This file is indexed.

/usr/share/gap/lib/ringpoly.gi is in gap-libs 4r6p5-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
#############################################################################
##
#W  ringpoly.gi                 GAP Library                      Frank Celler
##
#Y  Copyright (C)  1996,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1999 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the methods  for attributes, properties and operations
##  for polynomial rings and function fields.
##


#############################################################################
##
#M  GiveNumbersNIndeterminates(<ratfunfam>,<count>,<names>,<avoid>)
BindGlobal("GiveNumbersNIndeterminates",function(rfam,cnt,nam,avoid)
local reuse, idn, nbound, p, i,str;
  reuse:=true;
  # TODO: The following check could be simplified if we are willing to
  # change semantics of the options "new" and "old" a bit: Currently,
  # "old" has precedence, which is the why this check is a bit more
  # complicated than one might expect. But perhaps we would like to
  # get rid of option "old" completely?
  if ValueOption("old")<>true and ValueOption("new")=true then
    reuse:=false;
  fi;

  #avoid:=List(avoid,IndeterminateNumberOfLaurentPolynomial);
  avoid:=ShallowCopy(avoid);
  for i in [1..Length(avoid)] do
    if not IsInt(avoid[i]) then
      avoid[i]:=IndeterminateNumberOfLaurentPolynomial(avoid[i]);
    fi;
  od;
  idn:=[];
  i:=1;
  while Length(idn)<cnt do
    nbound:=IsBound(nam[Length(idn)+1]);
    if nbound then 
      str:=nam[Length(idn)+1];
    else
      str:=fail;
    fi;
    if nbound and Length(str)>2 and str[1]='x' and str[2]='_' 
     and ForAll(str{[3..Length(str)]},IsDigitChar) then
      p:=Int(str{[3..Length(str)]});
      if IsPosInt(p) then
        Add(idn,p);
      else
        p:=fail;
      fi;
    elif nbound and reuse and IsBound(rfam!.namesIndets) then
      # is the indeterminate already used?
      p:=Position(rfam!.namesIndets,str);
      if p<>fail then
        if p in avoid then
          Info(InfoWarning,1,
  "A variable with the name '", str, "' already exists, yet the variable\n",
  "#I  with this name was explicitly to be avoided. I will create a\n",
  "#I  new variables with the same name.");

          p:=fail;
        else
          # reuse the old variable
          Add(idn,p);
        fi;
      fi;
    else
      p:=fail;
    fi;

    if p=fail then
      # skip unwanted indeterminates
      while (i in avoid) or (nbound and HasIndeterminateName(rfam,i)) do
        i:=i+1;
      od;
      Add(idn,i);

      if nbound then
        SetIndeterminateName(rfam,i,str);
      fi;
    fi;
    i:=i+1;
  od;
  return idn;
end);

#############################################################################
##
#M  PolynomialRing( <ring>, <rank> )  . . .  full polynomial ring over a ring
##
#T polynomial rings should be special cases of free magma rings!  one needs
#T to set an underlying magma with one, and modify the type to be
#T AlgebraWithOne and FreeMagmaRingWithOne.  (for example, ring generators in
#T the case of polynomial rings over finite fields are then automatically
#T computable ...)
##

#############################################################################
InstallMethod( PolynomialRing,"indetlist", true, [ IsRing, IsList ], 
# force higher ranking than following (string) method
  1,
function( r, n )
    local   efam,  rfun,  zero,  one,  ind,  i,  type,  prng;

    if IsPolynomialFunctionCollection(n) and ForAll(n,IsLaurentPolynomial) then
      n:=List(n,IndeterminateNumberOfLaurentPolynomial);
    fi;
    if IsEmpty(n) or not IsInt(n[1]) then
      TryNextMethod();
    fi;

    # get the elements family of the ring
    efam := ElementsFamily( FamilyObj(r) );

    # get the rational functions of the elements family
    rfun := RationalFunctionsFamily(efam);

    # cache univariate rings - they might be created often
    if not IsBound(r!.univariateRings) then
      r!.univariateRings:=[];
    fi;

    if Length(n)=1 
      # some bozo might put in a ridiculous number
      and n[1]<10000 
      # only cache for the prime field
      and IsField(r) 
      and IsBound(r!.univariateRings[n[1]]) then
      return r!.univariateRings[n[1]];
    fi;

