureBinaryRelation" Arg='R'/>
##
##  <Description>
##  is the smallest binary relation containing the binary relation <A>R</A>
##  which is symmetric.
##  This closure inherits the properties reflexive and transitive from
##  <A>R</A>.
##  E.g., if <A>R</A> is reflexive then its symmetric closure is also.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("SymmetricClosureBinaryRelation", [IsBinaryRelation]);

#############################################################################
##
#O  TransitiveClosureBinaryRelation( <rel> )
##
##  <#GAPDoc Label="TransitiveClosureBinaryRelation">
##  <ManSection>
##  <Oper Name="TransitiveClosureBinaryRelation" Arg='rel'/>
##
##  <Description>
##  is the smallest binary relation containing the binary relation <A>R</A>
##  which is transitive.
##  This closure inherits the properties reflexive and symmetric from
##  <A>R</A>.
##  E.g., if <A>R</A> is symmetric then its transitive closure is also.
##  <P/>
##  <Ref Func="TransitiveClosureBinaryRelation"/> is a modified version of
##  the Floyd-Warshall method of solving the all-pairs shortest-paths problem
##  on a directed graph.
##  Its asymptotic runtime is <M>O(n^3)</M> where <M>n</M> is the size of the
##  vertex set.
##  It only assumes there is an arbitrary (but fixed) ordering of the vertex
##  set.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("TransitiveClosureBinaryRelation", [IsBinaryRelation]);

#############################################################################
##
#O  HasseDiagramBinaryRelation(<partial-order>)
##
##  <#GAPDoc Label="HasseDiagramBinaryRelation">
##  <ManSection>
##  <Oper Name="HasseDiagramBinaryRelation" Arg='partial-order'/>
##
##  <Description>
##  is the smallest relation contained in the partial order
##  <A>partial-order</A> whose reflexive and transitive closure is equal to
##  <A>partial-order</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("HasseDiagramBinaryRelation", [IsBinaryRelation]);

#############################################################################
##
#P  IsHasseDiagram(<rel>)
##
##  <#GAPDoc Label="IsHasseDiagram">
##  <ManSection>
##  <Prop Name="IsHasseDiagram" Arg='rel'/>
##
##  <Description>
##  returns <K>true</K> if the binary relation <A>rel</A> is a Hasse Diagram
##  of a partial order, i.e., was computed via
##  <Ref Func="HasseDiagramBinaryRelation"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty("IsHasseDiagram", IsBinaryRelation);

#############################################################################
##
#A  PartialOrderOfHasseDiagram(<HD>)
##
##  <#GAPDoc Label="PartialOrderOfHasseDiagram">
##  <ManSection>
##  <Attr Name="PartialOrderOfHasseDiagram" Arg='HD'/>
##
##  <Description>
##  is the partial order associated with the Hasse Diagram <A>HD</A>
##  i.e. the partial order generated by the reflexive and
##  transitive closure of <A>HD</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("PartialOrderOfHasseDiagram",IsBinaryRelation);

#############################################################################
##
#F  PartialOrderByOrderingFunction(<dom>, <orderfunc>)
##
##  <#GAPDoc Label="PartialOrderByOrderingFunction">
##  <ManSection>
##  <Func Name="PartialOrderByOrderingFunction" Arg='dom, orderfunc'/>
##
##  <Description>
##  constructs a partial order whose elements are from the domain <A>dom</A>
##  and are ordered using the ordering function <A>orderfunc</A>.
##  The ordering function must be a binary function returning a boolean
##  value.
##  If the ordering function does not describe a partial order then
##  <K>fail</K> is returned.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("PartialOrderByOrderingFunction");

#############################################################################
##
#O  StronglyConnectedComponents(<R>)
##
##  <#GAPDoc Label="StronglyConnectedComponents">
##  <ManSection>
##  <Oper Name="StronglyConnectedComponents" Arg='R'/>
##
##  <Description>
##  returns an equivalence relation on the vertices of the binary relation
##  <A>R</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("StronglyConnectedComponents", [IsBinaryRelation]);

#############################################################################
##
##  Special definitions for exponentiation with sets, lists, and Zero
##
DeclareOperation("POW", [IsListOrCollection, IsBinaryRelation]);
DeclareOperation("\+", [IsBinaryRelation, IsBinaryRelation]);
DeclareOperation("\-", [IsBinaryRelation, IsBinaryRelation]);