    # first the indeterminates
    zero := Zero(r);
    one  := One(r);
    ind  := [];
    for i  in n  do
        Add( ind, UnivariatePolynomialByCoefficients(efam,[zero,one],i) );
    od;

    # construct a polynomial ring
    type := IsPolynomialRing and IsAttributeStoringRep and IsFreeLeftModule;
    # over a field the ring should be an algebra with one.
    if HasIsField(r) and IsField(r)  then
      type:=type and IsAlgebraWithOne;
    elif HasIsRingWithOne(r) and IsRingWithOne(r) then
      type:=type and IsRingWithOne;
    fi;

    if Length(n) = 1 and HasIsField(r) and IsField(r)  then
        type := type and IsUnivariatePolynomialRing and IsEuclideanRing;
                     #and IsAlgebraWithOne; # done above already
    elif Length(n) = 1 and IsRingWithOne(r) then
        type := type and IsUnivariatePolynomialRing and IsFLMLORWithOne;
    elif Length(n) = 1  then
        type := type and IsUnivariatePolynomialRing;
    fi;

    # Polynomial rings over commutative rings are themselves commutative.
    if HasIsCommutative( r ) and IsCommutative( r ) then
      type:= type and IsCommutative;
    fi;

    # Polynomial rings over commutative rings are themselves commutative.
    if HasIsAssociative( r ) and IsAssociative( r ) then
      type:= type and IsAssociative;
    fi;

    # set categories to allow method selection according to base ring
    if HasIsField(r) and IsField(r) then
        if IsFinite(r) then
            type := type and IsFiniteFieldPolynomialRing;
	  if IsAlgebraicExtension(r) then
	    type:= type and IsAlgebraicExtensionPolynomialRing;
	  fi;
        elif IsRationals(r) then
            type := type and IsRationalsPolynomialRing;
        elif # catch algebraic extensions
	  IsIdenticalObj(One(r),1) and IsAbelianNumberField( r ) then
          type:= type and IsAbelianNumberFieldPolynomialRing;
	elif IsAlgebraicExtension(r) then
          type:= type and IsAlgebraicExtensionPolynomialRing;
        fi;
    fi;
    prng := Objectify( NewType( CollectionsFamily(rfun), type ), rec() );

    # set the left acting domain
    SetLeftActingDomain( prng, r );

    # set the indeterminates
    SetIndeterminatesOfPolynomialRing( prng, ind );

    # set known properties
    SetIsFinite( prng, false );
    SetIsFiniteDimensional( prng, false );
    SetSize( prng, infinity );

    # set the coefficients ring
    SetCoefficientsRing( prng, r );

    # set one and zero
    SetOne(  prng, ind[1]^0 );
    SetZero( prng, ind[1]*Zero(r) );

    # set the generators left operator ring-with-one if the rank is one
    if IsRingWithOne(r) then
        SetGeneratorsOfLeftOperatorRingWithOne( prng, ind );
    fi;


    if Length(n)=1 and n[1]<10000 
      # only cache for the prime field
      and IsField(r) then
      r!.univariateRings[n[1]]:=prng;
    fi;

    # and return
    return prng;

end );

InstallMethod( PolynomialRing,"name",true, [ IsRing, IsString ], 0,
function( r, nam )
  return PolynomialRing( r, [nam]);
end );

InstallMethod( PolynomialRing,"names",true, [ IsRing, IsList ], 0,
function( r, nam )
  if not IsString(nam[1]) then
    TryNextMethod();
  fi;
  return PolynomialRing( r, GiveNumbersNIndeterminates(
            RationalFunctionsFamily(ElementsFamily(FamilyObj(r))),
	                             Length(nam),nam,[]));
end );


InstallMethod( PolynomialRing,"rank",true, [ IsRing, IsPosInt ], 0,
function( r, n )
  return PolynomialRing( r, [ 1 .. n ] );
end );

InstallOtherMethod( PolynomialRing,"rank,avoid",true,
  [ IsRing, IsPosInt,IsList ], 0,
function( r, n,a )
  return PolynomialRing( r, GiveNumbersNIndeterminates(
           RationalFunctionsFamily(ElementsFamily(FamilyObj(r))),n,[],a));
end );

InstallOtherMethod(PolynomialRing,"names,avoid",true,[IsRing,IsList,IsList],0,
function( r, nam,a )
  return PolynomialRing( r, GiveNumbersNIndeterminates(
            RationalFunctionsFamily(ElementsFamily(FamilyObj(r))),
	                             Length(nam),nam,a));
end );


#############################################################################
InstallOtherMethod( PolynomialRing,
    true,
    [ IsRing ],
    0,

function( r )
    return PolynomialRing(r,[1]);
end );


#############################################################################
##
#M  UnivariatePolynomialRing( <ring> )  . .  full polynomial ring over a ring
##
InstallMethod( UnivariatePolynomialRing,"indet 1", true, [ IsRing ], 0,
function( r )
  return PolynomialRing( r, [1] );
end );

InstallOtherMethod(UnivariatePolynomialRing,"indet number",true,
  [ IsRing,IsPosInt ], 0,
function( r,n )
  return PolynomialRing( r, [n] );
end );

InstallOtherMethod(UnivariatePolynomialRing,"name",true,
  [ IsRing,IsString], 0,
function( r,n )
  if not IsString(n) then
    TryNextMethod();
  fi;
  return PolynomialRing( r, GiveNumbersNIndeterminates(
            RationalFunctionsFamily(ElementsFamily(FamilyObj(r))),1,[n],[]));
end);

InstallOtherMethod(UnivariatePolynomialRing,"avoid",true,
  [ IsRing,IsList], 0,
function( r,a )
  if not IsRationalFunction(a[1]) then
    TryNextMethod();
  fi;
  return PolynomialRing( r, GiveNumbersNIndeterminates(
            RationalFunctionsFamily(ElementsFamily(FamilyObj(r))),1,[],a));
end);

InstallOtherMethod(UnivariatePolynomialRing,"name,avoid",true,
  [ IsRing,IsString,IsList], 0,
function( r,n,a )
  if not IsString(n[1]) then
    TryNextMethod();
  fi;
  return PolynomialRing( r, GiveNumbersNIndeterminates(
	    RationalFunctionsFamily(ElementsFamily(FamilyObj(r))),1,[n],a));
end);

#############################################################################
##
#M  ViewString( <pring> ) . . . . . . . . . . . . . . . for a polynomial ring
##
InstallMethod( ViewString,
               "for a polynomial ring", true,  [ IsPolynomialRing ], 0,

  R -> Concatenation(ViewString(LeftActingDomain(R)),
                     Filtered(String(IndeterminatesOfPolynomialRing(R)),
                              ch -> ch <> ' ')) );

#############################################################################
##
#M  ViewObj( <pring> ) . . . . . . . . . . . . . . . .  for a polynomial ring
##
InstallMethod( ViewObj,
              "for a polynomial ring", true, [ IsPolynomialRing ],
              # override the higher ranking FLMLOR method
              RankFilter(IsFLMLOR),

  function( R )
    Print(ViewString(R));
  end );

#############################################################################
##
#M  String( <pring> ) . . . . . . . . . . . . . . . . . for a polynomial ring
##
InstallMethod( String,
               "for a polynomial ring", true, [ IsPolynomialRing ],
               RankFilter(IsFLMLOR),
               R -> Concatenation("PolynomialRing( ",
                                   String(LeftActingDomain(R)),", ",
                                   String(IndeterminatesOfPolynomialRing(R)),
                                  " )") );

#############################################################################
##
#M  PrintObj( <pring> )
##
InstallMethod( PrintObj,
    "for a polynomial ring",
    true,
    [ IsPolynomialRing ],
    # override the higher ranking FLMLOR method
    RankFilter(IsFLMLOR),

function( obj )
local i,f;
    Print( "PolynomialRing( ", LeftActingDomain( obj ), ", [");
    f:=false;
    for i in IndeterminatesOfPolynomialRing(obj) do
      if f then Print(", ");fi;
      Print("\"",i,"\"");
      f:=true;
    od;
    Print("] )" );
end );