#############################################################################
##
#A  EquivalenceRelationPartition(<equiv>)
##
##  <#GAPDoc Label="EquivalenceRelationPartition">
##  <ManSection>
##  <Attr Name="EquivalenceRelationPartition" Arg='equiv'/>
##
##  <Description>
##  returns a list of lists of elements
##  of the underlying set of the equivalence relation <A>equiv</A>.
##  The lists are precisely the nonsingleton equivalence classes of the
##  equivalence.
##  This allows us to describe <Q>small</Q> equivalences on infinite sets.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("EquivalenceRelationPartition", IsEquivalenceRelation);

#############################################################################
##
#A  GeneratorsOfEquivalenceRelationPartition(<equiv>)
##
##  <#GAPDoc Label="GeneratorsOfEquivalenceRelationPartition">
##  <ManSection>
##  <Attr Name="GeneratorsOfEquivalenceRelationPartition" Arg='equiv'/>
##
##  <Description>
##  is a set of generating pairs for the equivalence relation <A>equiv</A>.
##  This set is not unique.
##  The equivalence <A>equiv</A> is the smallest equivalence relation over
##  the underlying set which contains the generating pairs.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("GeneratorsOfEquivalenceRelationPartition",
    IsEquivalenceRelation);

#############################################################################
##
#F  EquivalenceRelationByPartition( <domain>, <list> )
#F  EquivalenceRelationByPartitionNC( <domain>, <list> )
##
##  <#GAPDoc Label="EquivalenceRelationByPartition">
##  <ManSection>
##  <Func Name="EquivalenceRelationByPartition" Arg='domain, list'/>
##  <Func Name="EquivalenceRelationByPartitionNC" Arg='domain, list'/>
##
##  <Description>
##  constructs the equivalence relation over the set <A>domain</A>
##  which induces the partition represented by <A>list</A>.
##  This representation includes only the non-trivial blocks
##  (or equivalent classes). <A>list</A> is a list of lists,
##  each of these lists contain elements of <A>domain</A> and are
##  pairwise mutually exclusive.
##  <P/>
##  The list of lists do not need to be in any order nor do the
##  elements in the blocks
##  (see <Ref Func="EquivalenceRelationPartition"/>).
##  a list of elements of <A>domain</A>
##  The partition <A>list</A> is a
##  list of lists, each of these is a list of elements of <A>domain</A>
##  that makes up a block (or equivalent class). The
##  <A>domain</A> is the domain over which the relation is defined, and
##  <A>list</A> is a list of lists, each of these is a list of elements
##  of <A>domain</A> which are related to each other.
##  <A>list</A> need only contain the nontrivial blocks
##  and singletons will be ignored. The <C>NC</C> version will not check
##  to see if the lists are pairwise mutually exclusive or that
##  they contain only elements of the domain.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("EquivalenceRelationByPartition");
DeclareGlobalFunction("EquivalenceRelationByPartitionNC");

#############################################################################
##
#F  EquivalenceRelationByProperty( <domain>, <property> )
##
##  <#GAPDoc Label="EquivalenceRelationByProperty">
##  <ManSection>
##  <Func Name="EquivalenceRelationByProperty" Arg='domain, property'/>
##
##  <Description>
##  creates an equivalence relation on <A>domain</A> whose only defining
##  datum is that of having the property <A>property</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("EquivalenceRelationByProperty");

#############################################################################
##
#F  EquivalenceRelationByRelation( <rel> )
##
##  <#GAPDoc Label="EquivalenceRelationByRelation">
##  <ManSection>
##  <Func Name="EquivalenceRelationByRelation" Arg='rel'/>
##
##  <Description>
##  returns the smallest equivalence
##  relation containing the binary relation <A>rel</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("EquivalenceRelationByRelation");

#############################################################################
##
##  Some other creation functions which might be useful in the future
##
##  EquivalenceRelationByFunction( <X>, <function> )
##
##  EquivalenceRelationByFunction - the function goes from
##  $X  \times X \rightarrow $ {<true>, <false>}.