#############################################################################
##
#M  Indeterminate( <ring>,<nr> )
##
InstallMethod( Indeterminate,"number", true, [ IsRing,IsPosInt ],0,
function( r,n )
  return UnivariatePolynomialByCoefficients(ElementsFamily(FamilyObj(r)),
           [Zero(r),One(r)],n);
end);

InstallOtherMethod(Indeterminate,"fam,number",true,[IsFamily,IsPosInt],0,
function(fam,n)
  return UnivariatePolynomialByCoefficients(fam,[Zero(fam),One(fam)],n);
end);

InstallOtherMethod( Indeterminate,"number 1", true, [ IsRing ],0,
function( r )
  return UnivariatePolynomialByCoefficients(ElementsFamily(FamilyObj(r)),
           [Zero(r),One(r)],1);
end);

InstallOtherMethod( Indeterminate,"number, avoid", true, [ IsRing,IsList ],0,
function( r,a )
  if not IsRationalFunction(a[1]) then
    TryNextMethod();
  fi;
  r:=ElementsFamily(FamilyObj(r));
  return UnivariatePolynomialByCoefficients(r,[Zero(r),One(r)],
          GiveNumbersNIndeterminates(RationalFunctionsFamily(r),1,[],a)[1]);
end);

InstallOtherMethod( Indeterminate,"number, name", true, [ IsRing,IsString ],0,
function( r,n )
  if not IsString(n) then
    TryNextMethod();
  fi;
  r:=ElementsFamily(FamilyObj(r));
  return UnivariatePolynomialByCoefficients(r,[Zero(r),One(r)],
          GiveNumbersNIndeterminates(RationalFunctionsFamily(r),1,[n],[])[1]);
end);

InstallOtherMethod( Indeterminate,"number, name, avoid",true,
  [ IsRing,IsString,IsList ],0,
function( r,n,a )
  if not IsString(n) then
    TryNextMethod();
  fi;
  r:=ElementsFamily(FamilyObj(r));
  return UnivariatePolynomialByCoefficients(r,[Zero(r),One(r)],
          GiveNumbersNIndeterminates(RationalFunctionsFamily(r),1,[n],a)[1]);
end);

#############################################################################
##
#M  \.   Access to indeterminates
##
InstallMethod(\.,"polynomial ring indeterminates",true,[IsPolynomialRing,IsPosInt],
function(r,n)
local v, fam, a, i;
  v:=IndeterminatesOfPolynomialRing(r);
  n:=NameRNam(n);
  if ForAll(n,i->i in CHARS_DIGITS) then
    # number
    n:=Int(n);
    if Length(v)>=n then
      return v[n];
    fi;
  else
    fam:=ElementsFamily(FamilyObj(r));
    for i in v do
      a:=IndeterminateNumberOfLaurentPolynomial(i);
      if HasIndeterminateName(fam,a) and IndeterminateName(fam,a)=n then
	return i;
      fi;
    od;
  fi;
  TryNextMethod();
end);

#############################################################################
##
#M  <poly> in <polyring>
##
InstallMethod( \in,
    "polynomial in polynomial ring",
    IsElmsColls,
    [ IsPolynomialFunction,
      IsPolynomialRing ],
    0,

function( p, R )
    local   ext,  crng,  inds,  exp,  i;

    # <p> must at least be a polynomial
    if not IsPolynomial(p)  then
        return false;
    fi;

    # get the external representation
    ext := ExtRepPolynomialRatFun(p);

    # and the indeterminates and coefficients ring of <R>
    crng := CoefficientsRing(R);
    inds := Set( List( IndeterminatesOfPolynomialRing(R),
                       x -> ExtRepPolynomialRatFun(x)[1][1] ) );

    # first check the indeterminates
    for exp  in ext{[ 1, 3 .. Length(ext)-1 ]}  do
        for i  in exp{[ 1, 3 .. Length(exp)-1 ]}  do
            if not i in inds  then
                return false;
            fi;
        od;
    od;

    # then the coefficients
    for i  in ext{[ 2, 4 .. Length(ext) ]}  do
        if not i in crng  then
            return false;
        fi;
    od;
    return true;

end );

#############################################################################
##
#M  IsSubset(<polring>,<collection>)
##
InstallMethod(IsSubset,
    "polynomial rings",
    IsIdenticalObj,
    [ IsPolynomialRing,IsCollection ],
    100, # rank higher than FLMOR method
function(R,C)
  if IsPolynomialRing(C) then
    if not IsSubset(LeftActingDomain(R),LeftActingDomain(C)) then
      return false;
    fi;
    return IsSubset(R,IndeterminatesOfPolynomialRing(C));
  fi;
  if not IsPlistRep(C) or (HasIsFinite(C) and IsFinite(C)) then
    TryNextMethod();
  fi;
  return ForAll(C,x->x in R);
end);


#############################################################################
##
#M  DefaultRingByGenerators( <gens> )   . . . .  ring containing a collection
##
InstallMethod( DefaultRingByGenerators,
    true,
    [ IsRationalFunctionCollection ],
    0,

function( ogens )
    local   gens,ind,  cfs,  g,  ext,  exp,  i,univ;

    if not ForAll( ogens, IsPolynomial )  then
        TryNextMethod();
    fi;
    # the indices of the non-constant functions that have an indeterminate
    # number
    g:=Filtered([1..Length(ogens)],
      i->HasIndeterminateNumberOfUnivariateRationalFunction(ogens[i]) and
         HasCoefficientsOfLaurentPolynomial(ogens[i]));

    univ:=Filtered(ogens{g},
	     i->DegreeOfUnivariateLaurentPolynomial(i)>=0 and
		DegreeOfUnivariateLaurentPolynomial(i)<>DEGREE_ZERO_LAURPOL);

    gens:=ogens{Difference([1..Length(ogens)],g)};

    # univariate indeterminates set
    ind := Set(List(univ,IndeterminateNumberOfUnivariateRationalFunction));
    cfs := []; # univariate coefficients set
    for g in univ do
      UniteSet(cfs,CoefficientsOfUnivariateLaurentPolynomial(g)[1]);
    od;

    # the nonunivariate ones
    for g  in gens  do
        ext := ExtRepPolynomialRatFun(g);
        for exp  in ext{[ 1, 3 .. Length(ext)-1 ]}  do
            for i  in exp{[ 1, 3 .. Length(exp)-1 ]}  do
                AddSet( ind, i );
            od;
        od;
        for i  in ext{[ 2, 4 .. Length(ext) ]}  do
            Add( cfs, i );
        od;
    od;

    if Length(cfs)=0 then
      # special case for zero polynomial
      Add(cfs,Zero(CoefficientsFamily(FamilyObj(ogens[1]))));
    fi;

    if Length(ind)=0 then
      # this can only happen if the polynomials are constant. Enforce Index 1
      return PolynomialRing( DefaultField(cfs), [1] );
    else
      return PolynomialRing( DefaultField(cfs), ind );
    fi;
end );

#############################################################################
##
#M  PseudoRandom
##
InstallMethod(PseudoRandom,"polynomial ring",true,
    [IsPolynomialRing],0,
function(R)
  local inds, F, n, nrterms, degbound, ran, p, m, i, j;
  inds:=IndeterminatesOfPolynomialRing(R);
  F:=LeftActingDomain(R);
  if IsFinite(inds) then
    n:=Length(inds);
  else
    n:=1000; 
  fi;
  nrterms:=20+Random([-19..100+n]);
  degbound:=RootInt(nrterms,n)+3;
  ran:=Concatenation([0,0],[0..degbound]);
  p:=Zero(R);
  for i in [1..nrterms] do
    m:=One(R);
    for j in inds do
      m:=m*j^Random(ran);
    od;
    p:=p+Random(F)*m;
  od;
  return p;
end);

#############################################################################
##
#M  MinimalPolynomial( <ring>, <elm> )
##
InstallOtherMethod( MinimalPolynomial,"supply indeterminate 1",
    [ IsRing, IsMultiplicativeElement and IsAdditiveElement ],
function(r,e)
  return MinimalPolynomial(r,e,1);
end);