#############################################################################
##
#O  JoinEquivalenceRelations( <equiv1>, <equiv2> )
#O  MeetEquivalenceRelations( <equiv1>, <equiv2> )
##
##  <#GAPDoc Label="JoinEquivalenceRelations">
##  <ManSection>
##  <Oper Name="JoinEquivalenceRelations" Arg='equiv1, equiv2'/>
##  <Oper Name="MeetEquivalenceRelations" Arg='equiv1, equiv2'/>
##
##  <Description>
##  <Ref Func="JoinEquivalenceRelations"/> returns the smallest
##  equivalence relation containing both the equivalence relations
##  <A>equiv1</A> and <A>equiv2</A>.
##  <P/>
##  <Ref Func="MeetEquivalenceRelations"/> returns the
##  intersection of the two equivalence relations
##  <A>equiv1</A> and <A>equiv2</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("JoinEquivalenceRelations",
    [IsEquivalenceRelation,IsEquivalenceRelation]);
DeclareOperation("MeetEquivalenceRelations",
    [IsEquivalenceRelation,IsEquivalenceRelation]);

#############################################################################
##
#C  IsEquivalenceClass( <obj> )
##
##  <#GAPDoc Label="IsEquivalenceClass">
##  <ManSection>
##  <Filt Name="IsEquivalenceClass" Arg='obj' Type='Category'/>
##
##  <Description>
##  returns <K>true</K> if the object <A>obj</A> is an equivalence class,
##  and <K>false</K> otherwise.
##  <P/>
##  <Index>equivalence class</Index>
##  An <E>equivalence class</E> is a collection of elements which are mutually
##  related to each other in the associated equivalence relation.
##  Note, this is a special category of objects
##  and not just a list of elements.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory("IsEquivalenceClass",IsDomain and IsDuplicateFreeCollection);

#############################################################################
##
#A  EquivalenceClassRelation(<C>)
##
##  <#GAPDoc Label="EquivalenceClassRelation">
##  <ManSection>
##  <Attr Name="EquivalenceClassRelation" Arg='C'/>
##
##  <Description>
##  returns the equivalence relation of which <A>C</A> is a class.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("EquivalenceClassRelation", IsEquivalenceClass);

#############################################################################
##
#A  EquivalenceClasses(<rel>)
##
##  <#GAPDoc Label="EquivalenceClasses">
##  <ManSection>
##  <Attr Name="EquivalenceClasses" Arg='rel' Label="attribute"/>
##
##  <Description>
##  returns a list of all equivalence classes of the equivalence relation
##  <A>rel</A>.
##  Note that it is possible for different methods to yield the list
##  in different orders, so that for two equivalence relations
##  <M>c1</M> and <M>c2</M> we may have <M>c1 = c2</M> without having
##  <C>EquivalenceClasses</C><M>( c1 ) =
##  </M><C>EquivalenceClasses</C><M>( c2 )</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("EquivalenceClasses", IsEquivalenceRelation);

#############################################################################
##
#O  EquivalenceClassOfElement( <rel>, <elt> )
#O  EquivalenceClassOfElementNC( <rel>, <elt> )
##
##  <#GAPDoc Label="EquivalenceClassOfElement">
##  <ManSection>
##  <Oper Name="EquivalenceClassOfElement" Arg='rel, elt'/>
##  <Oper Name="EquivalenceClassOfElementNC" Arg='rel, elt'/>
##
##  <Description>
##  return the equivalence class of <A>elt</A> in the binary relation
##  <A>rel</A>,
##  where <A>elt</A> is an element (i.e. a pair) of the domain of <A>rel</A>.
##  In the <C>NC</C> form, it is not checked that <A>elt</A> is in the domain
##  over which <A>rel</A> is defined.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("EquivalenceClassOfElement",
    [IsEquivalenceRelation, IsObject]);

DeclareOperation("EquivalenceClassOfElementNC",
    [IsEquivalenceRelation, IsObject]);

#############################################################################
##
#F  EquivalenceRelationByPairs( <D>, <elms> )
#F  EquivalenceRelationByPairsNC( <D>, <elms> )
##
##  <#GAPDoc Label="EquivalenceRelationByPairs">
##  <ManSection>
##  <Func Name="EquivalenceRelationByPairs" Arg='D, elms'/>
##  <Func Name="EquivalenceRelationByPairsNC" Arg='D, elms'/>
##
##  <Description>
##  return the smallest equivalence relation
##  on the domain <A>D</A> such that every pair in <A>elms</A>
##  is in the relation.
##  <P/>
##  In the <C>NC</C> form, it is not checked that <A>elms</A> are in the
##  domain <A>D</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("EquivalenceRelationByPairs");
DeclareGlobalFunction("EquivalenceRelationByPairsNC");


#############################################################################
##
#E