#############################################################################
##
#M  StandardAssociateUnit( <pring>, <upol> )
##
InstallMethod(StandardAssociateUnit,
  "for a polynomial ring and a polynomial",
  IsCollsElms,
  [IsPolynomialRing, IsPolynomial],
function(R,f)
  local c;
  c:=LeadingCoefficient(f);
  return StandardAssociateUnit(CoefficientsRing(R),c);
end);

InstallMethod(FunctionField,"indetlist",true,[IsRing,IsList],
# force higher ranking than following (string) method
  1,
function(r,n)
  local efam,rfun,zero,one,ind,type,fcfl,i;
  if not IsIntegralRing(r) then 
    Error("function fields can only be generated over integral rings");
  fi;
  if IsRationalFunctionCollection(n) and ForAll(n,IsLaurentPolynomial) then
    n:=List(n,IndeterminateNumberOfLaurentPolynomial);
  fi;
  if IsEmpty(n) or not IsInt(n[1]) then
    TryNextMethod();
  fi;

  # get the elements family of the ring
  efam := ElementsFamily(FamilyObj(r));

  # get the rational functions of the elements family
  rfun := RationalFunctionsFamily(efam);

  # first the indeterminates
  zero := Zero(r);
  one  := One(r);
  ind  := [];
  for i  in n  do
    Add(ind,UnivariatePolynomialByCoefficients(efam,[zero,one],i));
  od;

  # construct a polynomial ring
  type := IsFunctionField and IsAttributeStoringRep and IsLeftModule 
          and IsAlgebraWithOne;

  # If the coefficients form an integral ring, then the function field is also a field
  if HasIsIntegralRing(r) and IsIntegralRing(r) then
    type:= type and IsField;
  fi;

  fcfl := Objectify(NewType(CollectionsFamily(rfun),type),rec());;

  # The function field is commutative if and only if the coefficient ring is.
  if HasIsCommutative(r) then
    SetIsCommutative(fcfl, IsCommutative(r));
  fi;
  # ... same for associative ...
  if HasIsAssociative(r) then
    SetIsAssociative(fcfl, IsAssociative(r));
  fi;

  # set the left acting domain
  SetLeftActingDomain(fcfl,r);

  # set the indeterminates
  Setter(IndeterminatesOfFunctionField)(fcfl,ind);

  # set known properties
  SetIsFiniteDimensional(fcfl,false);
  SetSize(fcfl,infinity);

  # set the coefficients ring
  SetCoefficientsRing(fcfl,r);

  # set one and zero
  SetOne( fcfl,ind[1]^0);
  SetZero(fcfl,ind[1]*Zero(r));

  # set the generators left operator ring-with-one if the rank is one
  SetGeneratorsOfLeftOperatorRingWithOne(fcfl,ind);

  # and return
  return fcfl;

end);

InstallMethod(FunctionField,"names",true,[IsRing,IsList],0,
function(r,nam)
  if not IsString(nam[1]) then
    TryNextMethod();
  fi;
  return FunctionField(r,GiveNumbersNIndeterminates(
            RationalFunctionsFamily(ElementsFamily(FamilyObj(r))),
	                             Length(nam),nam,[]));
end);


InstallMethod(FunctionField,"rank",true,[IsRing,IsPosInt],0,
function(r,n)
  return FunctionField(r,[1 .. n]);
end);

InstallOtherMethod(FunctionField,"rank,avoid",true,
  [IsRing,IsPosInt,IsList],0,
function(r,n,a)
  return FunctionField(r,GiveNumbersNIndeterminates(
           RationalFunctionsFamily(ElementsFamily(FamilyObj(r))),n,[],a));
end);

InstallOtherMethod(FunctionField,"names,avoid",true,[IsRing,IsList,IsList],0,
function(r,nam,a)
  return FunctionField(r,GiveNumbersNIndeterminates(
            RationalFunctionsFamily(ElementsFamily(FamilyObj(r))),
	                             Length(nam),nam,a));
end);


#############################################################################
InstallOtherMethod(FunctionField,
    true,
    [IsRing],
    0,

function(r)
    return FunctionField(r,[1]);
end);

#############################################################################
##
#M  ViewObj(<fctfld>)
##
InstallMethod(ViewObj,"for function field",true,[IsFunctionField],
    # override the higher ranking FLMLOR method
    RankFilter(IsFLMLOR),
function(obj)
    Print("FunctionField(...,",
        IndeterminatesOfFunctionField(obj),")");
end);


#############################################################################
##
#M  PrintObj(<fctfld>)
##
InstallMethod(PrintObj,"for a function field",true,[IsFunctionField],
    # override the higher ranking FLMLOR method
    RankFilter(IsFLMLOR),
function(obj)
local i,f;
    Print("FunctionField(",LeftActingDomain(obj),",[");
    f:=false;
    for i in IndeterminatesOfFunctionField(obj) do
      if f then Print(",");fi;
      Print("\"",i,"\"");
      f:=true;
    od;
    Print("])");
end);

#############################################################################
##
#M  <ratfun> in <ffield>
##
InstallMethod(\in,"ratfun in fctfield",IsElmsColls,
    [IsRationalFunction,IsFunctionField],0,
function(f,R)
  local crng,inds,ext,exp,i;

  # and the indeterminates and coefficients ring of <R>
  crng := CoefficientsRing(R);
  inds := Set(List(IndeterminatesOfFunctionField(R),
		      x -> ExtRepPolynomialRatFun(x)[1][1]));

  for ext in [ExtRepNumeratorRatFun(f),ExtRepDenominatorRatFun(f)] do
    # first check the indeterminates
    for exp  in ext{[1,3 .. Length(ext)-1]}  do
      for i  in exp{[1,3 .. Length(exp)-1]}  do
	if not i in inds  then
	  return false;
	fi;
      od;
    od;

    # then the coefficients
    for i  in ext{[2,4 .. Length(ext)]}  do
      if not i in crng  then
	return false;
      fi;
    od;
  od;
  return true;

end);

# homomorphisms -- cf alghom.gi

BindGlobal("PolringHomPolgensSetup",function(map)
local gi,p;
  if not IsBound(map!.polgens) then
    gi:=MappingGeneratorsImages(map);
    p:=Filtered([1..Length(gi[1])],x->gi[1][x] in
	IndeterminatesOfPolynomialRing(Source(map)));
    map!.polgens:=[gi[1]{p},gi[2]{p}];
  fi;
end);

#############################################################################
##
#M  ImagesRepresentative( <map>, <elm> )  . . . . . . .  for polring g.m.b.i.
##
InstallMethod( ImagesRepresentative,
    "for polring g.m.b.i., and element",
    FamSourceEqFamElm,
    [ IsGeneralMapping and IsPolynomialRingDefaultGeneratorMapping,
      IsObject ],
    function( map, elm )
    local gi;
      PolringHomPolgensSetup(map);
      gi:=map!.polgens;
      return Value(elm,gi[1],gi[2],One(Range(map)));
    end );

#############################################################################
##
#M  ImagesSet( <map>, <r> )  . . . . . . .  for polring g.m.b.i.
##
InstallMethod( ImagesSet,
    "for polring g.m.b.i., and ring",
    CollFamSourceEqFamElms,
    [ IsGeneralMapping and IsPolynomialRingDefaultGeneratorMapping,
      IsRing ],
    function( map, sub )
      if HasGeneratorsOfTwoSidedIdeal(sub) 
	and (HasLeftActingRingOfIdeal(sub) and
	    IsSubset(LeftActingRingOfIdeal(sub),Source(map)) )
	and (HasRightActingRingOfIdeal(sub) and
	    IsSubset(RightActingRingOfIdeal(sub),Source(map)) ) then
	return Ideal(Image(map),
			 List(GeneratorsOfTwoSidedIdeal(sub),
			      x->ImagesRepresentative(map,x)));

      elif HasGeneratorsOfRing(sub) then
	return SubringNC(Range(map),
			 List(GeneratorsOfRing(sub),
			      x->ImagesRepresentative(map,x)));
      fi;

      TryNextMethod();
    end );

#############################################################################
##
#E